数学:2.1《合情推理与演绎推理》测试2(新人教A版选修1—2)
- 格式:doc
- 大小:203.00 KB
- 文档页数:6
第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
§2.1 合情推理与演绎推理(练习)1. 能利用归纳推理与类比推理进行一些简单的推理;2. 掌握演绎推理的基本方法,并能运用它们进行一些简单的推理;3. 体会合情推理和演绎推理的区别与联系.【知识链接】(复习教材P 28~ P 40,找出疑惑之处)复习1:归纳推理是由 到 的推理. 类比推理是由 到 的推理.合情推理的结论 .复习2:演绎推理是由 到 的推理.演绎推理的结论 .【学习过程】※ 典型例题例1 观察(1)(2)000000tan10tan 20tan 20tan 60tan 60tan101;++=000000tan5tan10tan10tan 75tan 75tan51++= 由以上两式成立,推广到一般结论,写出你的推论.变式:已知:23150sin 90sin 30sin 222=++ 23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.例2 在Rt ABC ∆中,若90C ∠=︒,则22cos cos 1A B +=,则在立体几何中,给出四面体性质的猜想.变式:已知等差数列{}n a 的公差为d ,前n 项和为n S ,有如下性质:(1)()n m a a n m d =+-,(2)若*,(,,,)m n p q m n p q N +=+∈,则m n p q a a a a +=+,类比上述性质,在等比数列{}n b 中,写出类似的性质.※ 动手试试练1.若数列{}n a 的通项公式)()1(12+∈+=N n n a n ,记)1()1)(1()(21n a a a n f -⋅⋅⋅--=,试通过计算)3(),2(),1(f f f 的值,推测出.________________)(=n f练2. 若三角形内切圆半径为r ,三边长为a,b,c ,则三角形的面积1()2S r a b c =++,根据类比思想,若四面体内切球半径为R ,四个面的面积为1234,,,S S S S ,则四面体的体积V = .【学习反思】※ 学习小结1. 合情推理⎧⎨⎩归纳推理:由特殊到一般类比推理:由特殊到特殊;结论不一定正确. 2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.※ 知识拓展有金盒、银盒、铝盒各一个,只有一个盒子里有肖像,金盒上写有命题p :肖像在这个盒子里,银盒子上写有命题q :肖像不在这个盒子里,铝盒子上写有命题r :肖像不在金盒里,这三个命题有且只有一个是真命题,问肖像在哪个盒子里?为什么?※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 由数列1,10,100,1000, ,猜想该数列的第n 项可能是( ).A.10nB.110n -C.110n +D.11n2.下面四个在平面内成立的结论①平行于同一直线的两直线平行②一条直线如果与两条平行线中的一条垂直,则必与另一条相交③垂直于同一直线的两直线平行④一条直线如果与两条平行线中的一条相交,则必与另一条相交在空间中也成立的为( ).A.①②B. ③④C. ②④D.①③3.用演绎推理证明函数3y x =是增函数时的大前提是( ).A.增函数的定义B.函数3y x =满足增函数的定义C.若12x x <,则12()()f x f x <D.若12x x <, 则12()()f x f x >4.在数列{}n a 中,已知112,31n n n a a a a +==+*()n N ∈,试归纳推理出n a = . 5. 设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,()f n = (用含n 的数学表达式表示).1. 证明函数2()4f x x x =-+在[2,)+∞上是减函数.2. 数列{}n a 满足2n n S n a =-,先计算数列的前4项,再归纳猜想n a .。
测新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明2.1 合情推理与演绎推理(第1课时)自我小测新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明2.1 合情推理与演绎推理(第1课时)自我小测新人教A版选修1-2的全部内容。
我小测新人教A版选修1-21.下列说法正确的是( )A.合情推理就是正确的推理B.合情推理就是归纳推理C.归纳推理就是从一般到特殊的推理D.类比推理就是从特殊到特殊的推理2.平面内平行于同一直线的两直线平行,由此类比到空间中我们可以得到()A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行3.如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为()A.a n=3n-1 B.a n=3nC.a n=3n-2n D.a n=3n-1+2n-34.下列哪个平面图形与空间的平行六面体作为类比对象较为合适( )A.三角形 B.梯形 C.平行四边形 D.矩形5.如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.根据数组中的数构成的规律,其中的a所表示的数是( )A.2 B.4C.6 D.86.设等差数列{a n}的前n项和为S n,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{b n}的前n项积为T n,则T4,__________,__________,错误!成等比数列.7.在△ABC中,D为BC的中点,则错误!=错误!(错误!+错误!),将命题类比到四面体中,得到一个类比命题:____________.8.三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:9(1)a1=0,a n+1=a n+(2n-1)(n∈N*);(2)a1=1,a n+1=错误!a n(n∈N*).10.平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点.若f(n)表示这n个圆把平面分割成的区域数,试求f(n).参考答案1.解析:归纳推理和类比推理统称为合情推理,合情推理得到的结论不一定正确,故选项A,B错误;归纳推理是由部分到整体、由个别到一般的推理,故选项C错误;类比推理就是从特殊到特殊的推理,故选项D正确.答案:D2.解析:利用类比推理,平面中的直线和空间中的平面类比.故选D.答案:D3.解析:∵a1=1,a2=3,a3=9,a4=27,∴猜想a n=3n-1.答案:A4.解析:点类比为线,线类比为面,面类比为体.答案:C5.解析:经观察、分析杨辉三角形可以发现,每行除1外,每个数都是它肩上的两数之和.由此可推知a=3+3=6,故选C。
