高二第一学期第一章《统计案例》测试题(文科)(学生版)
- 格式:doc
- 大小:211.00 KB
- 文档页数:6
高中数学学习材料鼎尚图文*整理制作第一章统计案例章末检测一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列两个变量之间的关系,不是函数关系的是( )A.角度和它的余弦值B.正方形的边长和面积C.正n边形的边数和内角和D.母亲的身高与子女的身高解析:变量是否具有函数关系,关键看两个变量是否具有一一对应关系.答案: D2.对于线性相关系数r,叙述正确的是( )A.|r|∈(0,+∞),|r|越大,相关程度越大,反之相关程度越小B.r∈(-∞,+∞),r越大,相关程度越大,反之,相关程度越小C.|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D.以上说法都不对解析:由相关关系的概念可知,C正确.答案: C3.给出施化肥量对水稻产量影响的试验数据(变量x,y的单位都为:kg):施化肥量x 15202530354045水稻产量y 330345365405445450455利用上述数据得到的回归直线必过( )A.(29,398) B.(30,399) C.(31,400) D.(32,401)解析:回归直线必过样本点的中心(x,y),计算得到x=30,y≈399.答案: B4.某班主任对全班50名学生进行了作业量多少的调查,数据如下表所示:作业量的情况认为作用多认为作业不多总数玩电脑游戏的情况喜欢玩电脑游戏18 a 27不喜欢玩电脑游戏 b 1523总数262450则表中a、b的值分别为( )A.45,8 B.52、50 C.9,8 D.54,52解析:∵a+18=27,∴a=9.又18+b=26,∴b=8.故选C.答案: C5.设有一个回归方程为y=3-2x,变量x增加一个单位时( )A.y平均增加2个单位B.y平均减少3个单位C.y平均减少2个单位D.y平均增加3个单位解析:∵[3-2(x+1)]-(3-2x)=-2,∴y的值平均减少2个单位.答案: C6.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为y=0.66x+1.562,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A.83% B.72% C.67% D.66%解析:将y=7.675代入回归方程,可计算得x≈9.26,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.26≈0.83,即约为83%.答案: A7.对四对变量Y和x进行线性相关检验,已知n是观测值组数,r是相关系数,且已知:①n=7,r=0.953 3;②n=15,r=0.301 2;③n=17,r=0.499 1;④n=3,r=0.995 0.则变量Y和x具有线性相关关系的是( )A.①和② B.①和③ C.②和④ D.③和④解析:由于小概率0.05与n-2在附表中分别查得:①r0.05=0.754;②r0.05=0.514;③r0.05=0.482;④r0.05=0.997.因此知①、③中相关系数比r0.05大,变量Y和x具有线性相关关系.而②、④中的相关系数小于r0.05,故变量Y与x不具有线性相关关系.答案: B8.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对解析: 由已知数据得到如下2×2列联表:杂质高 杂质低 合计 旧设备 37 121 158 新设备 22 202 224 合计59323382由公式χ2=-2158×224×59×323≈13.11.由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.答案: A 9.(2009·宁夏吴忠)下面是一个2×2列联表:y 1 y 2总计 x 1 a21 73 x 2225 27 总计b46则表中a 、b 处的值分别为( )A .94、96B .52、50C .52、54D .54、52解析: ∵a +21=73,∴a =52. 又∵a +2=b ,知b =54,故选C.答案: C10.已知某车间加工零件的个数x 与所花费时间Y (h)之间的回归直线方程为y =0.01x +0.5,则加工600个零件大约需要( )A .6.5 hB .5.5 hC .3.5 hD .0.5 h解析: 依题意,加工600个零件大约需要0.01×600+0.5=6.5(h).答案: A11.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为( )A.720B.1220C.120D.220解析: 设甲答对为事件A ,乙答对为事件B ,A 、B 相互独立.P (A )=15,P (B )=14,则甲、乙两人中恰有一人答对的概率为P (C )=P (A B +A B )=P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=15×⎝ ⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-15×14=320+420=720.答案: A12.(2010·广东中山)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:甲 乙 丙 丁 r 0.82 0.78 0.69 0.85 m106115124103则哪位同学的试验结果体现A 、B 两变量有更强的线性相关性( ) A .甲 B .乙 C .丙 D .丁解析:丁同学所得相关系数0.85最大,所以A 、B 两变量线性相关性更强.故选D.答案: D 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.某人一周晚上值班2次,在已知他星期日一定值班的前提下,其余晚上值班所占的概率为________.解析: 本题为条件概率,在星期日一定值班的前提下,只需再从其余6天中选一天值班即可,概率为16.答案: 1614.若施化肥量x 与小麦产量y 之间的回归直线方程为y =250+4x ,当施化肥量为50 kg 时,预计小麦产量为________kg.解析: 把x =50 kg 代入y =250+4x ,可求得y =450 kg.答案: 450 15.考察棉花种子是否经过处理跟生病之间的关系,得下表所示的数据:种子处理 种子未处理 合计 得病 32 101 133 不得病 61 213 274 合计93314407根据以上数据得χ2的值是________.解析: 直接代入公式计算得χ2=0.164.答案: 0.16416.某商店统计了最近6个月某商品的进价x 与售价y (单位:元)的对应数据如下表:x 3 5 2 8 9 12 y46391214回归直线方程为________.解析: x =3+5+2+8+9+126=6.5.y =4+6+3+9+12+146=8.∑i =16x i 2=32+52+22+82+92+122=327,∑i =16x i y i =3×4+5×6+2×3+8×9+9×12+12×14=396.b =396-6×6.5×8327-6×6.52≈1.143,a =8-1.143×6.5≈0.57.回归直线方程为y =1.143x +0.57.答案: y =1.143x +0.57三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率.解析: (1)方法一:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得(1-P (B ))2=(1-p )2=116,解得p =34或p =54(舍去),所以乙投球的命中率为34.方法二:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B .由题意得P (B )P (B )=116,于是P (B )=14或P (B )=-14(舍去),故p =1-P (B )=34,所以乙投球的命中率为34.(2)由题设和(1)知,P (A )=12,P (A )=12,故甲投球2次至少命中1次的概率为1-P (A A )=34.18.(本小题满分12分)为了调查经常参加体育锻炼能否预防感冒,经统计得到数据列入下表:感冒 未感冒 合计 经常锻炼 62 206 268 不经常锻炼 164 104 268 合计226310536试问:经常参加体育锻炼能否预防感冒? 解析: 这是一个独立性检验问题, 由公式χ2=n ad -bc 2a +bc +d a +cb +d得χ2=-2268×268×226×310≈79.597,因为79.59>6.635,所以我们有99%的把握说经常参加体育锻炼能有效地预防感冒.19.(本小题满分12分)某公司利润y (单位:千万元)与销售总额x (单位:千万元)之间有如下对应数据:x 10 15 17 20 25 28 32 y11.31.822.62.73.3(1)画出散点图;(2)判断y 与x 是否具有线性相关关系,若有,求出其线性回归方程. 解析: (1)画散点图如图所示.(2)从散点图可看出各样本点都在一直线附近摆动,所以x 、y 之间存在线性相关关系.由表格数据可得:∑i =17x i 2=3 447,∑i =17x i y i =346.3,x =21,y =2.1,进而可求得b =∑i =17x i y i -7x y∑i =17x i 2-7x2=346.3-7×21×2.13 447-7×212≈0.104, a =y -b x =2.1-0.104×21=-0.084.∴x ,y 之间的线性回归方程为y =-0.084+0.104x .20.(本小题满分12分)(2010·课标全国)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者 男女 需要 40 30 不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? 附:χ2=n ad -bc 2a +bc +d a +cb +d解析: (1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为70500=14%.(2)χ2=-2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.21.(本小题满分12分)为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试分别用列联表和独立性检验的方法分析监督员甲对产品质量好坏有无影响.解析: 2×2列联表如下:合格品数 次品数 总计 甲在生产现场 982 8 990 甲不在生产现场 493 17 510 总 计1 475251 500由列联表可得|ac -bd |=|982×17-493×8|=12 750,相差较大,可在某种程度上认为“质量监督员甲是否在生产现场与产品质量有关系”.由2×2列联表中数据,计算得到χ2的值为χ2=-2990×510×1 475×25≈13.097>10.828,所以有99.9%的把握认为“质量监督员甲是否在生产现场与产品质量有关系”.22.(本小题满分12分)研究某灌溉渠道水的流速Y 与水深x 之间的关系,测得一组数据如下:水深x (m) 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 流速Y (m/s)1.701.791.881.952.032.102.162.21(1)求Y 对x 的回归直线方程;(2)预测水深为1.95 m 的水的流速是多少?解析: (1)可以采用列表的方法计算a 与回归系数b .序号 xYx 2Y 2xY1 1.40 1.70 1.96 2.890 0 2.3802 1.50 1.79 2.25 3.204 1 2.6853 1.60 1.88 2.56 3.534 4 3.008 4 1.70 1.95 2.89 3.802 5 3.315 5 1.80 2.03 3.24 4.120 9 3.6546 1.90 2.10 3.61 4.410 0 3.9907 2.00 2.16 4.00 4.665 6 4.3208 2.10 2.21 4.41 4.884 14.641∑14.0015.8224.9231.511 6 27.993于是x =18×14.00=1.75,y =18×15.82=1.977 5,b =8×27.993-14×15.828×24.92-14≈0.733.a ≈1.977 5-0.733×1.75≈0.694 8,Y 对x 的回归直线方程为y =a +bx =0.694 8+0.733x .(2)由上述(1)中求出的回归直线方程,把x=1.95代入,得到Y=0.694 8+0.733×1.95≈2.12(m/s).计算结果表明:当水深为1.95 m时可以预测渠道水的流速约为2.12 m/s.。
