选修2-2模拟题
- 格式:doc
- 大小:413.50 KB
- 文档页数:6
高二理科选修2-2、2-3综合练习题一、选择题1.已知|z |=3,且z +3i 是纯虚数,则z =( )A .-3iB .3iC .±3i D.4i 2.函数y=x 2cosx 的导数为( ) (A) y ′=2xcosx -x 2sinx(B) y ′=2xcosx+x 2sinx (C) y ′=x 2cosx -2xsinx(D) y ′=xcosx -x 2sinx3.若x 为自然数,且x<55,则(55-x)(56–x)…(68–x )( 69–x )= ( )A 、x x A --5569B 、1569x A -C 、1555x A -D 、1455x A -4.一边长为6的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,为使方盒的容积最大,x 应取( ) .A 、1B 、2C 、3D 、45、工人制造机器零件尺寸在正常情况下,服从正态分布2(,)N μσ.在一次正常实验中,取1000个零件时,不属于(3,3)μσμσ-+这个尺寸范围的零件个数可能为( ) A .3个 B .6个 C .7个 D .10个 6、用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角7.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法( ).A 、72种B 、36种C 、24种D 、12种8、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32B. 31C. 1D. 09.若4)31(22+-=⎰dx x a ,且naxx )1(+的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( ) A .164-B .132C .164 D .112810.给出以下命题:⑴若 ,则f(x)>0; ⑵ ; ⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则 ; 其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二、填空题11、已知函数f(x) =32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是 .12.观察下式1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,……,则可得出一般性结论:________13.已知X 的分布列如图,且,则a 的值为____14.对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________. (把你认为正确的命题序号都填上)15.设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f .则不等式)1(1)1(2-->+x f x x f 的解集为____________.20sin 4xdx =⎰π()0ba f x dx >⎰0()()aa TTf x dx f x dx +=⎰⎰三、解答题16.(12分)已知1z i a b =+,,为实数.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求a ,b 的值.17、(12分) 20()(28)(0)xF x t t dt x =+->⎰.(1)求()F x 的单调区间; (2)求函数()F x 在[13],上的最值.18、(12分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.19、(12分)某次有奖竞猜活动中,主持人准备了A 、B 两个相互独立的问题, 并且宣布:观众答对问题A 可获奖金a 元,答对问题B 可获奖金2a 元;先答哪个题由观众自由选择;只有第一个问题答对,才能再答第二个问题,否则终止答题.设某幸运观众答对问题A 、B 的概率分别为31、14.你觉得他应先回答哪个问题才能使获得奖金的期望较大?说明理由.20、(13分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。
人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
高中新课标数学选修(2-2)综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )52曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )(A )38 (B )37 (C )35(D )343、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e1 (B )e1-(C )e2 (D )e2-4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( )(A )i 22- (B )i 22+(C )i 22+- (D )i 22--6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=rc b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++= (B )Rs s s s V )(314321+++=(C )Rs s s s V )(414321+++= (D )R s s s s V )(4321+++=7、数列 ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )118、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限(C )在第三象限 (D )在第四象限 10、用数学归纳法证明不等式“)2(2413212111>>+++++n nn n ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k(B )增加了两项)1(21121+++k k(C )增加了两项)1(21121+++k k ,又减少了11+k ;(D )增加了一项)1(21+k ,又减少了一项11+k ;11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34 (C )38 (D )31212、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为:14、若i z 311-=,i z 862-=,且21111z z z =+,则z 的值为 ;15、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .16、物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。