第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合情推理第1课时 归纳推理双基达标限时20分钟1.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ).A .3B .-3C .6D .-6解析 a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,a 8=6,…,故{a n }是以6个项为周期循环出现的数列,a 33=a 3=3. 答案 A2.已知f 1(x )=cos x ,f 2(x )=f ′1(x ),f 3(x )=f 2′(x ),f 4(x )=f ′3(x ),…,f n (x )=f n -1′(x ),则f 2 007(x )等于( ).A .sin xB .-sin xC .cos xD .-cos x解析 由已知,有f 1(x )=cos x ,f 2(x )=-sin x , f 3(x )=-cos x , f 4(x )=sin x , f 5(x )=cos x ,…可以归纳出:f 4n (x )=sin x , f 4n +1(x )=cos x , f 4n +2(x )=-sin x , f 4n +3(x )=-cos x (n ∈N +),∴f 2 007(x )=f 3(x )=-cos x . 答案 D3.如果数列{a n }的前n 项和S n =32a n -3,那这个数列的通项公式是( ).A .a n =2(n 2+n +1) B .a n =3·2nC .a n =3n +1D .a n =2·3n解析 当n =1时,a 1=32a 1-3,∴a 1=6,由S n =32a n -3,当n ≥2时,S n -1=32a n -1-3,∴当n ≥2时,a n =S n -S n -1=32a n -32a n -1,∴a n =3a n -1.∴a 1=6,a 2=3×6,a 3=32×6. 猜想:a n =6·3n -1=2·3n.答案 D 4.设f (x )=2xx +2,x 1=1,x n =f (x n -1)(n ≥2),则x 2,x 3,x 4分别为________.猜想x n =________. 解析 x 2=f (x 1)=21+2=23,x 3=f (x 2)=12=24x 4=f (x 3)=2×1212+2=25,∴x n =2n +1.答案 23,24,25 2n +15.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为________.解析 由已知四个式子可分析规律: (n +2)2-n 2=4n +4. 答案 (n +2)2-n 2=4n +4 6.对于函数f (x )=x -1x +1,设f 2(x )=f [f (x )],f 3(x )=f [f 2(x )],…,f n +1(x )=f [f n (x )](n ∈N *,且n ≥2),(1)写出f 2(x ),f 3(x ),f 4(x ),f 5(x )的表达式; (2)根据(1)的结论,请你猜想并写出f 4n -1(x )的表达式.解 (1)∵f (x )=1-2x +1∴f 2(x )=1-2fx +1=1-x +1x =-1x, f 3(x )=1+x1-x,f 4(x )=x , f 5(x )=f (x )…,故f n (x )是以4为周期.(2)f 4n -1(x )=f 3(x )=1+x1-x.综合提高限时25分钟7.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,猜想a n =( ).A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1D .2 sin θ2n解析 法一 ∵a 1=2cos θ,a 2=2+2cos θ=21+cos θ2=2cos θ2, a 3=2+a 2=21+cosθ22=2cos θ4,…, 猜想a n =2cos θ2.法二 验n =1时,排除A 、C 、D ,故选B. 答案 B8.根据给出的数塔猜测123 456×9+7等于( ).1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111……A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析 由数塔猜测应是各位都是1的七位数,即1111111. 答案 B9.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图)试求第七个三角形数是________.解析 观察知第n 个三角形数为1+2+3+…+n =n n +2,∴当n =7时,+2=28.答案 2810.(2010·浙江)在如下数表中,已知每行、每列中的数都成等差数列,解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是:n 2+n . 答案 n 2+n11.若数列{a n }的通项公式a n =1n +12,记f (n )=(1-a 1)·(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )的值. 解 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=f (1)·⎝⎛⎭⎪⎫1-19=34·89=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=f (2)·⎝ ⎛⎭⎪⎫1-116=23·1516=58.由此猜想:f(n)=n+2n+.12.(创新拓展)观察下表:12,34,5,6,78,9,10,11,12,13,14,15,……问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2 010是第几行的第几个数?解(1)∵第n+1行的第一个数是2n,∴第n行的最后一个数是2n-1.(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)=n-1+2n-n-12=3×22n-3-2n-2为所求.(3)∵210=1 024,211=2 048,1 024<2 010<2 048,∴2 010在第11行,该行第1个数是210=1 024.由2 010-1 024+1=987,知2 010是第11行的第987个数.。