第一章 统计案例单元测试班级 : 姓名 : 成绩 :独立性检测中,随机变量()()()()22()n ad bc k a b c d a c b d -=++++参考公式P k ≥2(K )k求线性回归方程系数公式 :1122211()()ˆ()i iiii i nniii i x y nx y x x y y bxnx x x ====-⋅--==--∑∑∑∑,ˆay bx =-. 一、选择题1. 在画两个变量的散点图时,下面哪个叙述是正确的( ) A 预报变量在x 轴上,解释变量在y 轴上 B 解释变量在x 轴上,预报变量在y 轴上 C 可以选择两个变量中任意一个变量在x 轴上 D 可以选择两个变量中任意一个变量在y 轴上2. 一名母亲记录了儿子3~9岁的身高,由此成立的身高与年龄的回归模型为y=+,用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高必然是145.83cm B.身高在145.83cm 以上 C.身高在以下 D.身高在左右3.设有一个直线回归方程为 ^^2 1.5y x =- ,则变量x 增加一个单位时 ( ) A. y 平均增加 个单位 B. y 平均增加 2 个单位C. y 平均减少 个单位D. y 平均减少 2 个单位4. 两个变量y 与x 的回归模型中,别离选择了4个不同模型,它们的相关指数R 2如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为 B .模型2的相关指数R 2为 C .模型3的相关指数R 2为 D .模型4的相关指数R 2为5.通过残差图咱们发此刻收集样本点进程中,第____个样本点数据不准确( )A.第四个B.第五个C.第六个D.第八个6.若由一个2×2列联表中的数据计算得K2=,那么确认两个变量有关系的把握性有( ) A.90% B.95% C.99% D.%7.若是有95%的把握说事件A和B有关,那么具体算出的数据知足()A.2 3.841K>B.2 3.841K<C.2 6.635K>D.2 6.635K<8. 已知x 0 1 2 3y 1 3 5 7则y与x的线性回归方程为y=bx+a必过()A.(2,2)点B.(,0)点C.(1,2)点D.(,4)点9.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(u i,v i)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关10、若两个分类变量x和y的列联表为:则x与y之间有关系的可能性为( )A.% B.% C.% D.%二、填空题11. 在两个变量的回归分析中,作散点图的目的是_________________________________12.已知回归直线的斜率的估量值是,样本点的中心为(4,5),则回归直线的方程是_________________________13.若由一个2*2列联表中的数据计算得k2=,那么有把握以为两个变量有关系14.为了调查患慢性气管炎是不是与抽烟有关,调查了339名50岁以上的人,调查结果如下表患慢性气管炎未患慢性气管炎合计吸烟43 162 205不吸烟13 121 134合计56 283 339按照列联表数据,求得2K=y1y2合计x110 45 55x220 30 50合计30 75 105三、解答题15.假设关于某设备利用年限x(年)和所支出的维修费用y(万元)有如下统计资料:若由资料知,y对x(Ⅰ)请画出上表数据的散点图;(Ⅱ)请按照上表提供的数据,求出y关于x的线性回归方程y bx a=+;(Ⅲ)估量利用年限为10年时,维修费用约是多少?⨯+⨯+⨯+⨯+⨯=)(2 2.23 3.84 5.55 6.567.0112.316.在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动。
高二文科数学统计案例专项练习1.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽高级职称的人数为 A .2 B .3 C .5 D .102.为了判断高一学生是否选修文科与性别的关系,现随机抽取50名学生,得到右侧2×2列联表:则认为选修文科与性别有 关系出错的可能性不超过A .0.005B .0.05C .0.95D .0.0953.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,y 与x 有相关关系,得到回归直线方程ˆ0.5 1.5yx =+.若该地区的人均消费水平为3.5千元,估计该地区的人均消费额占人均工资收入的百分比约为A .80%B .82.5%C .87.5%D .92.3%4.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系.现取8对观测值,计算得8140i i x ==∑,81240i i y ==∑,811800i i i x y ==∑,821400i i x ==∑,则其线性回归方程为 .5.某地区调查了2~9岁儿童的身高,由此建立的身高y (cm )与年龄x (岁)的回归模型为ˆ8.2560.13yx =+. ①该地区一个10岁儿童的身高为142.63 cm ;②该地区2~9岁的儿童每年身高约增加8.25 cm ; ③该地区9岁儿童的平均身高是134.38 cm ;④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高. 上述叙述正确的有.6.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x (°C )与该奶茶店((2)请根据所给五组数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+. (参考公式:()()()121ˆˆˆniii nii x x y y ba y bx x x ==--==--∑∑,.)高二文科数学统计案例专项练习参考答案BAC ˆ315yx =+ ②6.(1)25;(2)ˆ 2.14yx =+. 分析:(1)利用列举法写出抽出2组数据的所有基本事件,并从中找出2组数据恰好是相邻2天数据的基本事件,利用古典概型公式求出概率;(2)先求出x 和y ,再利用参考公式算出ˆb和ˆa ,代入即可得线性回归方程. 解析:(1)解:设“选取的2组数据恰好是相邻2天数据”为事件A .所有基本事件(m ,n )(其中m ,n 为1月份的日期数)有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15)共10种.事件A 包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种. ∴42()105P A ==. (2)由数据,求得91012118105x ++++==,2325302621255y ++++==.()()()()()()()()()()()()()()()91023251010252512103025111026258102125ˆ 2.1910101012101110810b --+--+--+--+--==-+-+-+-+-,ˆˆ4ay bx =-= ∴y 关于x 的线性回归方程为ˆ 2.14yx =+. 考点:1、古典概型;2、回归直线方程.。
一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 33.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( ) A .0.15 B .0.105 C .0.045 D .0.214.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响.A .95%B .99%C .99.5%D .99.9%5.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13D .296.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .597.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系8.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为( ) A .19 B .13 C .23D .8 99.已知,x y 的取值如下表:( )若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-10.两个变量y 与x 的回归模型中,分别选择了4个不同模型,对于样本点()11,x y ,()22,x y ,…,(),n n x y ,可以用()()22121ˆ1ni i i n ii y yR y y ==-=--∑∑来刻画回归的效果,已知模型1中20.96R =,模型2中23{5x yy x -==-,模型3中20.55R =,模型4中20.41R =,其中拟合效果最好的模型是( ) A .模型1 B .模型2C .模型3D .模型411.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量并参考以下临界数据:若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过 A .B .C .D .12.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .1315二、填空题13.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.14.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )15.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.16.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K 来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cos sin x y θθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y +=;③极坐标系中,22,3A π⎛⎫⎪⎝⎭与()3,0B 的距离是19; ④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.17.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 18.已知一组数据的回归直线方程为 1.51y x =-+,且4y =,发现有两组数据( 1.7,2.9)-,( 2.3,5.1)-的误差较大,去掉这两组数据后,重新求得回归直线方程为y x a '''=-+,则当3x '=-时,y '=_____.19.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.20.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件A:“高一家长的满意度等级高于高二家长的满意度等级”,则事件A发生的概率为__________.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23.(1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X表示结束比赛还需打的局数,求X的分布列及期望.22.垃圾分类收集处理是一项利国利民的社会工程和环保工程.搞好垃圾分类收集处理,可为政府节省开支,为国家节约能源,减少环境污染,是建设资源节约型社会的一个重要内容.为推进垃圾分类收集处理工作,A市通过多种渠道对市民进行垃圾分类收集处理方法的宣传教育,为了解市民能否正确进行垃圾分类处理,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):有关?(2)将频率视为概率,现从A 市55岁及以下的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“不能正确进行垃圾分类”的人数为X ,若每次抽取的结果是相互独立的,求随机变量X 的分布列和均值()E X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:22⨯关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++. 24.在一次抽样调查中测得5个样本点,得到下表及散点图.x0.250.5124y1612521(1)根据散点图判断y a bx=+与1y c k x-=+⋅哪一个适宜作为y关于x的回归方程;(给出判断即可,不必说明理由)(2)根据(1)的判断结果试建立y与x的回归方程;(计算结果保留整数)(3)在(2)的条件下,设=+z y x且[)4,x∈+∞,试求z的最小值.参考公式:回归方程ˆˆˆy bx a=+中,()()()1122211ˆn ni i i ii in ni ii ix x y y x y nx ybx x x nx====---==--∑∑∑∑,a y bx=-.25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X为这一天他获得的奖励金数,求X的概率分布和数学期望.26.