高考小题专项练习2
- 格式:docx
- 大小:173.50 KB
- 文档页数:7
代词在近年高考试题中出现频率非常高。
代词的考查集中在语法填空中,主要考查代词的主格,宾格,形容词性物主代词,名词性物主代词和反身代词。
预计2021年高考命题将继续考查代词在具体、特定语境下的灵活运用。
特别是不定代词one,the one,ones,the ones与指示代词this,that,these,those,it的用法区别,代词的肯定与否定、全部与部分的用法以及反身代词的惯用语。
考点仍然以人称代词、物主代词、指示代词、反身代词等为主。
考点一人称代词(2018·全国卷Ⅲ)When the gorillas and I frightened each other, I was just glad to find________ (they) alive.【答案】them【解析】人称代词作宾语时,要用其宾格。
空格前面是动词find,空格处应用宾格,故填them,指代上文的gorillas。
(2020·全国1卷)Data about the moon’s position, such as how much ice and other treasures it contains, could help China decide whether (it) plans for a future lunar base are practical.【答案】its【解析】根据句子结构和句意可知此处应用形容词性物主代词its 作名词plans 的定语。
考点三指示代词(2019·某某卷)A study shows the students who are engaged in after-school activities are happier than _________who are not.A. onesB. thoseC. theseD. them【答案】B【解析】句意:一项研究表明,参加课外活动的学生比不参加课外活动的学生更开心。
高考小题集训(二)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2021·全国乙卷理]设2(z +z )+3(z -z )=4+6i ,则z =( ) A .1-2i B .1+2i C .1+i D .1-i2.[2021·湖南长郡十五校联考]已知集合P ={x |x 2-5x -6≤0},Q ={x |3x ≥1},则P ∩Q =( )A .{x |-1≤x ≤0}B .{x |0≤x ≤1}C .{x |0≤x ≤6}D .{x |-6≤x ≤0}3.已知抛物线x 2=2py (p >0)上一点M (m ,1)到焦点的距离为32,则其焦点坐标为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,0C .⎝⎛⎭⎫14,0D .⎝⎛⎭⎫0,14 4.密位制是度量角的一种方法.把一周角等分为6 000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“0-07”,478密位写成“4-78”,1周角等于6 000密位,记作1周角=60-00,1直角=15-00.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( )A .12-50 B. 17-50 C. 21-00 D. 35-00 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,S 是棱A 1B 1上任意一点,四棱锥S -ABCD 的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为( )A .12B .13C .14D .不确定6.高铁是当代中国重要的一类交通基础设施,乘坐高铁已经成为人们喜爱的一种出行方式,已知某市市郊乘车前往高铁站有①,②两条路线可走,路线①穿过市区,路程较短但交通拥挤,所需时间(单位为分钟)服从正态分布N (50,100);路线②走环城公路,路程长,但意外阻塞较少,所需时间(单位为分钟)服从正态分布N (60,16),若住同一地方的甲、乙两人分别有70分钟与64分钟可用,要使两人按时到达车站的可能性更大,则甲乙选择的路线分别是( )A .①②B .②①C .①①D .②②7.[2021·河北衡水中学调研]已知函数f (x )=x 2,设a =log 54,b =log 15 13,c =215 ,则f (a ),f (b ),f (c )的大小关系为( )A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )8.[2021·山东烟台二模]已知函数f (x )是定义在区间(-∞,0)∪(0,+∞)上的偶函数,且当x ∈(0,+∞)时,f (x )=⎩⎪⎨⎪⎧2|x -1|,0<x ≤2f (x -2)-1,x >2 ,则方程f (x )+18 x 2=2根的个数为( )A .3B .4C .5D .6二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某鱼业养殖场新进1 000尾鱼苗,测量其体长(单位:毫米),将所得数据分成6组,则下列说法正确的是( )A .m =250B .鱼苗体长在[90,100)上的频率为0.16C .鱼苗体长的中位数一定落在区间[85,90)内D .从这批鱼苗中有放回地连续抽取50次,每次一条,则所抽取鱼苗体长落在区间[80,90)上的次数的期望为3010.[2021·广东珠海一模]已知三棱柱ABC -A 1B 1C 1的底面是边长为3的等边三角形,侧棱与底面垂直,其外接球的表面积为16π,下列说法正确的是( )A .三棱柱ABC -A 1B 1C 1的体积是932B .三棱柱ABC -A 1B 1C 1的表面积是18C .直线AB 1与直线A 1C 1所成角的余弦值是31326D .点A 到平面A 1BC 的距离是13211.[2021·新高考Ⅱ卷]已知直线l :ax +by -r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 12.[2021·河北秦皇岛二模]已知()2-3x 6=a 0+a 1x +a 2x 2+…+a 6x 6,则下列选项正确的是( )A .a 3=-360B .(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=1C .a 1+a 2+…+a 6=(2-3 )6D .展开式中系数最大的为a 2三、填空题:本题共4小题,每小题5分,共20分.13.[2021·新高考Ⅱ卷]已知双曲线x 2a 2 -y 2b2 =1(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为________________.14.函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a (x +1)-2x ,则f (f (3))=________.15.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,若AD → ·AB → =AD → ·AC →,则AD → ·AB →的值为________.16.[2021·全国甲卷文]已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝⎛⎭⎫π2 =________.1.解析:设z =a +b i (a ,b ∈R ),则z =a -b i ,代入2(z +z )+3(z -z )=4+6i ,可得4a +6b i =4+6i ,所以a =1,b =1,故z =1+i.故选C.答案:C2.解析:集合P ={x |x 2-5x -6≤0}={x |-1≤x ≤6}, Q ={x |3x ≥1}={x |x ≥0}, ∴P ∩Q ={x |0≤x ≤6}. 故选C. 答案:C3.解析:∵抛物线x 2=2py (p >0)上一点M (m ,1)到焦点的距离为32,∴由抛物线的定义知y M +p 2 =32 ,即1+p 2 =32 ,所以p =1,所以p 2 =12 ,∴抛物线的焦点坐标为⎝⎛⎭⎫0,12 . 故选A. 答案:A4.