数学:2.1《合情推理与演绎证明》测试新人教A 版选修(2-2)一、选择题1.分析法是从要证明的结论出发,逐步寻求使结论成立的( )A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( )A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+D.4578b b b b +>+答案:B5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( )A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+<,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n ++++<-L ≥ B.22211111(2)2321n n n ++++<+L ≥ C.222111211(2)23n n n n-++++<L ≥D.22211121(2)2321n n n n ++++<+L ≥ 答案:C7.如图,在梯形ABCD 中,()AB DC AB a CD b a b ==>,,∥.若EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出:ma mbEF m m+=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △,OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之比为:m n ,则OEF △的面积0S 与12S S ,的关系是( )A.120mS nS S m n+=+B.120nS mS S m n +=+C.120m S n S S +=D.120n S m S S +=答案:C8.已知a b ∈R ,,且2a b a b ≠+=,,则( ) A.2212a b ab +<<B.2212a b ab +<<C.2212a b ab +<<D.2212a b ab +<<答案:B9.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数 答案:B10.用数学归纳法证明(1)(2)()213(21)nn n n n n +++=-L L ····,从k 到1k +,左边需要增乘的代数式为( ) A.21k + B.2(21)k + C.211k k ++ D.231k k ++ 答案:B11.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x xa a S x --=,()2x xa a C x -+=,其中0a >,且1a ≠,下面正确的运算公式是( ) ①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+;A.①③ B.②④ C.①④ D.①②③④答案:D12.正整数按下表的规律排列则上起第2005行,左起第2006列的数应为( ) A.22005 B.22006C.20052006+D.20052006⨯答案:D 二、填空题13.写出用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 . 答案:满足()()f x f x -=-的函数是奇函数, 大前提 333()()sin()sin (sin )()f x x x x x x x f x -=-+-=--=-+=-, 小前提所以3()sin f x x x =+是奇函数. 结论14.已知111()1()23f n n n *=++++∈N L ,用数学归纳法证明(2)2n nf >时,1(2)(2)k k f f +-等于 . 答案:111121222k k k ++++++L 15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为 . 答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心 16.下面是按照一定规律画出的一列“树型”图: 设第n 个图有n a 个树枝,则1n a +与(2)n a n ≥之间的关系是 . 答案:122n n a a +=+ 三、解答题17.如图(1),在三角形ABC 中,AB AC ⊥,若AD BC ⊥,则2AB BD BC =·;若类比该命题,如图(2),三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是否是真命题.解:命题是:三棱锥A BCD -中,AD ⊥面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有2ABC BCMBCD S S S =△△△·是一个真命题. 证明如下:在图(2)中,连结DM ,并延长交BC 于E ,连结AE ,则有DE BC ⊥. 因为AD ⊥面ABC ,,所以AD AE ⊥. 又AM DE ⊥,所以2AE EM ED =·. 于是22111222ABCBCM BCD SBC AE BC EM BC ED S S ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△△△·····. 18.如图,已知PA ⊥矩形ABCD 所在平面,M N ,分别是AB PC ,的中点. 求证:(1)MN ∥平面PAD ;(2)MN CD ⊥.证明:(1)取PD 的中点E ,连结AE NE ,. N E ,∵分别为PC PD ,的中点.EN ∴为PCD △的中位线,12EN CD ∥∴,12AM AB =,而ABCD 为矩形, CD AB ∴∥,且CD AB =. EN AM ∴∥,且EN AM =.AENM ∴为平行四边形,MN AE ∥,而MN ⊄平面PAC ,AE ⊂平面PAD , MN ∴∥平面PAD .(2)PA ⊥∵矩形ABCD 所在平面,CD PA ⊥∴,而CD AD ⊥,PA 与AD 是平面PAD 内的两条直交直线, CD ⊥∴平面PAD ,而AE ⊂平面PAD , AE CD ⊥∴.又MN AE ∵∥,MN CD ⊥∴.19.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大. 证明:(分析法)设圆和正方形的周长为l ,依题意,圆的面积为2π2πl ⎛⎫⎪⎝⎭·, 正方形的面积为24l ⎛⎫⎪⎝⎭.因此本题只需证明22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.要证明上式,只需证明222π4π16l l >,两边同乘以正数24l,得11π4>.因此,只需证明4π>.∵上式是成立的,所以22π2π4l l ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大. 20.已知实数a b c d ,,,满足1a b c d +=+=,1ac bd +>,求证a b c d ,,,中至少有一个是负数.证明:假设a b c d ,,,都是非负实数,因为1a b c d +=+=,所以a b c d ,,,[01]∈,,所以2a c ac +,2b cbd +, 所以122a cb dac bd ++++=≤, 这与已知1ac bd +>相矛盾,所以原假设不成立,即证得a b c d ,,,中至少有一个是负数. 21.设()2x x a a f x -+=,()2x x a a g x --=(其中0a >,且1a ≠).(1)523=+请你推测(5)g 能否用(2)(3)(2)(3)f f g g ,,,来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解:(1)由3332332255(3)(2)(3)(2)22221a a a a a a a a a a f g g f -----+--+-+=+=··,又55(5)2a a g --=,因此(5)(3)(2)(3)(2)g f g g f =+.