新生儿某疾病要接种三次疫苗免疫(即0、1、6月龄),假设每次接种之间互不影响,每人每次接种成功的概率相等为了解新生儿该疾病疫苗接种剂量与接种成功之间的关系,现进行了两种接种方案的临床试验:10μg/次剂量组与20μg/次剂量组,试验结果如下:接种成功接种不成功总计(人)10μg/次剂量组9001001000(1)根据数据说明哪种方案接种效果好?并判断能否有99.9%的把握认为该疾病疫苗接种成功与两种接种方案有关?(2)以频率代替概率,若选用接种效果好的方案,参与该试验的1000人的成功人数比此剂量只接种一次的成功人数平均提高多少人.参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++参考附表:【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有24A种情况,所以所求概率为7241A2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题. 2.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.3.C解析:C 【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3, 根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.4.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.5.C解析:C 【解析】分析:先求()P AB ,()P A ,再根据()(|)()P AB P B A P A =得结果. 详解:因为214421101022(),()155C C P AB P A C C ====, 所以2()115(|)2()35P AB P B A P A ===, 选C.点睛:本题考查条件概率,考查基本求解能力.6.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.7.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.8.C解析:C【解析】设此射手未射中目标的概率为p ,则1-p 4=8081,所以p =13,故此射手的命中率为1-p =23. 故选C9.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A. 点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 10.A解析:A 【解析】2R 值越大效果越好,所以选A. 11.A解析:A 【解析】 由题意可得,所以, 由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)12.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.二、填空题13.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概 解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.14.【解析】将代入可得应填答案 解析:2.1【解析】将100,20,60,20a b c d ====代入()()()()()22n ad bc a b c d a c b d χ-=++++可得22200(20001200) 2.11604012080x -=≈⨯⨯⨯,应填答案2.1。
一、选择题1.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.212.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为()A.25B.1225C.1625D.453.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K的值,则有()的把握认为玩手机对学习有影响.A.95%B.99%C.99.5%D.99.9%4.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x表示该自由职业者的平均水平每天工作的小时数,y表示平均每天工作x个小时的月收入.x (小时)2 3 4 5 6y (千元)2.5 3 4 4.5 6假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆybx a =+必经过点( ) A .()33, B .()34, C .()44, D .()45,5.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .120D .2206.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++并参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B .在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C .有99.9%的把握认为“爱好游泳运动与性别有关”D .有99.9%的把握认为“爱好游泳运动与性别无关”7.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为2133、,则小球落入A 袋中的概率为 ( )A .34B .14C .13D .238.下列结论中正确的是( )A .若两个变量的线性关系性越强,则相关系数的绝对值越接近于0B .回归直线至少经过样本数据中的一个点C .独立性检验得到的结论一定正确D .利用随机变量2x 来判断“两个独立事件,X Y 的关系”时,算出的2x 值越大,判断“,X Y 有关”的把握越大9.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .410.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们对应的22121()1(ˆ)nii nii y yR y y ==-=--∑∑的值如下,其中拟合效果最好的模型是( )A .模型1对应的20.48R =B .模型2对应的20.96R =C .模型3对应的20.15R =D .模型4对应的20.30R =11.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥ 0.150.10 0.05 0.025 0.010 0.0050k2.072 2.7063.841 5.024 6.635 7.879A .130B .190C .240D .25012.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________.14.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好.15.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 16.已知一组数据的回归直线方程为 1.51y x =-+,且4y =,发现有两组数据( 1.7,2.9)-,( 2.3,5.1)-的误差较大,去掉这两组数据后,重新求得回归直线方程为y x a '''=-+,则当3x '=-时,y '=_____.17.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =_____. 18.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:19.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.某电器企业统计了近10年的年利润额y (千万元)与投入的年广告费用x (十万元)的相关数据,散点图如图,对数据作出如下处理:令ln i i u x =,ln i i v y =,得到相关数据如表所示:101i i i u v =∑101ii u=∑101i i v =∑1021ii u=∑30.5 15 1546.5(1)从①y bx a =+;②()0,0ky m xm k =⋅>>;③2y cx dx e =++三个函数中选择一个作为年广告费用x 和年利润额y 的回归类型,判断哪个类型符合,不必说明理由; (2)根据(1)中选择的回归类型,求出y 与x 的回归方程;(3)预计要使年利润额突破1亿,下一年应至少投入多少广告费用?(结果保留到万元) 参考数据:103.6788e≈,33.678849.787≈. 参考公式:回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii tty y btt==--=-∑∑,a y bt =-.22.某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士.(1)完成下列22⨯列联表,并判断是否有99%的把握认为“政策是否有效与性别有关”;政策有效 政策无效 总计女士 10男士合计251005名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式:()()()()()22n ad bcKa b c d a c b d-=++++(n a b c d=+++)23.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()Eξ. 24.近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:表:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内y a bx =+与xy c d =⋅(c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断,不必说明理由);(2)根据(1)的判断结果及表中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表: 支付方式 现金 乘车卡 扫码 比例10%60%30%车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠,预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()*n n N∈年才能开始盈利,求n 的值.参考数据:其中lg i i v y =,7117ii v v ==∑ 参考公式:对于一组数据(),i i u v ,()22,u v ,…,(),n n u v ,其回归直线v a u β=+的斜率和截距的最小二乘估计公式分别为:1221ni i i n i i u v nuv u nuβ==-=-∑∑,a v u β=-.yv71i ii x y =∑71i ii x v=∑ 0.541066 1.54 2.711 50.12 3.4725.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 26.某项比赛中甲、乙两名选手将要进行决赛,比赛实行五局三胜制.已知每局比赛中必决出胜负,若甲先发球,其获胜的概率为12,否则其获胜的概率为13. (1)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率; (2)若第一局由乙先发球,以后每局由负方发球规定胜一局得3分,负一局得0分,记X 为比赛结束时甲的总得分,求随机变量X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5,甲、丙决赛甲获胜的概率是0.3, 根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.2.C解析:C 【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,42()()105P A P B ===, 则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C . 【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C【解析】分析:由题意结合回归方程的性质确定回归方程经过样本中心点即可. 详解:由题意可得:2345645x ++++==, 2.534 4.5645y ++++==,由线性回归方程的性质可知线性回归方程ˆˆˆy bx a =+经过样本中心点:()4,4. 本题选择C 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯=⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.6.A解析:A 【解析】()()()()()22n ad bc K a b c d a c b d -=++++2110(1200400)7.82 6.63560506050-=≈>⨯⨯⨯所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”,选A.7.D解析:D 【分析】小球落入A 袋中的概率为P (A )1P =-(B ),由此利用对立事件概率计算公式能求出小球落入A 袋中的概率. 【详解】 解:将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为21,33, 小球落入A 袋中的概率为:P (A )1P =-(B )1112221()333333=-⨯⨯+⨯⨯23=. 故选:D . 【点睛】 本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.8.D解析:D 【解析】A . 两个随机变量相关性越强,则相关系数的绝对值越接近1,因此不正确;B . 回归直线可以不经过样本数据中的任何一个点,因此不正确;C . 独立性检验得到的结论不一定正确,因此不正确;D . 利用随机变量Χ2来判断“两个独立事件X ,Y 的关系”时,算出的Χ2值越大,判断“X 与Y 有关”的把握就越大,正确。