解析:设扇形所对的圆心角为α,α所对的密位为n ,则12 α×22=76 π,解得α=712π,由题意可得n 6 000 =712π2π ,解得n =724×6 000=1 750,因此,该扇形圆心角用密位制表示为17-50. 故选B. 答案:B5.解析:设正方体的棱长为a ,则正方体的体积V =a 3, 易知四棱锥S -ABCD 的高为S 点到底面的距离,即侧棱长,所以四棱锥S -ABCD 体积为V ′=13 S ABCD ·AA 1=13 a 2·a =a 33,所以V ′∶V =13,故四棱锥S -ABCD 的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为13.故选B. 答案:B6.解析:对于甲,若有70分钟可走,走第一条线路赶到的概率为P (X ≤70)=Φ⎝⎛⎭⎫70-5010 =Φ(2),走第二条线路赶到的概率为P (X ≤70)=Φ⎝⎛⎭⎫70-604 =Φ(2.5),∵Φ(2)<Φ(2.5),所以甲应走线路②;对于乙,若有64分钟可走,走第一条线路的概率为P (X ≤64)=Φ⎝⎛⎭⎫64-5010 =Φ(1.4),走第二条线路赶到的概率为P (X ≤64)=Φ⎝⎛⎭⎫64-604 =Φ(1),∵Φ(1.4)>Φ(1),所以乙应走线路①.故选B. 答案:B7.解析:∵函数f (x )=x 2在[0,+∞)上是增函数,b =log 15 13=log 53<a =log 54<1,∴c =215>20=1,∴c >a >b >0,∴f (c )>f (a )>f (b ). 故选D. 答案:D8.解析:方程f (x )+18 x 2=2根的个数⇔函数y =f (x )与函数y =-18x 2+2的图象交点个数,图象如下:由图象可知两函数图象有6个交点.故选D. 答案:D9.解析:对于A ,因为[95,100)分组对应小矩形的高为0.01,组距为5, 所以[95,100)分组对应的频率为0.01×5=0.05,n =1 000×0.05=50, 则m =1 000-100-100-350-150-50=250,故选项A 正确;对于B ,鱼苗体长在[90,100)上的频率为150+501 000=0.2,故选项B 错误;对于C ,因为鱼的总数为1 000,100+100+250=450,100+100+250+350=800, 所以鱼苗体长的中位数一定落在区间[85,90)内,故选项C 正确;对于D ,由表中的数据可知,鱼苗体长落在区间[80,90)上的概率为P =250+3501 000=0.6,设所抽取鱼苗体长落在区间[80,90)上的次数为X , 则X 服从二项分布,即X ~B (50,0.6), 则E (X )=50×0.6=30,故选项D 正确. 故选ACD. 答案:ACD 10.解析:如图所示,三棱柱的上下底面正三角形中心分别为D 1,D ,因为三棱柱ABC -A 1B 1C 1的底面是边长为3的等边三角形,侧棱与底面垂直, 所以其外接球的球心O 为高DD 1的中点, 设外接球半径为R ,由4πR 2=16π得R =2,又因为BD =23 ×32×3=3 ,故OD =1,所以DD 1=2,所以三棱柱的体积V =34 ·32·2=932.三棱柱的表面积S =3×3×2+2×34 ×32=18+932.因为AC ∥A 1C 1,所以∠B 1AC 是AC 与AB 1成的角也就是A 1C 1与AB 1成的角,因为AB 1=B 1C =13 ,AC =3,所以cos ∠B 1AC =B 1A 2+AC 2-B 1C 22B 1A ·AC =31326,所以直线AB 1与直线A 1C 1所成角的余弦值是31326.设A 到平面A 1BC 的距离是h ,由VA -A 1BC =VA 1-ABC 得13 ×h ×12 ×432 ×3=13×2×34×32,解得h =612943.故选AC. 答案:AC11.解析:圆心C (0,0)到直线l 的距离d =r 2a 2+b2 ,若点A (a ,b )在圆C 上,则a 2+b 2=r 2,所以d =r 2a 2+b2 =|r |,则直线l 与圆C 相切,故A 正确;若点A (a ,b )在圆C 内,则a 2+b 2<r 2,所以d =r 2a 2+b2 >|r |,则直线l 与圆C 相离,故B 正确;若点A (a ,b )在圆C 外,则a 2+b 2>r 2,所以d =r 2a 2+b2 <|r |,则直线l 与圆C 相交,故C 错误;若点A (a ,b )在直线l 上,则a 2+b 2-r 2=0即a 2+b 2=r 2,所以d =r 2a 2+b 2=|r |,直线l 与圆C 相切,故D 正确.故选ABD. 答案:ABD12.解析:(2-3 x )6展开式通项公式为:T k +1=C k 6 ·26-k ·(-3 x )k , 对于A ,令k =3,则a 3=C 36 ×23×(-3 )3=-4803 ,A 错误; 对于B ,令x =1,则a 0+a 1+…+a 6=(2-3 )6; 令x =-1,则a 0-a 1+a 2-…+a 6=(2+3 )6;∴(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=(a 0+a 1+a 2+…+a 6)(a 0-a 1+a 2-…+a 6)=[]()2-3×()2+3 6=1,B 正确;对于C ,令x =0得:a 0=26,∴a 1+a 2+…+a 6=()2-3 6-26,C 错误; 对于D ,∵a 0,a 2,a 4,a 6为正数,a 1,a 3,a 5为负数,又a 0=26=64,a 2=C 26 ×24×3=720,a 4=C 46 ×22×32=540,a 6=33=27, ∴展开式中系数最大的为a 2,D 正确. 故选BD.答案:BD13.解析:因为双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的离心率为2,所以e =c 2a 2 =a 2+b 2a 2 =2,所以b 2a2 =3,所以该双曲线的渐近线方程为y =±bax =±3 x .答案:y =±3 x14.解析:f (0)=a -1=0,a =1,当x <0时,-x >0,f (-x )=-x +1-2-x =-f (x ),即f (x )=x -1+2-x,f (x )=⎩⎪⎨⎪⎧x +1-2x,x >00,x =0x -1+2-x ,x <0,f (3)=4-23=-4,f (-4)=-5+24=11,f (f (3))=11.答案:11 15.解析:因为AD → ·AB → =AD → ·AC → ,所以AD → ·(AB → -AC → )=AD → ·CB →=0, 所以AD ⊥CB ,由题得AD =2,∠BAD =60°,所以AD → ·AB →=2×4×cos 60°=4. 答案:416.解析:解法一(五点作图法) 由题图可知34 T =13π12 -π3 =3π4(T 为f (x )的最小正周期),即T =π,所以2πω=π,即ω=2,故f (x )=2cos (2x +φ).点⎝⎛⎭⎫π3,0 可看作“五点作图法”中的第二个点,故2×π3 +φ=π2 ,得φ=-π6,即f (x )=2cos ⎝⎛⎭⎫2x -π6 , 所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-3 . 解法二(代点法) 由题意知,34 T =13π12 -π3 =3π4 (T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.又点⎝⎛⎭⎫π3,0 在函数f (x )的图象上,所以2cos ⎝⎛⎭⎫2×π3+φ =0,所以2×π3 +φ=π2 +k π(k ∈Z ),令k =0,则φ=-π6,所以f (x )=2cos ⎝⎛⎭⎫2x -π6 ,所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-2cos π6=-3 . 解法三(平移法) 由题意知,34 T =13π12 -π3 =3π4(T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.函数y =2cos 2x 的图象与x 轴的一个交点是⎝⎛⎭⎫π4,0 ,对应函数f (x )=2cos (2x +φ)的图象与x 轴的一个交点是⎝⎛⎭⎫π3,0 ,所以f (x )=2cos (2x +φ)的图象是由y =2cos 2x 的图象向右平移π3 -π4 =π12个单位长度得到的,所以f (x )=2cos (2x+φ)=2cos 2⎝⎛⎭⎫x -π12 =2cos ⎝⎛⎭⎫2x -π6 ,所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-2cos π6=-3 . 答案:-3。