(2)由(5)(3)(2)(3)(2)g f g g f =+,即(23)(3)(2)(3)(2)g f g g f +=+, 于是推测()()()()()g x y f x g y g x f y +=+.证明:因为()2x x a a f x -+=,()2x xa a g x --=(大前提).所以()()2x y x y a a g x y +-+-+=,()2y y a a g y --=,()2y ya a f y -+=,(小前提及结论)所以()()()()()()22222x x y y x x y y x y x y a a a a a a a a a a f x g y g x f y g x y ----+-++--+-+=+==+··.22.若不等式111123124an n n +++>+++L 对一切正整数n 都成立,求正整数a 的最大值,并证明结论. 解:当1n =时,11111123124a ++>+++,即262424a>, 所以26a <.而a 是正整数,所以取25a =,下面用数学归纳法证明:11125123124n n n +++>+++L . (1)当1n =时,已证;(2)假设当n k =时,不等式成立,即11125123124k k k +++>+++L . 则当1n k =+时,有111(1)1(1)23(1)1k k k +++++++++L 111111112313233341k k k k k k k =++++++-+++++++L 251122432343(1)k k k ⎡⎤>++-⎢⎥+++⎣⎦. 因为2116(1)2323491883(1)k k k k k k ++=>+++++, 所以2116(1)2323491883(1)k k k k k k ++=>+++++, 所以112032343(1)k k k +->+++. 所以当1n k =+时不等式也成立. 由(1)(2)知,对一切正整数n ,都有11125123124n n n +++>+++L , 所以a 的最大值等于25.。
第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合 情 推 理基础梳理1.归纳推理.由某类事物的部分对象具有某些特征,推出这类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.2.类比推理.由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.3.合情推理.归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.通俗地说,合情推理是指“合乎情理”的推理.基础自测1.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于(C )A .r 22B .l 22C .lr2D .不可类比 解析:由扇形的弧长与半径类比于三角形的底边与高可得C .故选C .2.从1=12,2+3+4=32,3+4+5+6+7=52,…,可得一般规律为___________________________________________________.解析:猜想:第n 个等式的左边是2n -1个连续整数的和,第1个数为n ,等式的右边是整数个数的平方,即一般规律为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)23.根据下列5个图形及相应点的个数的变化规律,试猜想第n 个图形中有______________个点.解析:第n 个图有n 个分支,每个分支上有(n -1)个点(不含中心点),再加上中心1个点,则有n(n -1)+1=n 2-n +1个点.答案:n 2-n +14.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC,把这个结论类比到空间:在三棱锥ABCD 中(如图所示),平面DEC 平分二面角ACDB 且与AB 相交于点E ,则得到的类比结论是________.解析:把线段比类比到面积比,得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD(一)解读合情推理数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的一般过程为:(二)解读归纳推理 (1)归纳推理的分类.①完全归纳推理:由某类事物的全体对象推出结论. ②不完全归纳推理:由某类事物的部分对象推出结论. 需要注意的是,由完全归纳推理得到的结论是准确的,由不完全归纳推理得到的结论不一定准确.(2)归纳推理的特点.由于归纳是根据部分已知的特殊现象推断未知的一般现象,因而归纳推理具有以下特点:①所得结论超越了前提所包含的范围;②所得结论具有猜测性质,准确性需要证明; ③归纳的基础在于观察、实验或经验. (3)归纳推理的一般步骤.①通过观察、分析个别情况,发现某些相同特征;②将发现的相同特征进行归纳,推出一个明确表达的一般性命题(猜想).(三)解读类比推理(1)类比推理的特点.①类比是从一种事物的特殊属性推测另一种事物的特殊属性;②类比是以原有知识为基础,猜测新结论;③类比能发现新结论,但结论具有猜测性,准确性需要证明.(2)类比推理的一般步骤.①明确两类对象;②找出两类对象之间的相似性或者一致性;③用一类事物的性质去推测另一类事物的性质,得到一个明确的结论1.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质.(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).2.归纳推理的思维进程.实验、观察→概括、推广→猜测一般性结论.即对有限的资料进行观察、分析、归纳、整理,提出带有规律性的结论,然后对该猜想的正确性加以检验.3.一般地,归纳的个别情况越多,越具有代表性,推广的一般性命题就越可靠.4.运用类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.5.类比推理常见的几种题型.(1)类比定义:本类题型解决的关键在于弄清两个概念的相似性和相异性以及运用新概念的准确性.(2)类比性质(定理):本类题型解决的关键在于要理解已知性质(定理)的内涵、应用环境及使用方法,通过研究已知性质(定理),刻画新性质(定理)的“面貌”.(3)类比方法(公式):本类题型解决的关键在于解题方法1.下图为一串白黑相间排列的珠子,按这种规律往下排列起来,那么第36颗珠子的颜色是(A)○○○●●○○○●●○○○●●○○……A.白色 B.黑色C.白色可能性大 D.黑色可能性大2.数列2,5,11,20,x,47,…中的x等于(B)A.28 B.32C.33 D.273.