选修1-2第一章《统计案例》单元检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数2.第二届世界青年奥林匹克运动会,中国获37金,13银,13铜共63枚奖牌居奖牌榜首位,并打破十项青奥会记录.由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见.有网友为此进行了调查,在参加调查的2 548名男性公民中有1 560名持反对意见,2 452名女性公民中有1 200人持反对意见,在运用这些数据说明中国的奖牌数是否与中国进入体育强国有无关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率3. 某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel 软件计算得y ^=0.577x -0.448(x 为人的年龄,y %为人体脂肪含量).对年龄为37岁的人来说,下面说法正确的是( )A .年龄为37岁的人体内脂肪含量都为20.90%B .年龄为37岁的人体内脂肪含量为21.0%C .年龄为37岁的人群中的大部分人的体内脂肪含量为20.90%D .年龄为37岁的大部分的人体内脂肪含量为31.5%4. 设有一个回归方程为y ^=3-5x ,当变量x 增加一个单位时 ( ) A .y 平均增加3个单位 B .y 平均减少5个单位 C .y 平均增加5个单位D .y 平均减少3个单位5.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( ).A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强6.已知呈线性相关关系的变量x,y之间的关系如下表所示,则回归直线一定过点( )x 0.10.20.30.5y 2.11 2.85 4.0810.15A.(0.1,2.11)C.(0.3,4.08) D.(0.275,4.797 5)7.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下四选项,其中拟合得最好的模型为( )A.模型1的相关指数R2为0.75B.模型2的相关指数R2为0.90C.模型3的相关指数R2为0.25D.模型4的相关指数R2为0.558.如图等高条形图可以说明的问题是( )A.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C.此等高条形图看不出两种手术有什么不同的地方D.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握9.已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是( )A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关10.观察两个变量(存在线性相关关系)得如下数据:A.y ^=12x +1B.y ^=xC.y ^=2x +13D.y ^=x +111. 根据如下所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.A .1B .2C .3D .412. 有两个分类变量x 与y ,其一组观测值如2×2列联表所示:其中a ,15-a 均为大于5x 与y 之间有关系,则a 的值是( )A .7B .8C .9D .8或9第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果由一个2×2列联表中的数据计算得k =4.073,那么有__________的把握认为两变量有关系,已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.14.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查对临界值表知P (K 2≥3.841)≈0.05,对此,四名同学作出了以下的判断:p :有95%的把握认为“能起到预防感冒的作用”;q :如果某人未使用该血清,那么他在一年中有95%的可能性得感冒: r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是__________.(1)p ∧非q ;(2) 非p ∧q ;(3)( 非p ∧非q )∧(r ∨s );(4)(p ∨非r )∧(非q ∨s ).15.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加__________万元.16.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm,170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为__________cm.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)抽测了10名15岁男生的身高x (单位:cm)和体重y (单位:kg),得到如下数据:(1)(2)你能从散点图中发现身高与体重近似成什么关系吗?(3)如果近似成线性关系,试画出一条直线来近似地表示这种关系.18.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)画出散点图;(2)求物理成绩y对数学成绩x的线性回归方程;(3)一名学生的数学成绩是96分,试预测他的物理成绩.19.(本小题满分12分)某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由?20.(本小题满分14分)研究“刹车距离”对于安全行车及分析交通事故责任都有一定的作用,所谓“刹车距离”就是指行驶中的汽车,从刹车开始到停止,由于惯性的作用而又继续向前滑行的一段距离.为了测定某种型号汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得的数据如下表:(1)以车速为(2)观察散点图,估计函数的类型,并确定一个满足这些数据的函数表达式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5 m,请推测刹车时的速度为多少?请问在事故发生时,汽车是超速行驶还是正常行驶?21.(本小题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?22.(本小题满分12分)为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别男女是否需要志愿者需要4030不需要160270(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关;(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由?附:20.050 0.010 0.001P K k()k 3.841 6.635 10.828K2=a+b c+d a+c b+d选修1-2第一章《统计案例》单元检测题参考答案选择题答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CCCBBDBDCBBD【第4题解析】-5是斜率的估计值,说明x 每增加一个单位,y 平均减少5个单位.故选B.【第5题解析】由题中散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.故选B.【第6题解析】回归直线一定过点(x ,y ),通过表格中的数据计算出x 和y ,故选D.【第7题解析】相关指数R 2的值越大,意味着残差平方和越小,也就是说模型的拟合效果越好,故选B. 【第8题解析】由等高条件形图知,D 正确.故选D.【第9题解析】因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.故选C.【第10解析】由于线性回归方程一定经过样本点的中心(x ,y ),所以本题只需求出x ,y ,然后代入所给选项进行检验,即可得到答案.由表中数据可得,x =0,y =0,只有B 项中的方程过(0,0)点,故选B.【第11题解析】由列联表可求K 2的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=9 965(7 775×49-2 099×42)29 874×91×7 817×2 148≈56.632 由56.632>10.828>6.635.且P (K 2≥10.828)=0.001,P (K 2≥6.635)=0.010. ∴①,②均正确.故选B.【第12题解析】查表可知,要使在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系,则k ≥2.706,而k =65×[a (30+a )-(20-a )(15-a )]220×45×15×50=65×(65a -300)220×45×15×50=13×(13a -60)260×90. 由k ≥2.706得a≥7. 19或a≤2.04.又a>5且15-a>5,a∈Z,即a=8或9.故选D.填空题答案第13题95% 第14题(1)(4)第15题0.254 第16题 185【第16题解析】根据题意列表如下:身高y(单位:cm)x 123 4y 170173176182∑4i=1x i y i=1 772,x=52,y=214+170,∑4i=1x2i=30,所以b^=∑i=1x i y i-4×xy∑4i=1x2i-4x2=1 772-4×52×⎝⎛⎭⎪⎫214+17030-4×254=3.9,a^=y-b^x=214+170-3.9×52=165.5,所以线性回归方程为y^=b^x+a^=3.9x+165.5,将x=5代入得该老师孙子的身高估计值为3.9×5+165.5=185 cm.故填185.【第17题答案】(1)见解析;(2)身高与体重线性相关;(3)见解析.【第17题解析】(1)散点图如下图所示:(2)从散点图可知,当身高增加时,体重也增加,而且这些点在一条直线附近摆动,因此身高与体重线性相关.(3)作出直线如下图所示.(2)x -=15×(88+76+73+66+63)=73.2. y -=15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. ∴b ^=∑i =15x i y i -5x -·y -∑i =15x 2i -5x -2≈0.625.∴a ^=y --b ^x -=67.8-0.625×73.2=22.05.∴y 对x 的线性回归方程是y ^=0.625x +22.05.(3)当x =96,则y ^=0.625×96+22.05≈82.所以预测他的物理成绩是82分.(2)由表中数据可得K 2=5018×19-6×7225×25×24×26=15013≈11.5>10.828, ∴有99.9%的把握说学习积极性与对待班级工作的态度有关系.【第20题答案】(1)见解析; (2) 函数的表达式为y =0.002x 2+0.01x (0≤x ≤140); (3) 因此发生事故时,汽车属于超速行驶.【第20题解析】(1)散点图如图表示:(2)由图象,设函数的表达式为y =ax 2+bx +c (a ≠0),将(0,0),(10,0.3)( 20,1.0)代入,得 ⎩⎪⎨⎪⎧ c =0,100a +10b +c =0.3,400a +20b +c =1.0,解得a =0.002,b =0.01,c =0.所以,函数的表达式为y =0.002x 2+0.01x (0≤x ≤140).经检验,表中其他各值也符合此表达式.(3)当y =46.5时,即0.002x 2+0.01x =46.5,所以x 2+5x -23 250=0.解得x 1=150,x 2=-155(舍去).故可推测刹车时的速度为150 km/h ,而150>140,因此发生事故时,汽车属于超速行驶.(2)由数据,求得x =12,y =27,由公式,求得b ^=52,a ^=y -b ^ x =-3. 所以y 关于x 的线性回归方程为y ^=52x -3. (3)当x =10时,y ^=52×10-3=22,|22-23|<2; 同样,当x =8时,y ^=52×8-3=17,|17-16|<2. 所以,该研究所得到的线性回归方程是可靠的.【第22题答案】(1)14%;(2)有99%的把握认为该地区的老年人是否需要帮助与性别有关;(3)见解析.【第22题解析】(1)调查的500位老年人中,有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%. (2)K 2=500×40×270-30×1602200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据可以看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异.因此,在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并采用分层抽样方法比采用简单随机抽样方法更好.。