一、选择题1.设集合{(1)(3)0}A x x x =+-<,2{(3)1}B x x =-<,则A B = ()A.{13}x x -<<B.{14}x x -<<C.{12}x x <<D.{23}x x << 答案: D 解答:因为{(1)(3)0}{13}A x x x x x =+-<=-<<,2{(3)1}{|24}B x x x x =-<=<<,所以{23}A B x x =<< . 2.若(1)2i z +=,则z =() A.2D.1 答案: C解答:因为(1)2i z +=,所以22(1)11(1)(1)i z i i i i -===-++-,所以1z i =-=3.为了解学生“阳光体育”活动的情况,随机统计了n 名学生的“阳光体育”活动时间(单位:分钟),所得数据在区间[10,110]内,其频率分布直方图如图所示.已知活动时间在[10,35)内的频数为80,则n 的值为()B.800C.850D.900 答案: B解答:根据频率分布直方图,知组距为25,所以活动时间在[10,35)内的频率为0.1.因为活动时间在[10,35)内的频数为80,所以808000.1n ==. 4.执行如图所示的程序框图,则输出的n 为()A.9B.11C.13D.15 答案: C解答:由程序框图可知,S 是对1n 进行累乘,直到12017S <时停止运算,即当111111135********S =⨯⨯⨯⨯⨯<时循环终止,此时输出的13n =,故选C.5.已知点,x y 满足约束条件2024020x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则3z x y =+的最大值与最小值之差为()A.5B.6C.7D.8C解答:由约束条件2024020x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,作出可行域如图,联立2240x x y =⎧⎨-+=⎩,解得(2,3)A ,联立20240x y x y +-=⎧⎨-+=⎩,解得(0,2)B ,化目标函数3z x y =+为3y x z =-+,由图可知,当直线3y x z =-+过A 时,直线在y 轴上的截距最大,z 有最大值为9.当直线3y x z =-+过B 时,直线在y 轴上的截距最小,z 有最小值为2. 则3z x y =+的最大值与最小值之差为7.6.某几何体的三视图如图所示,则该几何体的体积为()A.80B.160C.240D.480 答案:B由已知可得该几何体为一个以俯视图为底面的三棱柱截一个同底等高的三棱锥的组合体,如图,故该几何体的体积为121(1)8610160332V sh=-=⨯⨯⨯⨯=.7.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现在一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为()A.128 127B.44800 127C.700 127D.175 32答案:B解答:由题意知每日所走的路程成等比数列{}n a,且公比12q=,7700S=,由等比数列的求和公式得171(1)2700112a-=-,解得144800127a=,故选B.8.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此判断罪犯是()A.甲B.乙C.丙D.丁答案:B解答:由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙说的是真话,由甲、丙供述可得,乙是罪犯.9.已知12,F F 分别是双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点,过点1F 且与x 轴垂直的直线与双曲线左支交于点,M N ,已知2MF N ∆是等腰直角三角形,则双曲线的离心率是()B.2C.1+D.2答案:C解答:由已知得22b c a=,即2220c ac a --=,所以2210e e --=,解得1e =又1e >,所以1e =10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有() A.12种 B.18种 C.36种 D.54种 答案: B 解答:标号1,2的卡片放入同一信封有13C 种方法,其他四封信放入两个信封,每个信封两个有224222C A A ⋅种方法,共有2124322218C C A A ⋅⋅=种,故选B. 11.在正方体1111ABCD A BC D -中,若1DA C ∆,则该正方体内切球的表面积为() A.2π B.8π C.12π D.16π 答案: D解答: 如图所示,因为在正方体1111ABCD A B C D -中,1D AC ∆是等边三角形,1D AC ∆的内切圆的半径为3,所以212323AC ⨯⨯=,解得AC =14CC =,于是该正方体的内切球的半径为2,其表面积为16π.12.已知函数()(ln )f x x x ax =-有极值,则实数a 的取值范围是() A.1(,)2-∞ B.1(0,)2C.1(,]2-∞ D.1(0,]2答案:A解答:2()ln (0)f x x x ax x =->,()ln 12f x x ax '=+-.令()ln 12g x x ax =+-,∵函数()(l n )f x x x a x =-有极值,则()0g x =在(0,)+∞上有实根,112()2axg x a x x-'=-=,当0a ≤时,()0g x '>,函数()g x 在(0,)+∞上单调递增,在0x →时,()g x →-∞,当x →+∞时,()g x →+∞,故存在0(0,)x ∈+∞,使得()f x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增,故()f x 存在极小值0()f x ,符合题意.当0a >时,令()0g x '=,得12x a =.当102x a<<时,()0g x '>,函数()g x 单调递增;当12x a >时,()0g x '<,函数()g x 单调递减,∴当12x a=时,函数()g x 取得极大值.∴当0x →和x →+∞时,均有()g x →-∞,要使()0g x =在(0,)+∞上有实根,且()f x 有极值,则11()ln 022g a a =>,解得102a <<.综上可知,实数a 的取值范围是1(,)2-∞.二、填空题13.已知向量(2,0),(,1)a b x == ,若a 与b 的夹角等于4π,则x 的值为_______.答案:1解答:由题意知2,a b == 2a b x ⋅=cos42π==,解得1x =. 14.函数()sin(2)5sin 2f x x x π=+-的最大值为________.答案:4解答:22533()cos 25sin 12sin 5sin 2(sin )48f x x x x x x =-=--=-++,当sin 1x =-时,max ()1254f x =-+=.15.已知数列{}n a 的前n项和为nS ,数列{}n a 为1121231234121,,,,,,,,,,,,,,,,2334445555n n n n- 若14k S =,则k a =_______. 答案:78解答: 因为1211222n n n n n n n -+++-+++==- ,121211112n n nn n n n ++++++==++++ ,所以数列11212312,,,,233444111n n n n +++++++++ 是以首项为12,公差为12的等差数列,所以数列的前n 项和为21312224n n n n T +=++++= ,令2144n n nT +==,解得7n =,所以78k a =. 16.已知点P 是抛物线2:C y x =的定点(P 位于第一象限),动直线:(0)l y x m m =+<与抛物线C 相交于不同的两点,A B ,若对任意的(,0)m ∈-∞,直线,PA PB 的倾斜角总是互补,则点P 的坐标是_______. 答案:解答:由题意知,直线,PA PB 的斜率均存在,设点2(,)(0),(,),(,)A A B B P t t t A x y B x y >,直线PA 的斜率为k ,则直线2:()PA y t k x t -=-,直线2:()PB y t k x t -=--,联立方程得22()y x y t k x t ⎧=⎪⎨-=-⎪⎩,化简得2222()(21)()0k x t tk x t -+--=,又2A x t ≠, 所以222212212,A A tk k tk tkx t y t k k k----=-==, 同理2212B tkx t k +-=,22212B k tk tk y t k k-----==,于是22()()21()()426A B A B AB A B A B y y y t y t k k x x x t x t tk t ----====-=------,则t =P .。