A。
5+2i B。
5-2i C。
-5+2i D。
-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。
A。
1/3+cos1 B。
11/3sin1+cos1 C。
3sin1-cos1 D。
sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。
A。
0 B。
1 C。
2 D。
-14.定积分∫1x(2x-e)dx的值为()。
A。
2-e B。
-e C。
e D。
2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。
A。
1项 B。
k项 C。
2k-1项 D。
2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。
A。
40/3 B。
13 C。
25/2 D。
157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。
A。
(3,-3) B。
(-4,11) C。
(3,-3)或(-4,11) D。
不存在8.函数f(x)=x^2-2lnx的单调减区间是()。
A。
(0,1] B。
[1,+∞) C。
(-∞,-1]∪(0,1] D。
[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。
A。
f(x)=4/(2x+2) B。
f(x)=2^(12/(x+1)) C。
f(x)=(x+1)/2 D。
f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。
A。
[-1,+∞) B。
(-1,+∞) C。
12—13学年高二选修2-2模拟训练数学(理科) 2013.3.22(本试卷分选择题和非选择题两部分,共150分,考试时间120分钟)温馨提醒:细心是成功的基础,慎密是成功的阶梯!第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知i 是虚数单位,则复数21-i=( ) B A .1i - B .1i + C .1i -+D .i2.曲线123+-=x x y 在点()0,1处的切线方程是( ) AA .1-=x yB .1+-=x yC .22-=x yD .22+-=x y 3.右图是今年元宵节花灯展中的一款五角星灯连续 旋转闪烁所成的三个图形,照此规律闪烁,下一个 呈现出来的图形是( ) A4.下列推理是归纳推理的是( ) BA .A ,B 为定点,P 满足||PA|-|PB||=2a <|AB|(a >0),则动点P 的轨迹是以A ,B 为焦点的双曲线B .由a 1=2,a n =3n-1求出S 1,S 2,S 3,猜想出数列{a n }的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积S=πr 2,猜想出椭圆 12222=+by a x 的面积S=πabD .科学家利用鱼的沉浮原理制造潜水艇 5.证明不等式211---=-+a a a a (a≥2)所用的最适合的方法是( ) BA .综合法B .分析法C .间接证法D .合情推理法6.已知函数)(x f y =,其导函数)(x f y '=的图象如图所示,则)(x f y =满足( )C A .在(-∞,0)上为减函数 B .在=x 0处取极小值C .在(4,+∞)上为减函数D .在=x 2处取极大值7.已知i 是虚数单位,复数21ii-+在复平面上的对应点在( ) D A .第一象限B .第二象限C .第三象限D .第四象限8.若函数x e x f x cos )(=,则此函数图象在点))1(,1(f 处的切线的倾斜角为( ) D A .0 B .锐角 C .直角 D .钝角9.设曲线y=11x x +-在点(3,2)处的切线与直线ax+y+3=0垂直,则a=( ) B A .2 B .-2 C .12 D .-1210.已知函数332y x x c =-+的图像与x 轴恰有两个公共点,则c 的值为( ) CA.2或2-B. 3-或1C. 1或1-D. 3或9- 11.函数f (x )=1n x -212x 的图像大致是( )B12. 下列四个命题中,正确的是( ) BA .函数y=42+x x在区间[1,3]上是增函数; B .已知函数0()sin af a xdx =⎰,则1)2(=πfC .函数y= sin x (x ∈],[ππ-)图像与x 轴围成的图形的面积是S= ⎰-ππxdx sin ;D . 复数i215+的共轭复数的虚部是1A B CD第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把填空题答案写在第II 卷上)13.221x dx ⎰= ;7314. 已知i 是虚数单位,若z (i+1)=i ,则|z|等于 .2215. 若点P 是曲线x x y -=2上任意一点,则点P 到直线3-=x y 的距离的最小值是 . 15. 216.根据下面一组等式S 1=1 S 2=2+3=5S 3=4+5+6=1 5 S 4=7+8+9+1 0=34S 5=1 1+1 2+1 3+1 4+1 5=65 S 6=1 6+1 7+1 8+1 9+20+2 1=1 1 1 S 7=22+23+24+25+26+27+28=1 75 … … … … … … … …可得S 1+S 3+S 5+……+S 2n-1= . 