第一章统计案例测试一独立性检验Ⅰ学习目标通过对典型案例的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.Ⅱ基础训练题一、选择题1.甲、乙两人分别投篮一次,记“甲投篮一次,投进篮筐”为事件A,“乙投篮一次,投进篮筐”为事件B,则在A与B,与B,A与,与中,满足相互独立的有几对( )(A)1 (B)2 (C)3 (D)42.若由一个2×2列联表中的数据计算得到χ2=3.528,那么( )(A)有95%的把握认为这两个变量有关系(B)有95%的把握认为这两个变量存在因果关系(C)有99%的把握认为这两个变量有关系(D)没有充分的证据显示这两个变量之间有关系3.设A是一随机事件,则下列式子中不正确的是( )(A)P(A+)=P(A)+P( ) (B)P(A+)=1(C)P(A•)=P(A)•P( ) (D)P(A•)=04.针对使用统计量χ2作一个2×2列联表的独立性检验时,以下说法中正确的是( )(A)选取样本的容量没有限制(B)独立性检验结果只对所研究的对象成立(C)若根据数据算出两个分类变量A,B的统计量χ2>6.635,我们就认为有99%的把握说A与B有关(D)若根据数据算出两个分类变量A,B的统计量χ2>6.635,我们就认为有99%的把握说A与B存在因果关系5.为了考察高中生的性别与是否喜欢数学课程之间的关系,北京市西城区教育研修学院在西城区的高中学生中随机地抽取300名学生调查,得到下表:喜欢数学课程不喜欢数学课程合计男47 95 142女35 123 158合计82 218 300则通过计算,可得统计量χ2的值是( )(A)4.512 (B)6.735 (C)3.325 (D)12.624二、填空题6.针对两个分类变量作独立性检验,若χ2统计量的值越大,则说明这两个分类变量间有关系的可能性________________.7.甲、乙两人各自独立练习射击,甲射击击中目标的概率为p1,乙射击击中目标的概率为p2,那么恰好有一人射击击中目标的概率是________________.8.对于两个分类变量X与Y:(1)如果χ2>6.635,就约有________的把握认为“X与Y有关系”;(2)如果χ2>3.841,就约有________的把握认为“X与Y有关系”.9.考察棉花种子是否经过处理跟是否生病之间的关系得到如下表所示的数据:种子经过处理种子未处理合计得病32 101 133不得病61 213 274合计93 314 407根据以上数据,则统计量χ2的值是________.10.2008年北京奥运会期间,北京某五星级宾馆上调了住宿价格.为了调查上调价格与客人的所处地区是否有关系,奥运会后,统计本国客人与外国客人的人数,与2007年同期相比,结果如下:本国客人外国客人合计2007年218 238 4562008年123 354 477合计341 592 933通过计算,可得统计量χ2=________,我们可以得到结论:__________________.三、解答题11.甲、乙两人在同一办公室工作.办公室只有一部电话机,设经过该机打进的电话是打给甲、乙的概率分别为,.若在一段时间内打进两个电话,且这两个电话是相互独立的.(1)求这两个电话是打给同一个人的概率;(2)求这两个电话一个是打给甲、一个是打给乙的概率.12.为了研究儿童性格与血型的关系,先抽取80名儿童测试,血型与性格汇总如下,试判断性格与血型是否相关.血型性格O型或A型B型或AB型合计自然、率性18 16 34天真、感性17 29 46合计35 45 8013.对服用某种维生素对成年人头发稀疏或稠密的影响调查如下:服用维生素的成年人有60人,其中头发稀疏的有5人.不服用维生素的成年人有60人,其中头发稀疏的有46人.请作出列联表,并判断服用维生素与头发稀疏是否相关.测试二回归分析Ⅰ学习目标通过对典型案例的探究,进一步了解回归的基本思想、方法及初步应用.Ⅱ基础训练题一、选择题1.对于一组具有线性相关关系的数据:(x1,y1),(x2,y2),…,(xn,yn),其回归方程的截距和斜率的最小二乘法估计公式分别为和,其中为( )(A)a=y-bx (B)a=(C) (D)2.由一组数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线=a+bx,下列说法中不正确的是( )(A)直线=a+bx必过点( ,)(B)直线=a+bx至少过点(x1,y1),(x2,y2),…,(xn,yn)中的一个点(C)直线=a+bx的斜率为(D)直线=a+bx和各点(x1,y1),(x2,y2),…,(xn,yn)的偏差是坐标平面上所有直线与这些点的偏差中最小的直线3.两个线性相关变量满足如下关系:x 2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0则y对x的回归方程是( )(A) =0.87x+0.32 (B) =3.42x-3.97(C) =1.23x+0.08 (D) =2.17x+32.14.对于相关系数r,下列说法正确的是( )(A)|r|越大,线性相关程度越强(B)|r|越小,线性相关程度越强(C)|r|越大,线性相关程度越弱,|r|越小,线性相关程度越强(D)|r|≤1且|r|越接近1,线性相关程度越强,|r|越接近0,线性相关程度越弱5.在一次试验中,当变量x取值分别为1,,,时,变量y的值依次为2,3,4,5,则y与之间的回归曲线方程是( )(A)y=+1 (B)y=+3 (C)y=2x+1 (D)y=x-1二、填空题6.在两个变量的回归分析中,作散点图的目的是________.7.一亩水稻田中,施化肥量xkg(x<300)与水稻的产量ykg之间的回归直线方程是=3.16x+300,当施化肥量为50kg时,预计水稻产量为________.8.某医院用光电比色计检验尿汞,得尿汞含量(mg/L)与消化系数如下表:尿汞含量x 2 4 6 8 10消化系数y 64 138 205 285 260若y与x具有线性相关关系,则回归直线方程是________________________.三、解答题9.现有5名同学的物理成绩和数学成绩如下表:物理成绩x 64 61 78 65 71数学成绩y 66 63 88 76 73(1)画出散点图;(2)若x和y具有线性相关关系,试求变量y对x的回归方程.10.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(t)与相应的生产能耗y(t标准煤)的几组对照数据.x 3 4 5 6y 2.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技术改造前100t甲产品的生产能耗为90t标准煤,试根据(2)求出的线性回归方程预测生产100t甲产品的生产能耗比技术改造前降低多少吨标准煤?11.某工业部门进行一项研究,分析该部门的年产量与生产费用的样本,从这个工业部门内随机抽选了10个企业作样本,有如下资料:年产量x/千件40 42 48 55 65 79 88 100 120 140生产费用y/千元150 140 160 170 150 162 185 165 190 185(1)画出散点图;(2)对这两个变量之间是否存在线性相关进行相关性检验;(3)该部门欲建一个年产量为200千件的企业,预测其生产费用.测试三统计案例全章练习一、选择题1.分析身高与体重有关系,可以用( )(A)误差分析(B)回归分析(C)独立性分析(D)上述都不对2.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x1,x2,…,x60的平均数,则下列各式中正确的是( )(A) (B) (C) (D)3.设有一个线性回归方程为=2-2.5x,则变量x增加一个单位时,则( )(A)y平均增加2.5个单位(B)y平均增加2个单位(C)y平均减少2.5个单位(D)y平均减少2个单位4.为了研究变量x与y的线性相关性,甲乙两人分别做了研究,并利用线性回归方法得到回归方程l1和l2,非常巧合的是,两人计算的相同,也相同,下列说法正确的是( )(A)l1和l2相同(B)l1和l2一定平行(C)l1和l2相交于点( ,) (D)无法判断l1和l2是否相交5.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多合计喜欢玩电脑游戏18 9 27不喜欢玩电脑游戏8 15 23合计26 24 50则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )(A)99%(B)95%(C)90%(D)无充分依据二、填空题6.下面是2×2列联表:y1 y2 合计x1 a 28 35x2 11 34 45合计 b 62 80则表中a=________,b=________.7.|r|≤1且|r|越接近1,线性相关程度越________,|r|越接近0,线性相关程度越________.8.在一项打鼾与患心脏病的关系的调查中,共调查了2000人,经计算得χ2=20.87,根据这一数据分析,我们有________的把握认为打鼾与患心脏病是________的.9.某工厂的设备使用年限x(年)与维修费用y(万元)之间的回归直线方程为=0.8x+1.5,那么设备使用前3年的维修费用约为________万元.10.在一次实验中,测得(x,y)的4组数值分别是(0,1),(1,2),(3,4),(4,5),那么y与x之间的回归直线方程是________________.三、解答题11.生物学习小组在研究性别与色盲关系时,得到如下列联表:色盲非色盲合计男12 788 800女 5 995 1000合计17 1783 1800试判断性别与色盲是否有关系?12.为了研究高中女生身高与体重的关系,从某高中随机选取8名女生,测量其身高与体重的数据,具体如下表:编号 1 2 3 4 5 6 7 8身高/cm 155 157 165 165 165 170 170 175体重/kg 43 50 48 57 61 54 59 64(1)请根据上表提供的数据,求出体重y关于身高x的线性回归方程;(2)试根据(1)的回归方程,预计一名身高160cm的女高中生的体重.13.在一次实验中,测得(x,y)的5组数值,如下表:xy 360 285 205 138 64试判断y与是否具有线性相关关系?如有,求出线性回归方程.第二章推理与证明测试四合情推理与演绎推理Ⅰ学习目标1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.Ⅱ基础训练题一、选择题1.数列2,5,10,17,x,37,…中的x等于( )(A)25 (B)26 (C)27 (D)282.已知扇形的弧长为l,半径为r.类比三角形的面积公式:底×高,可推知扇形的面积公式S扇形等于( )(A) (B) (C) (D)lr3.在公差为d的等差数列{an}中,我们可以得到an=am+(n-m)d(m,n∈N*).通过类比推理,在公比为q的等比数列{bn}中,我们可得( )(A)bn=bm+qn-m (B)bn=bm+qm-n (C)bn=bm•qm-n (D)bn=bm•qn-m4.将正奇数数列1,3,5,7,9,…进行如下分组:第一组含一个数{1};第二组含两个数{3,5};第三组含3个数{7,9,11};第四组含4个数{13,15,17,19};….记第n 组内各数之和为Sn,则Sn与n的关系为( )(A)Sn=n2 (B)Sn=n3 (C)Sn=2 n+1 (D)Sn=3n-15.数列{an}中,a1=3,a2=6,且an+2=an+1-an,则a33等于( )(A)3 (B)-3 (C)6 (D)-6二、填空题6.已知圆具有性质:圆的切线垂直于经过切点的圆半径.