PC BA小题的模拟练习2一、选择题:1.设集合M ={x |x =412+k ,k ∈Z },N ={x |x =214+k ,k ∈Z },则( ) A.M =NB.M NC.M ND.M ∩N =∅2."等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件 3.设函数()y f x =的反函数为1()y fx -=,且(21)y f x =-的图像过点1(,1)2,则1()y f x -=的图像必过( )(A )1(,1)2 (B )1(1,)2(C )(1,0) (D )(0,1)4.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A.130 B.170 C.210 D.260 5、函数()ln 1f x x =-的图像大致是 ( )6.如图,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +的最小值为( )A . 9B . 92C . -9D . 92-7.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( )A .30B .45C .60D .908.函数f (x( )(A )在[0,),(,]22πππ上递增,在33[,),(,2]22ππππ上递减(B )在3[0,),[,)22πππ上递增,在3(,],(,2]22ππππ上递减(C )在3(,],(,2]22ππππ上递增,在3[0,),[,)22πππ上递减(D )在33[,),(,2]22ππππ上递增,在[0,),(,]22πππ上递减二、填空题9.文:已知命题:(1,)p x ∀∈+∞,3log 0x >,则p ⌝为 . 理:如图所示,AC 和AB 分别是圆O 的切线,B 、C 为切点,且OC = 3,AB = 4,延长OA 到D 点,则△ABD 的面积是_______10.在△ABC 中,已知5,8==AC BC ,三角形面积为12,则AB = .理:极坐标系中点223π(,)到直线224sin =⎪⎭⎫ ⎝⎛+πθρ的距离为 11.右边程序框图的程序执行后输出的结果是 . 12.一个几何体的三视图如图所示,则该几何体的体积为13.理科:某校高一学生进行演讲比赛,原有5名同学参加比赛,后又增加两名同学参赛,如果保持原来5名同学比赛顺序不变,那么不同的比赛顺序有 种 文科:已知椭圆19822=++y k x 的离心率21=e ,则k 的值为 .14.正整数按下表排列:1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 … 25 24 23 22 21 … … … … … … …位于对角线位置的正整数1,3,7,13,21,…,构成数列{}n a ,则7a =_______;通项公式n a =____________。
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
高考小题标准练(二)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x ∈Z|2<2x+2≤8},B={x ∈R|x 2-2x>0},则A ∩(R B)所含的元素个数为( )A.0B.1C.2D.3【解题提示】求出A 中不等式的解集,找出解集中的整数解确定出A ,求出B 中不等式的解集,确定出B ,求出B 的补集,找出A 与B 补集的交集,即可确定出元素个数.【解析】选C.由集合A 中的不等式变形得:21<2x+2≤23,得到1<x+2≤3, 解得:-1<x ≤1,且x 为整数,所以A={0,1};由集合B 中的不等式变形得:x(x-2)>0,解得:x>2或x<0,即B=(-∞,0)∪(2,+∞),所以R B=[0,2],所以A ∩(R B)={0,1},即元素有2个.2.设i 是虚数单位,a 为实数,复数z=1+ai i为纯虚数,则z 的共轭复数为( )A.-iB.iC.2iD.-2i 【解析】选B.由于z=1+ai i=(1+ai)i i 2=−a+i −1=a-i ,由于z 为纯虚数,故a=0,所以z=-i , 则z ̅=i.3.甲乙两人在一次赛跑中,从同一地点动身,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先动身B.乙比甲跑的路程多C.甲,乙两人的速度相同D.甲比乙先到达终点【解析】选D.由图形可知甲,乙两人从同一时间动身,且路程相同,甲用的时间短,故甲比乙先到达终点.4.某高校进行自主招生,先从报名者中筛选出400人参与笔试,再按笔试成果择优选出100人参与面试.现随机调查了24名笔试者的成果,如表所示:分数段 [60,65) [65,70) [70,75) [75,80) [80,85) [85,90)人数234951据此估量允许参与面试的分数线大约是( )A.75B.80C.85D.90【解析】选B.由于参与笔试的400人中择优选出100人,故每个人被择优选出的概率P=100400=14,由于随机调查24名笔试者,则估量能够参与面试的人数为24×14=6,观看表格可知,分数在[80,85)有5人,分数在[85,90)的有1人,故面试的分数线大约为80分,故选B.5.已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8的值为( )A.2B.4C.8D.16【解题提示】结合已知条件得到q4=4,再利用等比数列的性质即可. 【解析】选B.由于a3=2,a4a6=16,所以a4a6=a32q4=16,即q4=4,则a10−a12 a6−a8=q4(a6−a8)a6−a8=q4=4.6.当m=6,n=3时,执行如图所示的程序框图,输出的S值为( )A.6B.30C.120D.360【解题提示】模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=3时,满足条件k<m-n+1=4,退出循环,输出S的值为120.【解析】选C.模拟执行程序框图,可得m=6,n=3,k=6,S=1,不满足条件k<m-n+1=4,S=6,k=5;不满足条件k<m-n+1=4,S=30,k=4;不满足条件k<m-n+1=4,S=120,k=3;满足条件k<m-n+1=4,退出循环,输出S的值为120. 7.实数x,y满足{x≥1,y≤a,a>1,x−y≤0,若目标函数z=x+y取得最大值4,则实数a的值为( )A.4B.3C.2D.32【解析】选C.画出可行域得直线y=-x+z过(a,a)点时取得最大值,即2a=4,a=2.8.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A.83B.43C.4√3D.2√3【解析】选A.结合三视图,借助正方体想象该棱锥的直观图,如图所示.该棱锥是四棱锥P-ABCD.其底面ABCD为一个底边长为2√2和2的矩形,面积S=4√2,高是P点到底面ABCD的距离,即h=√2,故此棱锥的体积V=13Sh=83.9.设函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e x+x-3,则f(x)的零点个数为( )A.1B.2C.3D.4【解题提示】先由函数f(x)是定义在R上的奇函数确定0是一个零点,再令x>0时的函数f(x)的解析式等于0转化成两个函数,转化为推断两函数交点个数问题,最终依据奇函数的对称性确定答案.