已知三角形的三边长分别为a ,b ,c ,其内切圆的半径为r ,则三角形的面积为:S =12(a +b +c )r ,利用类比推理,可以得出四面体的体积为(C ) A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)·r (其中S 1,S 2,S 3,S 4分别是四面体四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ca )h (h 为四面体的高)4.等差数列{a n }中,有2a n =a n -1+a n +1(n ≥2,且n ∈N *),类比以上结论,在等比数列{b n }中类似的结论是________.答案:b 2n =b n -1·b n +1(n ≥2,且n ∈N *)1.下列关于归纳推理的说法中错误的是(A ) A .归纳推理是由一般到一般的一种推理过程 B .归纳推理是一种由特殊到一般的推理过程 C .归纳推理得出的结论具有偶然性,不一定正确 D .归纳推理具有由具体到抽象的认识功能2.由数列1,10,100,1 000,…猜测该数列的第n 项可能是(B )A .10nB .10n -1C .10n +1D .11n3.根据给出的数塔猜测123 456×9+7等于(B )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析:由数塔呈现的规律知,结果是各位都是1的7位数.4.下面使用类比推理正确的是(C ) A .“若a ·3=b ·3,则a =b ”类推出“a ·0=b ·0,则a =b ” B .“(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c=a c +bc(c ≠0)”D .“(ab )n=a n b n”类推出“(a +b )n=a n+b n”5.n 个连续自然数按规律排列如下:根据规律,从2010到2012,箭头的方式依次是(C)A.↓→ B.→↑C.↑→ D.→↓解析:观察特例的规律知:位置相同的数字是以4为公差的等差数列,由11→12可知从2010到2012为↑→.↑106.如图所示,面积为S的凸四边形的第i条边的边长为a i(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a11=a22=a33=a44=k,则∑i=14(a i h i)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离为H i(i=1,2,3,4),若S11=S22=S33=K,则∑i=14(S i H i)=(B) A.4VKB.3VKC.2VKD.VK解析:从平面类比到空间,通常是边长类比为面积,面积类比为体积,又凸四边形中,面积为S=12(a1h1+a2h2+a3h3+a4h4),而在三棱锥中,体积为V=13(S1H1+S2H2+S3H3+S4H4),即存在系数差异,所以,上述性质类比为B.7.观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为_______________________________.解析:观察不等式的左边发现,第n个不等式的左边=1+122+132+…+1(n+1)2,右边=2(n+1)-1n+1,所以第五个不等式为1+122+132+142+152+162<116.8.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律,第n 个图案中需用黑色瓷砖________块(用含n 的代数式表示).解析:第(1),(2),(3),…个图案黑色瓷砖数依次为: 15-3=12,24-8=16,35-15=20,… 由此可猜测第n 个图案黑色瓷砖数为: 12+(n -1)×4=4n +8. 答案:4n +89.图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推,设第n 个图中三角形被剖分成a n 个三角形,则第4个图中最小三角形的边长为__________;a 100=__________.答案:18 29810.圆的面积S =πr 2,周长c =2πr ,两者满足c =S ′(r ),类比此关系写出球的公式的一个结论是:________.解析:圆的面积、周长分别与圆的体积和表面积类比可得,球的体积V =43πR 3,表面积S =4πR 2,满足S =V ′(R ).答案:V 球=43πR 3,S 球=4πR 2,满足S =V ′(R ).11.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,在等比数列{b n }中,若b 9=1,则有等式__________________成立.解析:a 10是等差数列{a n }的前19项的中间项,而b 9是等比数列{b n }的前17项的中间项.所以答案应为:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).12.设a n 是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n ≥1,n ∈N),试归纳出这个数列的一个通项公式.解析:当n =1时,a 1=1,且2a 22-a 21+a 2·a 1=0,即2a 22+a 2-1=0解得a 2=12;当n =2时,由3a 23-2⎝ ⎛⎭⎪⎫122+12a 3=0,即6a 23+a 3-1=0,解得a 3=13,…由此猜想;a n =1n.13.在圆x 2+y 2=r 2中,AB 为直径,C 为圆上异于AB 的任意一点,则有k AC ·k BC =-1,你能用类比的方法得出椭圆x 2a 2+y 2b2=1(a >b >0)中有什么样的结论?解析:设A (x 0,y 0)为椭圆上的任意一点,则A 点关于中心的对称点B 的坐标为(-x 0,-y 0),点P (x ,y )为椭圆上异于A ,B 两点的任意一点,则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20.由于A ,B ,P 三点都在椭圆上.∴⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x 20a 2+y 20b 2=1,两式相减有x 2-x 20a 2+y 2-y 20b 2=0,∴y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a2. 故椭圆x 2a 2+y 2b2=1(a >b >0)中过中心的一条弦的两个端点A ,B ,P 为椭圆上异于A ,B的任意一点,则有k AP ·k BP =-b 2a2.►品味高考1.(2014·陕西卷)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2 014(x )的表达式为________.解析:由f 1(x )=x1+x ⇒f 2(x )=f ⎝ ⎛⎭⎪⎫x 1+x =x1+x 1+x 1+x=x1+2x ;又可得f 3(x )=f (f 2(x ))=x1+x 1+x1+2x=x1+3x,故可猜想 f 2 014(x )=x1+2 014x.答案:x1+2 014x2.(2013·陕西卷)观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为_______________________________.