类比这条性质,可得球的一条相关性质为________________________.7.在数列{an}中,a1=1,an+1=(n=1,2,3,…),则此数列的通项公式可归纳为________________________.8.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr①,①式用语言可以叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请写出类比①的等式:________________;上式用语言可以叙述为________________________.9.将“菱形的对角线互相平分”写成三段论的形式为________________________.10.在平面几何中,我们有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,我们可得:4个面均为等边三角形的四面体内任意一点________________________________________________.三、解答题11.类比实数的加法和向量的加法,从相加的结果是否为实数(向量),以及运算律、逆运算、0与0(零向量)几个方面考虑,列出他们相似的运算性质.12.下列推理的两个步骤分别遵循哪种推理原则?因为直线a⊥平面α,直线b⊥平面α,所以a∥b.又因为b∥c,所以a∥c.13.设{an}是由正数组成的等比数列,Sn是其前n项的和.证明:Sn•Sn+2<.Ⅲ拓展训练题14.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n 成立,其中1≤n<19,n∈N*.类比上述性质,相应的:在等比数列{bn}中,若b9=1,试写出相应的一个等式.测试五直接证明与间接证明Ⅰ学习目标1.了解直接证明的两种基本方法:分析法和综合法,能利用它们解决简单问题.2.了解间接证明的一种基本方法——反证法,能利用反证法解决简单问题.Ⅱ基础训练题一、用分析法或综合法证明下列问题1.证明:.2.已知a>b>0,求证:.3.设a,b∈(0,+∞),且a≠b,证明:a3+b3>a2b+ab2.4.已知锐角A,B满足A+B>,证明:sinA>cosB.5.已知数列{an}是等差数列,(n=1,2,3,…).证明:数列{bn}是等差数列.6.在△ABC中,3个内角A,B,C的对边分别是a,b,c,且A,B,C成等差数列,a,b,c成等比数列.求证:△ABC为等边三角形.二、用反证法证明下列问题7.设a,b是平面内的两条直线,证明:这两条直线最多只有一个交点.8.证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.9.设p,q∈R,且p3+q3=2,求证:p+q≤2.10.求证:一元二次方程ax2+bx+c=0(a≠0)至多有两个不相等的实数根.Ⅲ拓展训练题11.求证:1,,不能成为同一等差数列中的3项.12.证明:对于函数f(x)=lgx,找不到这样的正数M,使得对于f(x)定义域内任意的x 有|f(x)|<M成立.测试六推理与证明全章练习一、选择题1.观察数列{an}:1,2,2,3,3,3,4,4,4,4,…的特点,则a100是( )(A)14 (B)13 (C)12 (D)112.不等式a>b与>同时成立的充要条件是( )(A)a>b>0 (B)0>a>b (C)a>0>b (D) >>03.已知{an}为等比数列,a5=2,那么有等式a1•a2•…•a9=29成立.类比上述性质,相应的:若{bn}为等差数列,b5=2,则有( )(A)b1+b2+…+b9=29 (B)b1•b2•…•b9=29(C)b1+b2+…+b9=2×9 (D)b1•b2•…•b9=2×94.对于任意正整数n,下列结论正确的是( )(A)当n=2时,2n=n2;当n≠2时,2n>n2(B)当n=2或n=4时,2n=n2;当n≠2且n≠4时,2n>n2(C)当n=3时,2n<n2;当n≠3时,2n>n2(D)当n=3时,2n<n2;当n≠3时,2n≥n25.设a>0,b>0,则以下不等式中不恒成立的是( )(A)(a+b)( )≥4 (B)a3+b3≥2ab2(C)a2+b2+2≥2a+2b (D)6.若用反证法证明命题:三角形的内角中至少有一个大于60°,则与命题结论相矛盾的假设为( )(A)假设三角形的3个内角都大于60°(B)假设三角形的3个内角都不大于60°(C)假设三角形的3个内角中至多有一个大于60°(D)假设三角形的3个内角中至多有两个大于60°二、填空题7.设正实数a,b,c满足a+b+c=1,则a,b,c三者中至少有一个数不小于____________.8.已知数列{an}的通项公式为,记f(n)=(1-a1)(1-a2)…(1-an),其中n∈N*.那么f(1)=________;f(2)=________;f(3)=________;推测f(n)=________.9.若三角形的内切圆半径是r,三边长分别是a,b,c,则三角形的面积是r(a+b+c).类比此结论,若四面体的内切球半径是R,4个面的面积分别是S1,S2,S3,S4,则四面体的体积V=________.10.已知数列{an}的前n项和为Sn,,(n≥2),通过计算S1,S2,S3,S4,可归纳出Sn=________________.三、解答题11.已知a,b,c是正数,且ab+bc+ca=1,求证:a+b+c≥.12.设{an}是公比为q的等比数列,Sn是它的前n项和.证明:数列{Sn}不是等比数列.13.设函数f(x)=|lgx|,若0<a<b,且f(a)>f(b),求证:ab<1.14.设a>0,函数是R上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+∞)上单调递增.第三章数系的扩充与复数的引入测试七数系的扩充与复数的引入Ⅰ学习目标1.了解数系的扩充过程.2.理解复数的基本概念以及复数相等的充要条件.3.了解复数的代数表示法及其几何意义.Ⅱ基础训练题一、选择题1.下列结论中正确的是( )(A)Z N Q R C (B)N Z Q C R(C)N Z Q R C (D)R N Z Q C2.复数1-i的虚部是( )(A)1 (B)-1 (C)i (D)-i3.若复数z=m(m-1)+(m-1)i是纯虚数,则实数m的值为( )(A)0 (B)1 (C)-1 (D)0或14.设x,y∈R,且满足x+y+(x-2y)i=2x-5+(3x+y)i,则xy等于( )(A)-2 (B)2 (C)6 (D)-65.设z∈C,则满足1≤|z|≤3的复数在复平面上的对应点构成图形的面积是( )(A)π(B)4π(C)8π(D)9π二、填空题6.若x是实数,y是纯虚数,且3x+1-2i=y,则x=________;y=________.7.当<m<1时,复数z=3m-2+(m-1)i在复平面上的对应点位于第________象限.8.设x,y∈R,复数z=x-2+yi,=3x-i,则x=________;y=________.9.已知复数z=(1+i)m2-(4+i)m-6i所对应的点位于复平面的第二象限,则实数m 的取值范围是________.10.设集合M={0,1,3,5,7,9},a,b∈M,则形如a+bi的不同虚数共有________个.三、解答题11.已知2x-1+(y+1)i=x-y-(x+y)i,求实数x,y的值.12.实数m取何值时,复数z=(m2-5m+6)+(m2-3m)i是(1)零;(2)虚数;(3)纯虚数.13.设x∈R,若复数z=(x2-3)+i•log2(x+3)在复平面内的对应点在第三象限,求x 的取值范围.14.设z∈C,若|z|=z+2-4i,求复数z.测试八复数的运算Ⅰ学习目标能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义.Ⅱ基础训练题一、选择题1.已知复数z满足z+i-3=3-i,则等于( )(A)2i (B)-2i (C)6+2i (D)6-2i2.若复数z1=3+i,z2=1-i,则z=z1•z2在复平面内的对应点位于( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.复数的值是( )(A) (B) (C) (D)4.复数i+i3+i5+…+i33的值是( )(A)i (B)-i (C)1 (D)-15.对于任意两个复数z1=x1+y1i,z2=x2+y2i(x1,y1,x2,y2为实数),定义运算“⊙”为:z1⊙z2=x1x2+y1y2.设非零复数ω1,ω2在复平面内对应的点分别为P1,P2,点O 为坐标原点.如果ω1⊙ω2=0,则△P1OP2中∠P1OP2的大小为( )(A) (B) (C) (D)二、填空题6.复数的共轭复数是________.7.若z∈C,且(3+z)i=1,则复数z=________.8.已知复数,则z4=________.9.复平面上平行四边形ABCD的4个顶点中,A,B,C所对应的复数依次为2+3i,3+2i,-2-3i,则D点对应的复数为________.10.对于n个复数z1,z2,…,zn如果存在n个不全为零的实数k1,k2,…,kn,使得k1z1+k2z2+…+knzn=0,就称z1,z2,…,zn线性相关.若3个复数z1=1+2i,z2=1-i,z3=-2线性相关,那么可取{k1,k2,k3}=________.三、解答题11.设复数,求证:(1)ω2=;(2)1+ω+ω2=0;(3)ω3=1.12.求复数3+4i的平方根.13.已知z是虚数,,求证:ω∈R的充要条件是|z|=1.14.已知复数(a>0),若复数ω=z(z+i)的虚部减去其实部的差等于,求复数ω测试九数系的扩充与复数的引入全章练习一、选择题1.复数z与其共轭复数在复平面内的对应点( )(A)关于实轴对称(B)关于虚轴对称(C)关于原点对称(D)关于直线y=x对称2.复数的实部是( )(A)-2 (B)2 (C)-4 (D)43.若复数z=(x2-6x+5)+(x-2)i在复平面内的对应点位于第三象限,则实数x的取值范围是( )(A)(-∞,2) (B)(1,5) (C)(1,2) (D)(2,5)4.设a,b∈R,则复数(a+bi)(a-bi)(-a+bi)(-a-bi)的值是( )(A)(a2+b2)2 (B)(a2-b2)2 (C)a4+b4 (D)a4-b45.如果复数z满足|z-2i|=1,那么|z|的最大值是( )(A)1 (B)2 (C)3 (D)46.若复数z=cosθ+i•sinθ,则使z2=-1的θ值可能为( )(A) (B) (C) (D)二、填空题7.若z∈C,且i•z=1-i,则复数z=________.8.i+2i2+3i3+…+8i8=________.9.设b∈R,复数(1+bi)(2+i)是纯虚数,则b=________.10.如果1+i是方程x2+bx+c=0(b,c∈R)的一个根,那么b+c=________.三、解答题11.设x,y∈R,且,求x,y的值.12.在复平面内,△ABC的3个顶点依次对应复数1,2i,5+2i,判断△ABC的形状.13.是否存在虚数z,使得,且z+3的实部与虚部互为相反数,证明你的结论.14.设复数z满足|z|=1,且z2+2z+是负实数,求复数z.第四章框图测试十框图Ⅰ学习目标1.了解程序框图.2.了解工序流程图(即统筹图)和结构图.3.能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用;会运用结构图梳理已学过的知识、整理收集到的资料信息.Ⅱ基础训练题一、选择题1.某人带着包裹进入超市购物的流程图如下图所示,则在空白处应填( )(A)退换物品(B)归还货车(C)取回包裹(D)参加抽奖2.复数分类的框图如下,下列空白处应填( )(A)虚数(B)非纯虚数(C)非实数(D)非纯虚数的虚数(a≠0,b≠0)3.右图是集合的知识结构图,如果要加入“子集”,则应该放在( )(A)“集合的概念”的下位(B)“集合的表示”的下位(C)“基本关系”的下位(D)“基本运算”的下位4.下列结构图中要素之间表示从属关系的是( )5.下面的程序框图的作用是按大小顺序输出两数,则括号处的处理可以是( )(A)A←B,B←A (B)T←B,B←A,A←T(C)T←B,A←T,B←A (D)A←B,T←A,B←T6.某成品的组装工序图如右,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )(A)12小时(B)11小时(C)8小时(D)6小时二、填空题7.按照程序框图(如下图)执行,第3个输出的数是________.8.下面的流程图是交换两个变量的值并输出,则图中空白处应为________.第7题图第8题图9.读下面的流程图,若输入的值为-5时,输出的结果是________.10.某工程的工序流程如图所示(工时单位:天),现已知工程总时数为10天,则工序c 所需工时为________天.三、解答题11.已知画出输入x,打印f(x)的程序框图.12.某公司做人事调整:设总经理一个,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A管理生产部、安全部和质量部,副经理B管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗。