【解析】选C.由于函数f(x)是定义域为R的奇函数,所以f(0)=0,所以0是函数f(x)的一个零点.当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f(x)在x>0时有一个零点,又依据对称性知,当x<0时函数f(x)也有一个零点.综上所述,f(x)的零点个数为3,故选C.【加固训练】函数f(x)=2x3-6x2+7在(0,2)内零点的个数为( )A.0B. 1C.2D.4 【解析】选B.由于f′(x)=6x2-12x=6x(x-2),由f′(x)>0,得x>2或x<0;由f′(x)<0得0<x<2.所以函数f(x)在(0,2)上是减函数,而f(0)=7>0,f(2)=-1<0,由零点存在定理可知,函数f(x)=2x3-6x2+7在(0,2)内零点的个数为1.10.已知二次函数y=ax2+bx+c(ac≠0)图象的顶点坐标为(−b2a,−14a),与x轴的交点P,Q位于y轴的两侧,以线段PQ为直径的圆与y轴交于F1(0,4)和F2(0,-4),则点(b,c)所在曲线为( )A.圆B.椭圆C.双曲线D.抛物线【解析】选B.结合二次函数的顶点坐标为(−b2a,4ac−b24a),依据题意可得Δ=b 2-4ac=1,①,二次函数图象和x轴的两个交点分别为(−b+12a,0)和(−b−12a,0),利用射影定理即得:-(−b+12a×−b−12a)=16 1-b2=64a2,结合①先求出a和c之间的关系,代入①可得到,(b,c)所在的曲线为b2+c24=1,表示椭圆.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知a=(1,2),b=(4,2),设a,b的夹角为θ,则cosθ= .【解析】由平面对量的夹角公式得,cosθ==1212√x1+y1·√x2+y2=√5×√20=45.答案:45【加固训练】已知向量a=(1,√3),b=(3,m).若向量b在a方向上的投影为3,则实数m= .【解析】依据投影的定义:|b|·cos<a,b>==3+√3m2=3;解得m=√3. 答案:√312.已知函数f(x)={x 3+1,x ≥0,x 2+2,x <0,若f(x)=1,则x= .【解析】若x ≥0则x 3+1=1,所以x=0,若x<0则x 2+2=1无解,所以x=0.答案:013.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b-c)(sin B+ sin C)=(a-√3c)·sinA ,则角B 的大小为 .【解题提示】由正弦定理化简已知等式可得c 2+a 2-b 2=√3ac ,由余弦定理可求 cos B ,结合B 的范围即可得解.【解析】由正弦定理,可得sinB=b2R,sin C=c2R,sinA=a2R, 所以由(b-c)(sin B+sin C)=(a-√3c)·sin A 可得(b- c)(b+c)=a(a-√3c),即有c 2+a 2-b 2=√3ac ,则cos B=a 2+c 2−b 22ac=√32,由于0°<B<180°,则B=30°. 答案:30°14.已知三棱锥S-ABC 的全部顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=π3,则球O 的表面积为 .【解析】三棱锥S-ABC 的全部顶点都在球O 的球面上,由于SA ⊥平面ABC ,SA=2√3,AB=1,AC=2,∠BAC=60°,所以BC=√1+4−2×1×2×cos60°=√3,所以∠ABC=90°. 所以△ABC 截球O 所得的圆O ′的半径r=12AC=1,所以球O 的半径R=√12+(2√32)2=2,所以球O 的表面积S=4πR 2=16π. 答案:16π15.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3),则b 的值为 . 【解题提示】由于切点在直线与曲线上,将切点的坐标代入两个方程,得到关于a ,b ,k 的方程,再求出在点(1,3)处的切线的斜率的值,即利用导数求出在x=1处的导函数值,结合导数的几何意义求出切线的斜率,再列出一个等式,最终解方程组即可得,从而问题解决.【解析】由于直线y=kx+1与曲线y=x 3+ax+b 相切于点(1,3), 所以{k +1=3,1+a +b =3,①又由于y=x 3+ax+b ,所以y ′=3x 2+a ,当x=1时,y ′=3+a 得切线的斜率为3+a ,所以k=3+a , ②所以由①②得:b=3. 答案:3关闭Word 文档返回原板块。
了解物质分类的方法,能根据物质的组成和性质对物质进行分类,理解混合物和纯净物、单质和化合物、金属和非金属的概念。
了解胶体及其性质。
在高考题中,主要考察分类是否正确、发生何种变化等,胶体的性质及胶体知识在生活中的应用等。
1.【2020年海南卷】下列物质的名称不正确...的是( ) A .烧碱:NaOH B .绿矾:FeSO 4C .甘油:D .3−甲基己烷: 【答案】B【解析】A .烧碱是氢氧化钠的俗称,化学式为NaOH ,故A 正确;B .绿矾是七水硫酸亚铁的俗称,化学式为FeSO 4·7H 2O ,故B 错误;C .甘油是丙三醇的俗称,结构简式为,故C 正确;D .烷烃的主链有6个碳原子,侧链为甲基,系统命名法的名称为3−甲基己烷,故D 正确;故选B 。
【点睛】对常见物质的俗名的考查,及简单烷烃的命名。
2.【2020年全国2卷】北宋沈括《梦溪笔谈》中记载:“信州铅山有苦泉,流以为涧。
挹其水熬之则成胆矾,烹胆矾则成铜。
熬胆矾铁釜,久之亦化为铜”。
下列有关叙述错误的是( )A .胆矾的化学式为CuSO 4B .胆矾可作为湿法冶铜的原料C .“熬之则成胆矾”是浓缩结晶过程D .“熬胆矾铁釜,久之亦化为铜”是发生了置换反应【答案】A【解析】A .胆矾为硫酸铜晶体,化学式为CuSO 4·5H 2O ,A 说法错误;B .湿法冶铜是用(新高考)小题必练2:物质的组成、分类、性质铁与硫酸铜溶液发生置换反应制取铜,B说法正确;C.加热浓缩硫酸铜溶液可析出胆矾,故“熬之则成胆矾”是浓缩结晶过程,C说法正确;D.铁与硫酸铜溶液发生置换反应生成铜,D说法正确。
故选A。
【点睛】常见物质的名称、性质的考查。
3.【2020年全国3卷】宋代《千里江山图》描绘了山清水秀的美丽景色,历经千年色彩依然,其中绿色来自孔雀石颜料(主要成分为Cu(OH)2·CuCO3),青色来自蓝铜矿颜料(主要成分为Cu(OH)2·2CuCO3)。
选择题专项练(二)(满分:40分时间:30分钟)一、单项选择题:本题共8小题,每小题3分,共24分。
每小题只有一个选项符合题目要求。
1.(2021山西晋中高三二模)中国散裂中子源工程(CSNS)打靶束流功率已达到100 kW的设计指标,并开始稳定供束运行,技术水平达到世界前列。
散裂中子源是由加速器提供高能质子轰击重金属靶而产生中子的装置,一能量为109 eV的质子打到汞、钨等重核后,导致重核不稳定而放出20~30个中子,大大提高了中子的产生效率。
关于质子和中子,下列说法正确的是()A.原子核由质子和中子组成,稳定的原子核内,中子数一定大于质子数B.原子核的β衰变,实质是原子核外电子电离形成的电子流,它具有很强的穿透能力C.卢瑟福在原子核人工转变的实验中发现了中子D.中子不带电,比质子更容易打入重核内2.(2021江西高三二模)我国的5G技术世界领先,该项技术在传输、时延、精度方面比4G大有提高,我国许多公司已将该技术应用于汽车的无人驾驶研究。
某公司在研究无人驾驶汽车的过程中,对比甲、乙两辆车的运动,两车在计时起点时刚好经过同一位置沿同一方向做直线运动,它们的速度随时间变化的关系如图所示,由图可知()A.甲车任何时刻加速度大小都不为零B.在t=3 s时,两车第一次相距最远C.在t=6 s时,两车又一次经过同一位置D.甲车在t=6 s时的加速度与t=9 s时的加速度相同3.(2021广东深圳高三一模)如图所示,用轻绳将一条形磁铁竖直悬挂于O点,在其正下方的水平绝缘桌面上放置一铜质圆环。
现将磁铁从A处由静止释放,经过B、C到达最低处D,再摆到左侧最高处E,圆环始终保持静止,则磁铁()A.从B到C的过程中,圆环中产生逆时针方向的电流(从上往下看)B.摆到D处时,圆环给桌面的压力小于圆环受到的重力C.从A到D和从D到E的过程中,圆环受到摩擦力方向相同D.在A、E两处的重力势能相等4.(2021天津高三模拟)我国战国时期墨家的著作《墨经》记载了利用斜面提升重物的方法。