4n三、解答题(本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知i 是虚数单位,复数z=ii+2-3. (1)复数z 在复平面内对应的点在第几象限; (2)若z 2+ai+b=1+i ,求实数a ,b 的值.18.(本小题满分12分)已知函数32()2f x x bx cx =-+的导函数的图象关于直线2x =对称.(1)求b 的值;(2)若函数()f x 无极值,求实数c 的取值范围.19.(本小题满分12分)设函数()sin x f x e x =.(1)求函数()f x 单调递增区间;(2)当x ∈[0,π]时,求函数f (x )的最大值和最小值.20.(本小题满分12分)已知1)2(),()(=≠+=f a x xa axx f 且. (1)求a 的值;(2)若数列}{n a 中,),(),(,1*11N n a f a a n n ∈==+计算,,,432a a a 并由此猜想通项公式;n a (3)证明(2)中的猜想.21.(本小题满分13分)已知函数()ln(1)(x f x e a a =++为常数)是实数集R 上的奇函数. (1)求实数a 的值;(2)若函数()()sin g x f x x λ=+在区间[]1,1-上是减函数,求实数λ的最大值; (3)若关于x 的方程2ln 2()xx ex m f x =-+有且只有一个实数根,求m 的值.22. (本小题满分13分)已知函数f (x )=()xex x a 12--(x ∈R ),a 为正实数. (1)求函数f (x )的单调区间;(2)若对[]40,21,∈∀x x ,不等式()()21x f x f -<1恒成立,求正实数a 的取值范围.12—13学年高二选修2-2模拟训练数学(理科)答案一、选择题:1-5 ADABA 6-10 ACDCA 11-12 BB二、填空题:13. 5 14. 2 15.5916. a 1+a 2+…+a n ≤n 三、解答题:17.18.解:(1)由已知得2()322f x x bx c '=-+, ………………2分.32)3(3)(22bc b x x f -+-='∴ ………………4分函数)(x f '的图象关于直线2x =对称, .6,23==∴b b解得 ………………6分 (2)由(1)知,32()62,f x x x cx =-+ ………………7分∴22()31223(2)212f x x x c x c '=-+=-+-. ………………10分故当6,()0,()c f x f x '≥≥时此时无极值. ………………12分 19. 20.21.解:(1)()ln(1)x f x e a =++是实数集R 上奇函数,(0)0f ∴=,即0ln(1)0211e a a a ++=⇒+=⇒=- ……2分.将1a =-带入()ln x f x e x ==,显然为奇函数. ……4分(2)由(Ⅰ)知()()sin sin g x f x x x x λλ=+=+,[]'()cos ,1,1g x x x λ∴=+∈-∴要使()g x 是区间[]1,1-上的减函数,则有'()0g x ≤在[]1,1x ∈-恒成立, min (cos )x λ∴≤-,所以1λ≤-. ……6分所以实数λ的最大值为1- ………7分 (3)由(Ⅰ)知方程2ln 2()xx ex m f x =-+,即2ln 2x x ex m x =-+,………8分 令212ln (),()2xf x f x x ex m x==-+121ln '()xf x x -=当(]0,x e ∈时,11'()0,()f x f x ≥∴在(]0,e 上为增函数; 当[,)x e ∈+∞时,11'()0,()f x f x ≤∴在[,)e +∞上为减函数; 当x e =时,1max 1()f x e=. ………………10分 而2222()2()f x x ex m x e m e =-+=-+-当(]0,x e ∈时2()f x 是减函数,当[,)x e ∈+∞时,2()f x 是增函数, ∴当x e =时,22min ()f x m e =-. ………………11分只有当21m e e -=,即21m e e=+时,方程有且仅有一个实数根.…………12分 22.解:(1)因为f (x )=()xe x x a 12--,所以()x f '=()xe x ax 3--. ...........................................................................3分令()x f '>0,得0<x <3,令()x f '<0,得x <0,或x >3. .................5分所以f (x )的单调增区间为[0,3](注意:写成开区间(0,3)也行),单调减区间为(-∞,0)和(3,+∞)..........................................6分(2)由(1)知f (x )在[0,3]上为增函数,在[3,4]上为减函数, 所以f (x )在[0,4]上的最大值是f (3)=35e a. ......................................8分 又因为f (0)=-a <0,f (4)=11a 4-e >0,所以f (0)<f (4),所以f (x )在[0,4]上的最小值为f (0)=-a . .......................................10分 所以,若对[]40,21,∈∀x x ,不等式()()21x f x f -<1恒成立,当且仅当1)()(min max <-x f x f ,即()()03f f -<1. .......................................11分即35e a +a <1,解得:a <335e e +. .......................................12分 又因为a >0,所以0<a <335e e +. .......................................13分 故实数a 的取值范围为)5,0(33e e +. .................................................................14分。