一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .453.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ).A .0.378B .0.3C .0.58D .0.9586.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 7.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.20008.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .139.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1210.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;11.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为奇数},{两次的点数之和小于},则( )A .B .C .D .二、填空题13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 14.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.15.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 16.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象;④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号) 17.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.现有A B 、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A 队中每人答对的概率均为23,B 队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++20.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求: (i )三个球中有两个红球一个黑球的概率;(ii )第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.150 0.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()2n ad bc K a b c d a c b d -=++++,n a b c d =+++ 23.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率;(2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差;(3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示)其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)?(参考公式()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i ii t y==∑.)24.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2()P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82825.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:停车时间取车概率停车人员(0,2](2,3](3,4](4,5]甲12x x x乙1613y0(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()Eξ. 26.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动不喜爱运动总计男生a b30女生c d20总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得mP n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 5.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.6.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.7.C解析:C 【解析】1x y a a =+-图象不经过第二象限,11,2a a ∴-≤-∴≥,随机变量ξ服从正态分布()21,N σ,且()()()()1010.3000,120.3000,210.60000.20002P a P a P a <<=∴<<=∴>=-=,∴函数1x y a a =+-图象不经过第二象限的概率为0.20.250010.2=-,故选C. 8.D解析:D 【解析】抛掷红、黄两枚骰子,第一个数字代表红色骰子,第二个数字代表黄色骰子,当红色骰子的点数为4或6时有(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共12种, 两颗骰子的点数之积大于20的种数有(4,6),6,4),(6,5),(6,6)4种, 根据概率公式得,两颗骰子的点数之积大于20的概率41123P ==. 本题选择D 选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.9.C解析:C 【解析】 因为12386x x x x ++++=,12383y y y y ++++=所以33,48x y ==,所以样本中心点的坐标为33(,)48, 代入回归直线方程得848ˆ331b =⨯+,解得ˆ13b=,故选C. 10.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.11.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.12.D解析:D 【解析】 由题意得,两次的点数均为奇数且和小于的情况有,则,故选D.二、填空题13.;【分析】将事件拆分为乙投进3次甲投进1次和乙投进2次甲投进0次再根据二项分布的概率计算公式和独立事件的概率计算即可求得【详解】根据题意甲和乙投进的次数均满足二项分布且甲投进和乙投进相互独立;根据题解析:16; 【分析】将事件拆分为乙投进3次,甲投进1次和乙投进2次,甲投进0次,再根据二项分布的概率计算公式和独立事件的概率计算即可求得. 【详解】根据题意,甲和乙投进的次数均满足二项分布,且甲投进和乙投进相互独立; 根据题意:乙恰好比甲多投进2次,包括乙投进3次,甲投进1次和乙投进2次,甲投进0次.则乙投进3次,甲投进1次的概率为3213112123318C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;乙投进2次,甲投进0次的概率为232311212239C ⎛⎫⎛⎫⎛⎫⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故乙恰好比甲多投进2次的概率为111 1896+=. 故答案为:16. 【点睛】本题考查二项分布的概率计算,属综合基础题.14.【分析】利用相互独立事件概率乘法公式直接求解【详解】解:两个实习生加工一个零件产品为一等品的概率分别为和这两个零件中恰有一个一等品的概率为:故答案为:【点睛】本题考查概率的求法考查相互独立事件概率乘 解析:512【分析】利用相互独立事件概率乘法公式直接求解. 【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为23和34, ∴这两个零件中恰有一个一等品的概率为:2323511343412p ⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:512.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.15.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦16.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2.因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+, ∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.17.3个【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x 和y 满足关系y=-2x+3则x 与y 正相关;应该是:x 与y 负相关故错误(2)线性回归直线必过点线性回归直线必过中心点解析:3个 【分析】直接利用线性回归直线的相关理论知识的应用求出结果. 【详解】(1)已知变量x 和y 满足关系y=-2x+3,则x 与y 正相关;应该是:x 与y 负相关.故错误. (2)线性回归直线必过点(),x y ,线性回归直线必过中心点.故正确.(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大. 根据课本上有原句,故正确.(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R 2的值越大,说明拟合的效果越好.故正确,根据课本上有原句. 故填3个. 【点睛】本题主要考查了线性回归直线的应用,学生对知识的记忆能力,主要考查学生的运算能力和转换能力,属于中档题.18.【解析】队总得分为分为事件队总得分为分即队三人有一人答错其余两人答对其概率记队得分为事件事件即为队三人人答错其余一人答对则队得分队得一分即事件同时发生则故答案为 解析:1081【解析】“A 队总得分为2分”为事件M , A 队总得分为2分,即A 队三人有一人答错,其余两人答对,其概率()2232241339P M C ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭,记“B 队得1分”为事件N ,事件N 即为B 队三人2人答错,其余一人答对,则()221221221511133233233218P N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,A 队得2分B 队得一分,即事件,M N 同时发生,则()()()451091881P MN P M P N ==⨯=,故答案为1081.19.有【解析】根据表中数据计算观测值对照临界值知有95的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异解析:有 【解析】根据表中数据,计算观测值22100(60102010)1003.8417030802021K ⨯-⨯==>⨯⨯⨯,对照临界值知,有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”。