高考语文成语填空练习班级考号姓名总分1.交易会展览大厅里陈列的一件件色泽莹润、()的玉雕工艺品,受到了来自世界各地客商的青睐。
2.他虽然很年轻,作品也不多,但在漫画创作方面已是(),小有名气,受到同行的普遍赞赏。
3.这事你现在做不了,就不要(),以后有条件再做不迟。
4.在国企改革中,某些人“()”,打着企业改制的幌子,侵吞国有资产。
5.2008年北京奥运会不仅要办成体育竞技盛会,而且要办成各国运动员欢聚一堂、多元文化()的人类文化庆典。
6.该研究所在其()的2005年度报告《重要现象》中写道,中国在世界经济强劲增长的过程中起了重要作用。
7.近日面世的《共和国万岁》邮票珍藏大系,版面设计(),邮票藏品丰富多样,可谓“邮苑奇葩,传世珍藏”。
8.我们真诚地希望中国男足夺取世界冠军之后(),不断带给人们惊喜。
9.我国正在()地进行“神舟”六号太空飞行的各项准备工作。
10.市中心许多商业广告牌被庆祝反法西斯战争胜利日的宣传画()。
11.近年来,在各地蓬勃兴起的旅游热中,以参观革命圣地、踏访英雄足迹为特色的“红色旅游”(),呈升温之势。
12.某建筑公司会计程某,为填补贪污挪用公款的亏空,不惜再次把巨额公款投入股市,她的这种做法无异于()。
13.中国改革开放以来取得的巨大成就,特别是连续十几年经济持续高速增长的表现,让各国经济界人士都()。
14.该会计师事务所的一份研究报告指出,中国机床制造业一些有实力的集团为向国外市场渗透,采取了更加()的收购策略。
15.随着贝克特等人的先后逝世,荒诞戏剧作为一个流派也渐渐()了,但其创作成就和产生的影响依然存在。
16.从被科尼法官讲述的一起案件深深触动,到把科尼的故事写成《复活》,托尔斯泰()了整整了12年之久。
17.科举时代的(),寒富苦读,为的就是金榜题名,为的就是荣华富贵。
18.她扮演的众多角色尽管各不相同,但都有一种共同的东西,那就是()的傲气和不达目的绝不罢休的豪气。
1.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .92.在等比数列{a n }中,a 5a 7=6,a 2+a 10=5,则a 18a 10等于( )A .-23或-32B.23C.32D.23或323.已知等差数列{a n }(n ∈N *)的公差为d ,前n 项和为S n ,若a 1>0,d <0,S 3=S 9,则当S n 取得最大值时,n 等于( ) A .4 B .5 C .6 D .74.(2020·绍兴柯桥区调研)已知等比数列{a n }中有a 3a 11=4a 7,数列{b n }是等差数列,且a 7=b 7,则b 5+b 9等于( )A .2B .4C .8D .165.已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,(n +1)S n =(6n +18)T n .若a nb n ∈Z ,则n的取值集合为( ) A .{1,2,3} B .{1,2,3,4} C .{1,2,3,5}D .{1,2,3,6}6.设等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99·a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99·a 101-1>0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是( ) A .①③ B .①④ C .②③ D .②④7.(2019·杭州期末)等差数列{a n }的前n 项和为S n ,且a 1>0,S 50=0.设b n =a n a n +1a n +2(n ∈N *),则当数列{b n }的前n 项和T n 取得最大值时,n 的值为( ) A .23 B .25 C .23或24D .23或258.已知数列{a n }满足a 1=1,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +3n (n ∈N *),则数列{a n }的前2 017项的和为( ) A .31 003-2 005 B .32 016-2 017 C .31 008-2 017D .31 009-2 0189.记数列{a n }的前n 项和为S n ,若S n =3a n +2n -3,则数列{a n }的通项公式为a n =________. 10.(2019·舟山期末)设数列{a n }的前n 项和为S n ,若S 2=5,a n +1=3S n +1,n ∈N *,则a 2=________,S 4=______.11.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中正数的个数是( )A .25B .50C .75D .10012.已知a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),又函数F (x )=f ⎝⎛⎭⎫x +12-1是R 上的奇函数,则数列{a n }的通项公式为( ) A .a n =n B .a n =2n C .a n =n +1D .a n =n 2-2n +313.已知函数f (x )=x 2+2x (x >0),若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N *,则f 2 019(x )在[1,2]上的最大值是( ) A .42 018-1 B .42 019-1 C .92 019-1D .322 019-114.(2020·杭州市学军中学质检)已知数列{a n }满足a 1=-12,a n +1=a 2n +3a n +1,若b n =1a n +2,设数列{b n }的前n 项和为S n ,则使得|S 2 019-k |最小的整数k 的值为( ) A .0 B .1 C .2 D .315.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起到了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N *),此数列在现代物理、准晶体结构及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列{b n },又记数列{c n }满足c 1=b 1,c 2=b 2,c n =b n -b n -1(n ≥3,n ∈N *),则c 1+c 2+c 3+…+c 2 019的值为______.16.已知数列{a n }的前n 项和为S n ,首项a 1=1且a n +1-2a n -1=0,若(-1)n λ≤S n +2n 对任意n ∈N *恒成立,则实数λ的取值范围是__________.答案精析1.A 2.D 3.C 4.C 5.D 6.B 7.D 8.D 9.2-⎝⎛⎭⎫32n10.4 8511.D [由于f (n )=sin n π25的周期T =50,由正弦函数的图象可知a 1,a 2,…,a 24>0,a 25=0,a 26,a 27,…,a 49<0,a 50=0, 且sin 26π25=-sin π25,Sin 27π25=-sin 2π25,….但是f (n )=1n 单调递减,a 26,…,a 49都为负数,但是|a 26|<a 1,|a 27|<a 2,…,|a 49|<a 24.