选修2-2导数练习题及答案1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D. 闭区间上的连续函数一定存在最大值与最小值2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3。
如果质点A 按规律s=2t 3运动,则在t=3 s 时的瞬时速度为( )A. 6m/sB. 18m/sC. 54m/sD. 81m/s 4已知xf x f x x f x ∆-∆+=→∆)2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 41 D. -2 5.11||x dx -⎰=( )A .0B .12C .1D .2 6. 下列求导运算正确的是 ( )A 、211()1x x xB 、3(3)3log x x eC 、 2(cos )2sin x x x xD 、 21(log )ln 2x x 7.一物体在力10,02F()3x 4,(2)x x x ≤≤⎧=⎨+>⎩()(单位:N )的作用下沿与力F 相同方向,从x=0处运动到x=4(单位:m )处,则力F (x )做的功为( )A .44B .46C .48D .508、下列函数中,在),0(+∞上为增函数的是( )A.x y 2sin =B.x xe y =C.x x y -=3D.x x y -+=)1ln(9.方程3269m 0x x x -++=恰有三个不等的实根,则实数m 的取值范围是( ) A .(,4)-∞- B. (4,0)- C .,4)0-∞-+∞((,) D.0+∞(,)s OA . s O s O sO B . C . D .10.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞-11.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a = 。
一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q ==2.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25-B .25C .7-D .76.已知(,)z x yi x y R =+∈且1z =,则x +的最大值( ) A.1B .2C .1D7.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --8.下列命题中,正确的是( ). A .若z 是复数,则22||z z = B .任意两个复数不能比较大小C .当240b ac ->时,一元二次方程20ax bx c ++=(,,)a b c C ∈有两个不相等的实数根D .在复平面xOy 上,复数2z m mi =+(m R ∈,i 是虚数单位)对应的点的轨迹方程是2y x =9.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四10.设i为虚数单位,则复数z =的共轭复数是( ) A .1i +B .1i -C .1i -+D .2i +11.已知向量OA =(2,2),OB =(4,1),在x 轴上一点P ,使AP ·BP 有最小值,则点P 的坐标为 ( ) A .(-3,0)B .(2,0)C .(3,0)D .(4,0)12.已知复数z 的模为2,则z i -的最大值为:( ) A .1B .2CD .3二、填空题13.已知复数乘法()()cos sin x yi i θθ++(,x y R ∈,i 为虚数单位)的几何意义是将复数x yi +在复平面内对应的点(),x y 绕原点逆时针方向旋转θ角,则将点()8,4绕原点逆时针方向旋转3π得到的点的坐标为_________. 14.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 15.已知i 为虚数单位,计算1i1i-=+__________. 16.411i i +⎛⎫=⎪-⎝⎭__________. 17.已知复数43i z =+(i 为虚数单位),则z =____. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.已知关于x 的方程2()40x x m m R ++=∈的两个虚根为α、β,且||2αβ-=,求m 的值. 23.计算:(1))()245i +(2)1-的值.24.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11zzμ-=+ ,那么μ是否是纯虚数?并说明理由. 25.已知复数2z i =-(i 为虚数单位). (1)求复数z 的模z ; (2)求复数z 的共轭复数;(3)若z 是关于x 的方程250x mx -+=一个虚根,求实数m 的值.26.设m ∈R ,复数z 1=22m mm +++(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果. 【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C 【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.A解析:A 【分析】化简得到2z i =+,得到答案.【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.3.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】 若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得2sin()6x πθ=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈.∴cos 2sin()6x πθθθ+=+=+∴x +的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-, 则:()1222212i i z i i z i i--===+--,21z =, 据此可得:12222z z i z +=+.本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【分析】举例说明A 错误;当两复数为实数时B 错误;由实系数一元二次方程的判别式与根的关系说明C 错误;求出z 的参数方程,消参后得到z 的轨迹方程说明D 正确. 