答案:(n +1)(n +2)·…·(n +n )=2n×1×3×5×…×(2n -1)3.在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)四边形DEFG 是一个直角梯形,观察图形可知:S =(2+22)×2×12=3,N =1,L =6.(2)由(1)知,S 四边形DEFG =a +6b +c =3. S △ABC =4b +c =1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S =4,N =1,L =8.则S =a +8b +c =4.联立解得a =1,b =12,c =-1.∴S =N +12L -1,∴若某格点多边形对应的N =71,L =18,则S =71+12×18-1=79.答案:(1)3,1,6 (2)794.传说古希腊毕达拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过下图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示).解析:由以上规律可知三角形数1,3,6,10,…的一个通项公式为a n =n (n +1)2,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,发现其中能被5整除的为10,15,45,55,105,120 ,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15. 从而由上述规律可猜想:b 2k =a 5k =5k (5k -1)2(k 为正整数),b 2k -1=a 5k -1=(5k -1)(5k -1+1)2=5k (5k -1)2,故b 2 012=b 2×1 006=a 5 030,即b 2 012是数列{a n }中的第5 030项.答案:(1)5 030 (2)5k (5k -1)2点评:本题考查归纳推理,猜想的能力,归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验和能力,不能凭空猜想.。
合情推理与演绎推理测试题2(选修1-2)班级 姓名 学号得分 一、选择题:1、与函数x y =为相同函数的是( )A.2x y = B.xx y 2= C.x e y ln = D.x y 2log 2=2、下面使用类比推理正确的是 ( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
A.假设三内角都不大于60度;B.假设三内角都大于60度;C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。
5、当=n 1,2,3,4,5,6时,比较n 2和2n 的大小并猜想 ( ) A.1≥n 时,22n n > B. 3≥n 时,22n n >C. 4≥n 时,22n n >D. 5≥n 时,22n n > 6、已知"1""1",,22≤+≤∈y x xy R y x 是则的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、在下列表格中,每格填上一个数字后,使每一行成等差数列,每一列成等比数列,则a+b+c 的值是( ) A. 1 B. 2 C.3 D.48、 对“a,b,c 是不全相等的正数”,给出两个判断:①0)()()(222≠-+-+-a c c b b a ;②a c c b b a ≠≠≠,,不能同时成立, 下列说法正确的是( ) A .①对②错B .①错②对C .①对②对D .①错②错9、设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+ycx a ( )A .1B .2C .3D .不确定 10、():344,(),x x y x y y x y ≥⎧⊗=⊗=⎨<⎩定义运算例如则下列等式不能成立....的是( )A .x y y x ⊗=⊗B .()()x y z x y z ⊗⊗=⊗⊗C .222()x y x y ⊗=⊗D .)()()(y c x c y x c ⋅⊗⋅=⊗⋅ (其中0>c )二、填空题:11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。
第二章 推理与证明 2.1 合情推理与演绎推理一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列,L L A .第10项 B .第11项 C .第12项D .第21项【答案】C【解析】令2123n -=,解得12n =12项.故选C . 2.下面说法正确的有①演绎推理是由一般到特殊的推理; ②演绎推理得到的结论一定是正确的; ③演绎推理的一般模式是三段论;④演绎推理的结论的正误与大前提、小前提和推理形式有关. A .1个 B .2个 C .3个D .4个【答案】C3.下列推理过程是类比推理的是A .人们通过大量试验得出掷硬币出现正面的概率为12B .科学家通过研究老鹰的眼睛发明了电子鹰眼C .通过检测溶液的pH 值得出溶液的酸碱性D .数学中由周期函数的定义判断某函数是否为周期函数 【答案】B【解析】A 为归纳推理,C 、D 均为演绎推理.故选B .4.“因为指数函数x y a =是增函数(大前提),而1()3x y =是指数函数(小前提),所以函数1()3xy =是增函数(结论)”,上面推理的错误在于 A .大前提错误导致结论错 B .小前提错误导致结论错 C .推理形式错误导致结论错D .大前提和小前提错误导致结论错【答案】A【解析】推理形式没有错误,而大前提“x y a =是增函数”是不正确的,当01a <<时,x y a =是减函数;当1a >时,x y a =是增函数.故选A .5.设0()sin x f x =,10()()f f x x '=,21()()f f x x '=,…,1()(),n n f f n x x +='∈N ,则2017()f x = A .cos x - B .sin x - C .cos xD .sin x【答案】C【解析】1()cos f x x =,2()(cos )sin ,f x x 'x ==-,3()cos ,f x x =-,4()sin f x x =, 故2017450411()()()cos f x f x f x x ⨯+===.故选C .6.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为 1 3 5 79 11 13 15 17 19 21 23 25 27 29 31……A .811B .809C .807D .805【答案】B7.n 个连续自然数按规律排成下根据规律,从2002到2004,箭头的方向依次为 A .↓→ B .→↑ C .↑→D .→↓【答案】C【解析】由已知可得箭头变化的周期为4,故由342→↑得从2002到2004的方向为选项C 中所示.故选C .二、填空题:请将答案填在题中横线上.8.