∴S 1,S 2,…,S 25都为正,且S 26,S 27,…,S 50都为正, 同理S 1,S 2,…,S 75都为正,且S 75,…,S 100都为正, 即正数个数为100.]12.C [F (x )=f ⎝⎛⎭⎫x +12-1在R 上为奇函数, 故F (-x )=-F (x ),代入得f ⎝⎛⎭⎫12-x +f ⎝⎛⎭⎫12+x =2,x ∈R , 当x =0时,f ⎝⎛⎭⎫12=1,令t =12-x , 则12+x =1-t ,上式即为f (t )+f (1-t )=2, 当n 为偶数时,a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1) =[f (0)+f (1)]+⎣⎡⎦⎤f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +…+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12n -1n +f ⎝ ⎛⎭⎪⎫12n +1n +f ⎝⎛⎭⎫12 =2×n2+1=n +1,当n 为奇数时,a n =f (0)+f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n +f (1)=[f (0)+f (1)]+⎣⎡⎦⎤f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +…+⎣⎢⎢⎡⎦⎥⎥⎤f ⎝ ⎛⎭⎪⎪⎫n -12n +f ⎝ ⎛⎭⎪⎪⎫n +12n=2×n +12=n +1,综上所述,a n =n +1.]13.D [∵f (x )=x 2+2x =(x +1)2-1在(0,+∞)上为增函数,且f (x )>0, ∴f 1(x )=f (x )=x 2+2x 在[1,2]上为增函数, 即f 1(x )max =8=32-1,且f 1(x )>0,同理f 2(x )max =f (f 1(x )max )=f (32-1+1)2-1=34-1=322-1,且f 2(x )>0, 同理f 3(x )max =f (f 2(x )max )=f (34-1+1)2-1=38-1=323-1,且f 3(x )>0, 依此类推f 2 019(x )max =f (f 2 018(x )max )=322 019-1.] 14.C [因为a n +1=a 2n +3a n +1,所以a n +1-a n =a 2n +2a n +1=(a n+1)2≥0, 所以{a n }为递增数列,而a n +1+1=a 2n +3a n +2 =(a n +1)(a n +2),所以1a n +1+1=1(a n +1)(a n +2)=1a n +1-1a n +2, 所以b n =1a n +2=1a n +1-1a n +1+1,因为数列{b n }的前n 项和为S n ,a 1=-12,所以S 2 019=1a 1+1-1a 2+1+1a 2+1-1a 3+1+…+1a 2 019+1-1a 2 020+1=2-1a 2 020+1.而a 2+1=(a 1+1)(a 1+2)=34,a 3+1=(a 2+1)(a 2+2)=2116,所以a 2 020+1>a 3+1=2116,从而得到2-1a 2 020+1∈⎝⎛⎭⎫2621,2, 所以|S 2 019-k |要取最小,k 的整数值为2.] 15.3解析 记“兔子数列”为{a n },则数列{a n }每个数被4整除后的余数构成一个新的数列{b n }为1,1,2,3,1,0,1,1,2,3,1,0,…,可得数列{b n }构成一个周期为6的数列,由题意得数列{c n }为1,1,1,1,-2,-1,1,0,1,1,-2,-1,1,0,1,1,-2,-1,…,观察数列{c n }可知该数列从第三项开始后面所有的数列构成一个周期为6的数列,且每一个周期的所有项的和为0,所以c 1+c 2+c 3+…+c 2 019=(c 1+c 2)+(c 3+…+c 2 018)+c 2 019=1+1+1=3. 16.[-3,8]解析 因为a n +1-2a n -1=0, 所以a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,公比为2的等比数列, 所以a n +1=2n ,a n =2n -1. 因此S n =2(1-2n )1-2-n =2n +1-2-n .所以(-1)n λ≤S n +2n 对任意n ∈N *恒成立,可化为(-1)n λ≤2n +1+n -2对任意n ∈N *恒成立. 当n 为奇数时,-λ≤(2n +1+n -2)min , 所以 -λ≤3,即λ≥-3;当n 为偶数时,λ≤(2n +1+n -2)min , 解得λ≤8.综上,实数λ的取值范围是[-3,8].。
2020届高考语文小题天天练【26语言文字运用综合练习二】及解析基础过关阅读下面的文字,完成1~3题。
''“废墟”在很多中国人的心目中是一个跟文化和美学不相干的贬义词,甚至《现代汉语词典》对“废墟”一词的解释也仅仅是“城市、村庄遭受破坏或灾害后变成的荒凉地方”。
《现代汉语词典》的解释并没有错;但若用世界知识来衡量,这样的理解就很不够了。
在欧洲,“废墟”的含义自近代以来有了明显的丰富和扩充,这个词语( )。
''“废墟”的词义变化是从欧洲的文艺复兴开始的。
早在15世纪,人们从偶然的废墟挖掘中发现古代希腊、罗马时代那些________的壁画、雕塑等绝妙艺术品,受到极大的震撼和鼓舞,于是决心以古代为榜样来复兴文学和艺术。
古代那些巍峨的神庙和宫殿,尽管多半都在战火和天灾中沦为废墟了,但它们依然令人________,不仅引起人们思古的幽情,人们对艺术创造的热情也被触发了。
随着人的自我意识在“神”面前的觉醒和对古代伟大哲学思想的发掘和发扬,这样一种宏伟的追求成为可能。
在这样一个充满朝气的时代氛围里,人们对前人伟大创造的历史证物,哪怕只是一方________,一堆碎石瓦砾,也________了!1.下列在文中括号内补写的语句,最恰当的一项是( )A.被赋予了文化和美学的内涵,变成了学术概念B.赋予了它文化和美学的内涵,变成了学术概念C.变成了学术概念,赋予了它文化和美学的内涵D.变成了学术概念,被赋予了文化和美学的内涵答案:A解析:解题时要通读语段,将选项一一代入语段中,然后结合语境,选出与上下文衔接最紧密的一项。
B、C两项“赋予了”的主语是人们,而不是“这个词语”,应排除。
D项,不合逻辑,应该是先“被赋予了文化和美学的内涵”,然后才“变成了学术概念”,也排除。
故选A。
2.依次填入文中横线上的成语,全都恰当的一项是( )A.生机勃勃顶礼膜拜残垣断壁另眼相看B.生机勃勃肃然起敬残垣断壁刮目相看C.朝气蓬勃肃然起敬满目疮痍另眼相看D.朝气蓬勃顶礼膜拜满目疮痍刮目相看答案:B解析:解答近义成语辨析题宜结合语境巧用排除法。
12+4满分练(2)1.已知集合A ={x ∈R |x 2-x -2<0},B ={x ∈Z |x =2t +1,t ∈A },则A ∩B 等于( ) A.{-1,0,1} B.{-1,0} C.{0,1} D.{0} 答案 C解析 A ={x ∈R |x 2-x -2<0}={x |-1<x <2}, 则x =2t +1∈(-1,5),所以B ={0,1,2,3,4}, 所以A ∩B ={0,1},故选C.2.(2017·四川联盟三诊)已知复数z 满足(2+i)z =2-i(i 为虚数单位),则z 等于( ) A.3+4i B.3-4i C.35+45i D.35-45i答案 D解析 由(2+i)z =2-i ,得z =2-i 2+i =(2-i )(2-i )(2+i )(2-i )=35-45i ,故选D.3.(2017·原创押题预测卷)给出计算12+14+16+…+12 018的值的一个程序框图(如图所示),其中判断框内应填入的条件是( )A.i >1 009?B.i <1 009?C.i >2 018?D.i <2 018? 答案 A解析 由程序框图,得i =1,n =2,S =12;i =2,n =4,S =12+14;i =3,n =6,S =12+14+16;…;i =1 009,n =2 018,S =12+14+16+…+12 018.故选A.4.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是( )A.函数f (x )的最小正周期为π2B.直线x =-π12是函数f (x )图象的一条对称轴C.函数f (x )在区间⎣⎡⎦⎤-5π12,π6上单调递增 D.将函数f (x )的图象向左平移π3个单位长度,得到函数g (x )的图象,则g (x )=2sin 2x答案 D解析 A =2,T 2=2π3-π6=π2,即πω=π2,即ω=2,π2+2π32=7π12,当x =7π12时,2×7π12+φ=π2,解得φ=-2π3,所以函数f (x )=2sin ⎝⎛⎭⎫2x -2π3,函数图象向左平移π3个单位长度后得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-2π3=2sin 2x ,所以D 正确. 5.