【详解】 解:对于A ,若zi ,则2||1z =,21z =-,22||z z ≠,故A 错误;对于B ,当两个复数均为实数时,可以比较大小,故B 错误;对于C ,只有当a ,b ,c 均为实数时,在满足240b ac ->时,一元二次方程20ax bx c ++=有两个不相等的实数根,故C 错误;对于D ,由2(z m mi m R =+∈,i 是虚数单位),设z 对应的点(,)Z x y ,得2x m y m⎧=⎨=⎩,消去m 得,2y x =,∴在复平面xOy 上,复数2(z m mi m R =+∈,i 是虚数单位)对应的点的轨迹方程是2y x =.故D 正确. 故选:D . 【点睛】本题考查命题的真假判断与应用,考查了复数的有关概念,考查复数的代数表示法及其几何意义,属于基础题.9.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii -+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.10.A解析:A 【解析】【分析】利用复数的运算法则和共轭复数即可求得结果 【详解】()22111i z i i-====--,则共轭复数为1i +故选A 【点睛】本题主要考查了复数的运算法则和共轭复数,属于基础题11.C解析:C 【解析】设点P 坐标为(x ,0),则AP =(x-2,-2),BP =(x-4,-1),·AP BP =(x-2)(x-4)+(-2)×(-1)=x 2-6x+10=(x-3)2+1.当x=3时,P?A BP 有最小值1. 故点P 坐标为(3,0).选C.12.D解析:D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.二、填空题13.【分析】写出点对应的复数再乘以即得新复数其对应点坐标为所求【详解】点对应复数为对应点坐标为故答案为:【点睛】本题考查复数的新定义考查复数的乘法运算与复数和几何意义正确理解新定义把新定义转化为复数的乘解析:(42-+【分析】写出点()8,4对应的复数,再乘以cos sin33i ππ+即得新复数,其对应点坐标为所求.【详解】点()8,4对应复数为84z i =+,1(cossin )(84)()332z i i ππ+=+(4(2i =-++,对应点坐标为(42-+.故答案为:(42-+. 【点睛】本题考查复数的新定义,考查复数的乘法运算与复数和几何意义.正确理解新定义把新定义转化为复数的乘法解题关键.14.【解析】【分析】由余弦定理可得故【详解】如图在三角形中由余弦定理得同理可得故答案为:【点睛】本题主要考查复数的运算借助于余弦定理是解决问题的关键属中档题 解析:1337【解析】 【分析】由余弦定理可得12||19Z Z +=,12||7Z Z -=,故12121212||133||||7z z z z z z z z ++==-- 【详解】如图在三角形OAC 中由余弦定理得2212||||23223cos12019Z Z OB +==+-⨯⨯⨯︒=, 同理可得2212||||23223cos607Z Z CA -==+-⨯⨯⨯︒=,∴12121212||19133||||77z z z z z z z z ++===--. 故答案为:1337【点睛】本题主要考查复数的运算,借助于余弦定理是解决问题的关键,属中档题.15.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解.详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi16.1【解析】分析:先利用复数除法的运算法则化简再利用复数乘方运算法则求解即可详解:故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误解析:1 【解析】分析:先利用复数除法的运算法则化简11ii+-,再利用复数乘方运算法则求解即可. 详解:411i i +⎛⎫ ⎪-⎝⎭()()()4241i 2i =11i 1i 2⎡⎤+⎛⎫==⎢⎥ ⎪-+⎝⎭⎢⎥⎣⎦,故答案为1. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.5【解析】解析:5 【解析】5z ==.18.【分析】利用复数为纯虚数可得实部为零虚部不为零从而可求利用同角的三角函数的基本关系式和两角差的正切可求的值【详解】所以故答案为:【点睛】本题考查复数的概念同角的三角函数的基本关系以及两角差的正确理解 解析:7-【分析】利用复数为纯虚数可得实部为零,虚部不为零,从而可求43cos 0,sin 055θθ-=-≠,利用同角的三角函数的基本关系式和两角差的正切可求tan 4πθ⎛⎫- ⎪⎝⎭的值. 【详解】4333cos 0,sin 0sin tan 5554θθθθ-=-≠⇒=-⇒=-, 所以tan 4πθ⎛⎫-= ⎪⎝⎭3147314--=--, 故答案为:7-.【点睛】本题考查复数的概念、同角的三角函数的基本关系以及两角差的正确,理解纯虚数的概念是关键,本题为中档题.19.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】 试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =. 【解析】 【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解. 【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-;(2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.5【解析】【分析】本题首先可以根据复数根虚根必共轭的性质设,a bi a bi αβ=+=-,然后根据韦达定理可得2a =-以及m ,再通过||2αβ-=计算得1b =±,最后通过运算即可得出结果。
选修2-2模拟题2013/4/16
1.设复数,
,则复数在复平面内对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.若函数在区间
内可导,且
则
的值为
A .