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -成等差数列;类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,______________,128T T 成等比数列. 【答案】84T T【解析】由题意,等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -成等差数列,运用类比思想,只需要将差改为比即可,故有4T ,84T T ,128T T 成等比数列. 9.用演绎推理证明2)0(,,y x x =∈-∞是减函数时,大前提是______________. 【答案】减函数的定义10.用火柴棒摆“金鱼”,如图所示:…①②③按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为______________. 【答案】62n +【解析】本题主要考查利用归纳推理求数列的通项公式.观察图象可知:第一个图有8个火柴棒,第二个图比第一个图多6个火柴棒,第三个图比第二个图多6个火柴棒,…,以此类推,第n 个图比第(1)n -个图多6个火柴棒,可以看出,这些图是:从第一个图开始,火柴棒数是首项为8,公差为6的等差数列,则86(1)62n a n n =+-=+.11.某天,小赵、小张、小李、小刘四人一起到电影院看电影,他们到达电影院之后发现,当天正在放映A ,B ,C ,D ,E 五部影片,于是他们商量一起看其中的一部影片:小赵说:只要不是B 就行; 小张说:B ,C ,D ,E 都行;小李说:我喜欢D ,但是只要不是C 就行; 小刘说:除了E 之外,其他的都可以.据此判断,他们四人可以共同看的影片为______________.【答案】D三、解答题:解答应写出文字说明、证明过程或演算步骤. 12.把下列演绎推理写成三段论的形式.(1)在标准大气压下,水的沸点是100℃,所以在标准大气压下把水加热到100℃时,水会沸腾; (2)一切奇数都不能被2整除,20(2)1+是奇数,所以20(2)1+不能被2整除; (3)三角函数都是周期函数,cos y α=是三角函数,因此cos y α=是周期函数. 【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)在标准大气压下,水的沸点是100℃,………………大前提 在标准大气压下把水加热到100℃,…………………………………小前提 水会沸腾.………………………………………………………………结论 (2)一切奇数都不能被2整除, ……………………………………大前提20(2)1+是奇数, ……………………………………………………小前提 20(2)1+不能被2整除. ……………………………………………结论(3)三角函数都是周期函数,………………………………………大前提cos y α=是三角函数,………………………………………………小前提 cos y α=是周期函数.………………………………………………结论13.已知:由图①得面积关系:PA'B'PAB S PA'PB'S PA PB⋅=⋅△△.(1)试用类比的思想写出由图②所得的体积关系P A'B'C'P ABCV V --=______________________; (2)证明你的结论是正确的.【答案】(1)P A'B'C'P ABC V PA'PB'PC'V PA PB PC--⋅⋅=⋅⋅;(2)证明见解析.14.设平面内有()3n n ≥条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用()f n 表示这n 条直线交点的个数. (1)求(4)f ;(2)当4n >时,求()f n (用n 表示). 【答案】(1)(4)5f =;(2)1(1)(2)2()f n n n +-=. 【解析】(1)如图所示,可得(4)5f =.(2)因为(3)2,(4)5(3)3f f f ===+,(5)9(4)4f f ==+,(6)14(5)5f f ==+,…… 所以每增加一条直线,交点增加的个数等于原来直线的条数,所以()11()f n f n n -+=-, 累加可得1(3)345123()(45(1)()22)1()f n f n n n n +++++-=+++++-=+=-.。
数学•选修1—2(人教力版)2. 1合情推理与演绎推理2. 1.2演绎推理A达标训练1.下面说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A. 1个B. 2个C. 3个D. 4个解析:①③④正确,②错误的原因是:演绎推理的结论要为真, 必须前提和推理形式都为真.答案:C2・下列三段可以组成一个“三段论”,则“小前提”是()①因为指数函数y=a(a> 1)是增函数②所以尸尸是增函数③而尸罗是指数函数A.①B.②C.①②D.③解析:根据三段论的原理,可知选D. 答案:D3.三段论“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③所以这艘船是准时起航的・”中“小前提” 是()A.①B.②C.①②D.③答案:B4. 在不等边三角形中,$边最大,要想得到为钝角的结论, 三边❺b, c 应满足的条件是()A. a 2<Z?2 + cB. acC ・ a^>I )+cD ・ a^:b 2 +c答案:C“由于所有能被6整除的数都能被3整除,18是能被6整除 的数,所以18能被3整除•”这个推理是()A.大前提错误B.结论错误解析:易知该推理是一个正确的三段论,所以选C.答案:C6. 在△磁中,E 、F 分别为曲、07的中点,则有彩比;这个 问题的大前提为()A. 三角形的中位线平行于第三边B. 三角形的中位线等于第三边的一半C. 莎为中位线D. EF//CB 答案:A1.下列推理是演绎推理的是()A. M, N 是平面内两定点,动点尸满足|刊1 + |刖=2$>|洌,解析: 由cos 4 ^+c 2-a 2A = 2bc<0知I )+c —a 2<0,所以应选C. 5. C.正确的 D.小前提错误得点F 的轨迹是椭B.由ai = l, a n=2n—l9求出S, 猜想出数列的前刀项和S的表达式C.由2 2/+/=?的面积为"猜想出椭圆手+务=1的面积为兀abD.科学家利用鱼的沉浮原理制造潜艇义作为大前提的演绎推理.答案:A2.推理“①矩形是平行四边形,②正方形是矩形,③所以正方形 是平行四边形”中的小前提是() A.① C.③B.②D.①和② 解析:①为大前提,②为小前提,③为结论. 答案:B3. (2013 •深圳二模)非空数集力=仙,釦念,…,aj (z?eN*) 中,所有元素的算术平均数记为EG4),即E (A ) = 若非空数集〃满足下列两个条件:①〃②= E3 ,则称〃为 力的一个“保均值子集”・据此,集合{1,2, 3, 4, 5}的“保均值子集”有()A. 5个B. 6个C. 7个D. 8个答案:C4.以下是小王同学用“三段论”证明命题“直角三角形两锐角之 和为90。
合情推理与演绎推理测试题2(选修1-2)
班级 姓名 学号 得分
一、选择题:
1、与函数x y =为相同函数的是( )
A.2
x y = B.x
x y 2