(2017·辽宁六校协作体联考)面积为332的正六边形的六个顶点都在球O 的球面上,球心O到正六边形所在平面的距离为22,记球O 的体积为V ,球O 的表面积为S ,则VS 的值为( )A.2B.1C. 3D. 2 答案 B解析 设正六边形的边长为a , 则其面积S =6×34a 2=332a 2, 由题意得332a 2=332,所以a =1.由于正六边形的中心到顶点的距离为1, 所以球的半径为R =(22)2+1=3,所以V =4π3×27=36π,S =4π×9=36π,所以VS=1.故选B.6.设A ,B 在圆x 2+y 2=1上运动,且|AB |=3,点P 在直线3x +4y -12=0上运动,则|P A →+PB →|的最小值为( ) A.3 B.4 C.175 D.195答案 D解析 设AB 的中点为D ,由平行四边形法则可知P A →+PB →=2PD →, 所以当且仅当O ,D ,P 三点共线时, |P A →+PB →|取得最小值,此时OP 垂直于直线3x +4y -12=0,OP ⊥AB , 因为圆心到直线的距离为129+16=125, |OD |=1-34=12, 所以|P A →+PB →|取得最小值2⎝⎛⎭⎫125-12=195.7.(2017·郑州检测)某几何体的三视图如图所示,则其体积为( )A.207B.216-9π2C.216-36πD.216-18π答案 B解析 观察三视图可知,这个几何体是挖去14个底面圆半径为3,高为6的圆锥的边长为6的正方体,所以几何体的体积是正方体的体积减去14个圆锥的体积,即几何体的体积等于63-14×13×9π×6=216-9π2,故选B. 8.(2017·天津六校联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积为( )A.3B.932C.332 D.3 3答案 C解析 因为c 2=(a -b )2+6, 所以c 2=a 2+b 2-2ab +6,由C =π3,得c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab ,因此a 2+b 2-ab =a 2+b 2-2ab +6,即ab =6, 所以△ABC 的面积为12ab sin π3=332,故选C.9.(2017·抚顺一模)在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电视台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为( )A.1 200B.2 400C.3 000D.3 600 答案 B解析 若4人中,有甲电视台记者1人,乙电视台记者3人,则不同的提问方式总数是C 15C 35A 44=1 200;若4人中,有甲电视台记者2人,乙电视台记者2人,则不同的提问方式总数是C 25C 25A 22A 23=1 200;若4人中,有甲电视台记者3人,乙电视台记者1人,则不符合主持人的规定,故所有不同提问方式的总数为1 200+1 200=2 400. 10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,则z =y +1x +1的范围是( )A.⎣⎡⎦⎤13,2B.⎣⎡⎦⎤-12,12C.⎣⎡⎦⎤12,32D.⎣⎡⎦⎤32,52 答案 C解析 在平面直角坐标系中作出可行域⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0.由斜率公式可知z =y +1x +1表示可行域内的点M (x ,y )与点P (-1,-1)连线的斜率,由图可知z max =2+11+1=32,z min =1+13+1=12,故选C.11.已知{a n }为等比数列, a 1>0,a 4+a 7=2,a 5a 6=-8,则a 1+a 4+a 7+a 10等于( ) A.-7 B.-5 C.5 D.7 答案 B解析 由等比数列的性质可得a 5a 6=a 4a 7=-8,又a 4+a 7=2,解得a 4=-2,a 7=4或a 7=-2,a 4=4,因为a 7=a 1q 6>0,所以a 4=-2,a 7=4,a 7=a 4q 3=-2q 3=4,所以q 3=-2,所以a 1=a 4q3=1,a 10=a 7q 3=-8,所以a 1+a 4+a 7+a 10=-5,故选B.12.已知函数f (x )的导函数为f ′(x ),且f (1)=12,不等式f ′(x )≤1x +x 的解集为(0,1],则不等式f (x )-ln x x 2>12的解集为( ) A.(0,1) B.(0,+∞) C.(1,+∞) D.(0,1)∪(1,+∞)答案 D解析 因为x >0,所以待求不等式可化为f (x )>ln x +x 22,构造函数g (x )=f (x )-ln x -x 22,则g ′(x )=f ′(x )-1x -x ,因为不等式f ′(x )≤1x +x 的解集为(0,1],所以在(0,1]上,g ′(x )≤0,所以函数g (x )在(0,1]上单调递减,故g (x )在(1,+∞)上单调递增,g (x )min =g (1)=f (1)-ln 1-12=0,所以g (x )>0的解集为(0,1)∪(1,+∞).13.(2017·四川凉山州一诊)设向量a =(cos x ,-sin x ),b =⎝⎛⎭⎫-cos ⎝⎛⎭⎫π2-x ,cos x ,且a =t b ,t ≠0,则sin 2x =________. 答案 ±1解析 因为b =⎝⎛⎭⎫-cos ⎝⎛⎭⎫π2-x ,cos x =(-sin x ,cos x ),a =t b , 所以cos x cos x -(-sin x )(-sin x )=0, 即cos 2x -sin 2x =0, 所以tan 2x =1,tan x =±1, x =k π2+π4(k ∈Z ),2x =k π+π2(k ∈Z ),故sin 2x =±1.14.设P 为直线y =b 3a x 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率e =________. 答案324解析 设P (-c ,y 0),代入双曲线C ∶x 2a 2-y 2b 2=1,得y 20=⎝⎛⎭⎫b 2a 2,由题意知y 0<0,∴y 0=-b 2a, 又∵P 在直线y =b3a x 上,代入得c =3b ,又∵c 2=a 2+b 2, ∴e =c a =324.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(2a +2c -b )cos C =(a +c )cos B +b cos A ,若c =3,则a +b 的最大值为________. 答案 6解析 由正弦定理可得2sin A cos C +2sin C cos C -sin B cos C =sin A cos B +sin C cos B +sin B cos A ,即2sin A cos C +2sin C cos C =sin(B +C )+sin(A +B ),也即2(sin A +sin C )cos C =sin A +sin C ,因为在△ABC 中,sin A +sin C >0, 所以2cos C =1, 由此可得cos C =12,由余弦定理可得9=a 2+b 2-ab ,即(a +b )2=9+3ab , 又ab ≤14(a +b )2,所以14(a +b )2≤9⇒a +b ≤6,故所求a +b 的最大值是6.16.(2017·北京东城区二模)已知函数f (x )=⎩⎪⎨⎪⎧|x -1|,x ∈(0,2],min{|x -1|,|x -3|},x ∈(2,4],min{|x -3|,|x -5|},x ∈(4,+∞).①若f (x )=a 有且只有一个根,则实数a 的取值范围是________.②若关于x 的方程f (x +T )=f (x )有且仅有3个不同的实根,则实数T 的取值范围是______. 答案 ①(1,+∞) ②(-4,-2)∪(2,4)解析 ①作出函数f (x )的图象,f (x )=a 有且只有一个根等价于y =f (x )的图象与y =a 有一个交点,故可得a >1,即a 的取值范围是(1,+∞);②方程f (x +T )=f (x )有且仅有3个不同的实根等价于y =f (x +T )的图象与y =f (x )的图象有3个交点,而y =f (x +T )的图象是将y =f (x )的图象向左或向右平移|T |个单位,故可得T 的取值范围是(-4,-2)∪(2,4).。