B .
C .
D .
3.已知,则( ) A .1 B .2 C .3 D .4 4.《论语•学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( )
A .一次三段论
B .复合三段论
C .不是三段论
D .某个部分是三段论 5.观察图形规律, 在其右下角的空格内画上合适的图形为( ) A .
B .
C .
D .
6..若关于的方程
有实根,则实数
等于( )
A .
B .
C .
D .
7.
( )
A .
B .
C .
D .
8
.已知
,观察下列式子:
,
,
,类比有
,则是( )
A .
B .
C .
D .
9.函数处的切线方程是 ( )
A .
B .
C .
D .
10.用数学归纳法证明不等式“”时的过程中,由
到
时,不等式的左边( )
A .增加了一项
B .增加了两项
C .增加了两项,又减少了一项
D .增加了一项
,又减少了一项
11.已知
,
,则
的最小值为( )
A .
B .
C .
D .
12.设底边为等边三角形的直棱柱的体积为,那么其表面积最小时,底面边长为( )
A .
B .
C .
D .
13.i +i 2+i 3+… +i 2012=
14.函数的最大值为
15. 用反证法证明“y= x 2 +px+q,求证:,
,
中至少有一个不小于2”时的假设为_ _____
16.已知函数
是定义在R 上的奇函数,
,
,则不等式
的解集是_________
17.(本小题满分12分)复数,当实数m为何值时(1)Z为实数;(2)Z为虚数;(3)Z为纯虚数。
18.(本小题满分12分)当时,,
.
(Ⅰ)求,,
,;
(Ⅱ)猜想与的大小关系,并用数学归纳法证明.
19.(本小题满分12分)证明不等式:<,其中a≥0.20.(本小题满分12分)设关于x 的方程,
(1)若方程有实数根,求锐角和实数根;
(2)证明:对任意,方程无纯虚数根.
21.(本小题满分12分)
已知在函数的图像上以为切点的切线的倾斜角为
(Ⅰ)求的值;
(Ⅱ)若方程有三个不同实根,求的取值范围;
(Ⅲ)是否存在最小的正整数,使得不等式,对恒成立?如果存在,请求出最小的正整数;如果不存在,请说明理由。
22.(本题满分14分)
已知函数
(I
)若函数
在上是减函数,求实数的取值范围;
(II
)令,是否存在实数,当(
是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(Ⅲ)当
时,证明:.
选修2-2模拟题参考答案
1【答案】
C
【解析】因为设复数,
,则复数
在复平面内对应的点位
于第三象限,选C
2【答案】 B
【解析】
.
3【答案】D
【解析】 试题分析:
4【答案】B
【解析】
试题分析:由“三段论”是演绎推理的一般形式,包括:大前提——已知的一般原理;小前提,所研究的特殊情况;结论——根据一般原理,知选B.