= C.x e y ln = D.x y 2log 2=
2、下面使用类比推理正确的是 ( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”
C.“若()a b c ac bc +=+” 类推出“
a b a b
c c c
+=+ (c ≠0)” D.“
n n a a b =n (b )” 类推出“n n a a b +=+n
(b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线
b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误
的,这是因为 ( )
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误
4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
A.假设三内角都不大于60度; B.假设三内角都大于60度;
C.假设三内角至多有一个大于60度;
D.假设三内角至多有两个大于60度。
5、当=n 1,2,3,4,5,6时,比较n
2和2
n 的大小并猜想 ( )
A.1≥n 时,22n n >
B. 3≥n 时,22n n >
C. 4≥n 时,22n n >
D. 5≥n 时,2
2n n >
6、已知"1""1",,2
2≤+≤∈y x xy R y x 是则的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7、在下列表格中,每格填上一个数字后,使每一行成等差数
列,每一列成等比数列,则a+b+c 的值是( ) A. 1 B. 2 C.3 D.4
8、 对“a,b,c 是不全相等的正数”,给出两个判断:
①0)()()(222≠-+-+-a c c b b a ;②a c c b b a ≠≠≠,,不能同时成立, 下列说法正确的是( ) A .①对②错
B .①错②对
C .①对②对
D .①错②错
9、设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+y
c
x a ( ) A .1 B .2 C .3 D .不确定
10、()
:344,(),
x
x y x y y
x y ≥⎧⊗=⊗=⎨
<⎩定义运算例如则下列等式不能成立....
的是( ) A .x y y x ⊗=⊗ B .()()x y z x y z ⊗⊗=⊗⊗
C .222
()x y x y ⊗=⊗ D .)()()(y c x c y x c ⋅⊗⋅=⊗⋅ (其中0>c )
二、填空题:
11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。
12、 类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形
三边长之间满足关系:2
22BC AC AB =+。
若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两
两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .
13、从11=,)21(41+-=-,321941++=+-,)4321(16941+++-=-+-,…,推广到第n 个等式为_________________________. 14、已知13a =,133
n
n n a a a +=+,试通过计算2a ,3a ,4a ,5a 的值,推测出n a =___________.
三、解答题:
15、在△ABC 中,证明:2
2221
12cos 2cos b a b B a A -=-。
16、设R y x b a ∈,,,,且12
2
=+b a ,122=+y x ,试证:1≤+by ax 。
17、用反证法证明:如果2
1>x ,那么0122
≠-+x x 。
18、已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;
201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ).
(1)若4020=a ,求d ;
(2)试写出30a 关于d 的关系式,并求30a 的取值范围;
(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
合情推理与演绎推理测试题(选修1-2)
答案提示
1——10、 DCABD BAABC
11、____14__________
12、2
222ABD ACD ABC BCD S S S S ∆∆∆∆++=
13、+-+-2
2
2
4321…)321()1()1(121n n n n +⋅⋅⋅+++⋅-=⋅-+++ 14、________
3
n
______ 15、证明:2
22222sin 21sin 212cos 2cos b B
a A
b B a A ---=- ⎪⎪⎭
⎫ ⎝⎛---=222222sin sin 21
1b B a A b a 由正弦定理得:2222sin sin b B
a A = 2
2221
12cos 2cos b a b B a A -=-∴
16、证明: 2
2
2
2
2
2
2
2
2
2
2
2
))((1y b x b y a x a y x b a +++=++=
2
2222)(2by ax y b aybx x a +=++≥ 故1≤+by ax
17、假设0122
=-+x x ,则21±-=x
容易看出2121<
-
-,下面证明2
1
21<+-。
要证:2
121<+-, 只需证:2
32<, 只需证:4
92<
上式显然成立,故有2
121<+-。
综上,2121<
±-=x 。
而这与已知条件2
1
>x 相矛盾, 因此假设不成立,也即原命题成立。
18、解:(1)3,401010.102010=∴=+==d d a a . (2)()
)0(11010222030≠++=+=d d d d a a ,
⎥⎥⎦
⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=4321102
30
d a ,
当),0()0,(∞+∞-∈ d 时,[)307.5,a ∈+∞.
(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a 是首项为1,公差为1的
等差数列,当1≥n 时,数列)1(1011010,,,++n n n a a a 是公差为n d 的等差数列. 研究的问题可以是:
试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围.
研究的结论可以是:由()
323304011010d d d d a a +++=+=, 依次类推可得
()
⎪⎩⎪
⎨⎧=+≠--⨯=+++=++.1),
1(10,1,11101101
)1(10d n d d d d d a n n
n 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.。