5【答案】A
【解析】
试题分析:本题考查的归纳推理,要根据九宫格中的图形变化规律,探究变化趋势,并进行猜测,根据猜想的结论,
进行判断.因为图中8
个图形中,每一行每一列变化都得有两个阴影的、
三个不同形状的,所以不难根据些规律选择正确的答案.解:观察已知的8个图象,每一行每一列变化都得有两个阴影的、三个不同形状的,根据这些规律观察四个答案,发现A 符合要求.故选A
6
【答案】A
【解析】解:因为关于
的方程
有实根,即
选A
7【答案】B
【解析】解:因为
,选B
8【答案】A
【解析】
试题分析:根据题意,对给出的等式变形可得:
,x+=
类比有
∴a=n n
, 故选A .
9【答案】C
【解析】
试题分析:求出 当n=k 时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果。
解:当n=k
时,左边的代数式为,当n=k+1时,则左边
,两式作差可知增加了两项
,又减少了一项,
故选C.
10【答案】C
【解析】解:当n=k 时,左边的代数式为,当n=k+1时,则左边
,两式作差可知增加了两项,又减少了一项,
故选C.
11【答案】A
12【答案】C
【解析】设底面边长为,高为,则
,∴
,表面积设为
,则。
∴
,由
,得
,此时
有最大值。
13【答案】0
【解析】
试题分析:i +
i 2
+i 3
+ … +i
2012
=
故答案为:.
14【答案】
15
【答案】假设
,
,
都小于2
【解析】解:用反证法证明“y= x 2
+px+q,求证:,
,
中至少有一个不小于2
”时的假设为”假
设
,
,
都小于
2”
16【答案】
【解析】
又f
(x
)是奇函数,所以-1<x <0时,f (x )
=-f (-x )>0;x <
-1时f
(x )=-f (-x )<0. 则不等式f (x )>0的解集是(
-1,
0)∪(1,+∞) 故答案为:(-1,0)∪(1,+∞).
17【解析】本试题主要是考查了复数的概念的运用。
解:(1)因为为实数,
所以
,解得m=-3或m=2,注意到
,
所以m=2时,Z 是实数。
(2)为虚数,
所以
,解得
且
,
即当
且时,Z 为虚数。
(3)
为纯虚数,
所以
解得m=-5,
所以当m=-5时,复数Z 是纯虚数。
18【解析】(1)令 代入,
.可求得
,;
(2)由(1)可猜想。
用数学归纳法证明,一定用上归纳假设,代入整理可得证。
解:(1)
,;
(2)猜想:
() 证明:(1)当时,; (2)假设当
时,
,
即
,
当
时
,即
,
结合(1
)(2
),可知
,
成立
.
19【解析】
试题分析:要证
<
成立,
需证<
需证>
因为
显然成立,所以原命题成立。
20
【解析】(1
)设实数根为,则
,
即
.
由于,
,那么
又,
得
(2)若有纯虚数根
,使
,
即
,
由,,那么
由于无实数解.
故对任意
,方程无纯虚数根.
21【答案】解: (I )
………………2分
(II )
f ’(x) + - +
f(x) ↑ 极大值 ↓ 极小值 ↑ ………………2分
………………1分
………………1分
依题意
………………1分
(III )只须求得y=f(x)在[-1,3]上的max
x
f ’(x) + - +
f(x) ↑ 极大值 ↓ 极小值 ↑ ………………1分
………………1分
………………1分
(1)
分
22【解析】(I)
本小题转化为
在上恒成立问题,然后进一
步转化为
在
上恒成立问题.
(II)本小题属于存在性问题,可设假设存在,然后利用导数研究其最小值,根据最小值3,
建立关于a 的方程,从而解出a 值
.
(III)
令
,由(II )知
.然后令
,再利用导数求其最
大值,令其最大值小于F (
x )的最小值即可.
解:(I )在上恒成立,…………1分
令
,有 得 ………………4分
得 ………………5分
(II )
假设存在实数,使
,
有最小值3,
………………6分
①当
时,
在
上单调递减,
,(舍去),………………7分
②当时,在上单调递减,在上单调递增
,
,满足条件.………………8分
③当
时,
在
上单调递减,
,
(舍去),………………9分 综上,存在实数
,使得当
时
有最小值3. ………………10分
(3)令
,由(II )知
.………………11分
令,
,
当
时,
,
在
上单调递增
∴
………………13分
即
.………………14分。