一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图4.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:2()P K k ≥0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”5.变量X 与Y 相对应的一组数据为(10 , 1),(11.3 , 2),(11.8 , 3),(12.5 , 4),(13 , 5);变量U 与V 相对应的一组数据为(10 , 5),(11.3 , 4),(11.8 , 3),(12.5 , 2),(13 , 1).1r 表示变量Y X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( )A .120r r <<B .210r r <<C .210r r <<D .21r r =6.A B 两支篮球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局A 队获胜的概率是12外,其余每局比赛B 队获胜的概率都是13.假设各局比赛结果相互独立.则A 队以3:2获得比赛胜利的概率为( ) A .427B .281C .1681D .8277.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 8.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为x y +为偶数,事件B 为x y ≠ ,则概率(|)P B A =( )A .14B .13C .12D .239.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9010.已知,x y 的取值如下表:( )若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )=( ) A .14B .13C .12D .2312.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥ 0.150.10 0.05 0.025 0.010 0.0050k2.072 2.7063.841 5.024 6.635 7.879A .130B .190C .240D .250二、填空题13.某商圈为了吸引顾客举办了一次有奖竟猜活动,活动规则如下:两人一组,每轮竞猜中,每人竞猜两次,两人猜对的次数之和不少于3次就可以获得一张奖券.小蓝和她的妈妈同一小组,小蓝和她妈妈猜中的概率分别为p 1,p 2,两人是否猜中相互独立,若p 1+p 2=32,则当小蓝和她妈妈获得1张奖券的概率最大时,p 12+p 22的值为_____. 14.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.15.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 16.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作 不太积极参加班级工作 合计 学习积极性高 18 7 25 学习积极性一般61925合计 24 26 50则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表()2P K k ≥0.025 0.010 0.005 0.001 k 5.0246.6357.87910.82817.以下说法正确的是_____________ . ①类比推理属于演绎推理.②设有一个回归方程ˆ23yx =- ,当变量每增加1个单位,y 平均增加3个单位. ③样本相关系数r 满足以下性质:1r ≤,并且r 越接近1,线性相关程度越强;r 越接近0,线性相关程度越弱.④对复数12,z z 和自然数n 有()1212nn n z z z z ⋅=⋅.18.现有A B 、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A 队中每人答对的概率均为23,B 队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.某人在公园进行射击气球游戏,排除其它因素的影响,各次射击相互独立,每次击中气球的概率均为0.8,若连续射击10次,记击中气球的次数为ξ,则D (ξ)=______.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求: (i )三个球中有两个红球一个黑球的概率;(ii )第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人,将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的22⨯列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?网购迷 非网购迷 合计年龄不超过40岁 年龄超过40岁 合计(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数ξ的分布列.(附:()()()()()22n ad bc k a b c d a c b d -=++++)()20P K k ≥ 0.15 0.10 0.05 0.01 0k2.0722.7063.8416.63523.某项比赛中甲、乙两名选手将要进行决赛,比赛实行五局三胜制.已知每局比赛中必决出胜负,若甲先发球,其获胜的概率为12,否则其获胜的概率为13. (1)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率; (2)若第一局由乙先发球,以后每局由负方发球规定胜一局得3分,负一局得0分,记X 为比赛结束时甲的总得分,求随机变量X 的分布列和数学期望.24.在一定范围内,植物的生长受到空气、水、温度、光照和养分等因素的影响,某试验小组为了研究光照时长对某种植物增长高度的影响,在保证其他因素相同的条件下,对该植物进行不同时长的光照试验,经过试验,得到6组该植物每日的光照时间x (单位:h )和每日平均增长高度y (单位:mm )的数据.(1)该小组分别用模型①ˆˆˆybx a =+和模型②ˆˆˆmx n y e +=对以上数据进行拟合,得到回归模型,并计算出模型的残差如下表:(模型①和模型②的残差分别为1ˆe 和2ˆe ,残差ˆˆi i i ey y =-)根据上表的残差数据,应选择哪个模型来刻画该植物每日的光照时间与每日平均增长高度的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(),x y 剔除,根据剩余的5组数据,求该模型的回归方程,并预测光照时间为11h 时,该植物的平均增长高度.(剔除数据前的参考数据:7.5x =, 5.9y =,61299.8i ii x y==∑,621355i i x ==∑,ln z y =,141z ≈.,6173.10i i i x z =≈∑,n10.7l 2.37≈, 4.03456.49e ≈.)参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没.实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x12345678y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by ax=+和指数函数模型e dxy c=分别对两个变量的关系进行拟合.为此变换如下:令1ux=,则y a bu=+,即y与u满足线性关系;令lnv y=,则lnv c dx=+,即v与x也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54e dxy=,v与x的相关系数10.94r=-,其他参考数据如表(其中1iiux=,lni iv y=):81i iiu y=∑u2u821iiu=∑81iiy=∑821iiy=∑0.616185.5⨯2e-ln96.54v 183.40.340.115 1.5336022385.561.40.135 4.6 3.7(1)求指数函数模型和反比例函数模型中y关于x的回归方程;(2)试计算y与u的相关系数2r,并用相关系数判断选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?参考公式:对于一组数据()()()1122,,,,,,n nu v u v u v,其回归直线v uαβ=+的斜率和截距的最小二乘估计分别为:1221ni iiniiu v nuvu nuβ==-=-∑∑,v uαβ=-,相关系数1222211ni i i n ni i i i u v nuvr u nu v nv ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.26.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y 1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型b y a x=+和指数函数模型dxy ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==). 81iii yμ=∑ μ2μ821ii μ=∑81i i y =∑ 821ii y=∑ 0.616185.5⨯ 2e -ln96.54 ν183.4 0.340.1151.53 360 22385.561.40.1354.63.7(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。
高二第一学期第一章《统计案例》测试题(文科)
一、选择题
1.对于散点图下列说法中正确一个是()
(A)通过散点图一定可以看出变量之间的变化规律(B)通过散点图一定不可以看出变量之间的变化规律(C)通过散点图可以看出正相关与负相关有明显区别(D)通过散点图看不出正相关与负相关有什么区别
2.下列说法正确的有( )
①回归方程适用于一切样本和总体。
②回归方程一般都有时间性。
③样本取值的范围会影响回归方程的适用范围。
④回归方程得到的预报值是预报变量的精确值。
A. ①②
B. ②③
C. ③④
D. ①③
3.下列结论正确的是( )
①函数关系是一种确定性关系;②相关关系是一种非确定性关系
③回归分析是对具有函数关系的两个变量进行统计分析的一种方法
④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。
A. ①②
B. ①②③
C. ①②④
D. ①②③④
4.下列变量关系是相关关系的是()
①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;
③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.
A.①②B.①③C.②③D.②④
5.下列变量关系是函数关系的是()
A.三角形的边长与面积之间的关系 B.等边三角形的边长与面积之间的关系
C.四边形的边长与面积之间的关系 D.菱形的边长与面积之间的关系
6. 对变量x,y有一组观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v有一组观测数据(u i,v i)(i=1,2,…,10),得散点图(2). 由这两个散点图可以判断( )
(1)
A. 变量x与y正相关,u与v正相关
B. 变量x与y正相关,u与v负相关
C. 变量x与y负相关,u与v正相关
D. 变量x与y负相关,u与v负相关
7.
根据以上数据,则(
A. 种子经过处理跟是否生病有关
B. 种子经过处理跟是否生病无关
C. 种子是否经过处理决定是否生病
D. 以上都是错误的
8. 下列说法正确的是()
A.A︱B和B︱A表示同一事件
B. 0<P(A︱B)<1
C.事件A发生的条件下事件B发生的概率记作P(A︱B)
D.事件A发生的条件下事件B发生的概率记作P(B︱A)
9. 为防止某种疾病,研制出一种新的预防药,任选取100只小白鼠做试验,得到如下的列联表:药物效果与动物试验列联表
则认为“药物对防止该种疾病有效”这一结论是错误的可能性约为( ) A. 0.025 B. 0.10 C. 0.01 D. 0.005
得到了下列四个判断:①有99.9%的把握认为患慢性气管炎与吸烟有关;②有99.0%的把握认为患慢性气管炎与吸烟有关;③认为患慢性气管炎与吸烟有关的出错的可能为0.1%;④认为患慢性气管炎与吸烟有关的出错的可能为1.0%.其中正确的命题个数是( ) A.0 B.1 C.2 D.3
11
你认为婴儿的性别与出生时间有关系的把握为( )
A.80% B.90% C.95% D.99%
12.下表是性别与喜欢看电视与否的统计列联表,依据表中的数据,得到( )
13.
则表中a ,b A .45,8 B .52,50 C .9,8 D .54,52
14.在研究打酣与患心脏病之间的关系中,通过收集数据、整理分析数据得“打酣与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的。
下列说法中正确的是( )
A .100个心脏病患者中至少有99人打酣
B .1个人患心脏病,那么这个人有99%的概率打酣
C .在100个心脏病患者中一定有打酣的人
D .在100个心脏病患者中可能一个打酣的人都没有
15.经过对2
K 的统计量的研究,得到了若干个临界值,当2
3.841K 时,我们( )
A .有95%的把握认为A 与
B 有关 B .有99%的把握认为A 与B 有关
C .没有充分理由说明事件A 与B 有关系
D .有97.5%的把握认为A 与B 有关
16. 甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为1
4
,则两人中恰有一人答对的概率为( )
A.
720
B.1220
C.120
D.220
二、填空题 17.已知回归直线方程 y bx a =+,其中3a =且样本点中心为(12),
,则回归直线方程为 . 18.对于回归方程 4.75257y x =+,当28x =时,y 的估计值为 .
19.下表是关于出生男婴与女婴调查的列联表那么,A= ,B= ,C= ,D= ,
E= ;
根据上述数据分析,我们得出的K =________。
21.
则大约有___ __
22. 某商店统计了最近6
回归直线方程为__ __23.
则有__ _把握认为婴儿的性别与出生时间有关系24. 给出下列关系:①正方形的面积与边长;②人的身高与体重;③匀速行驶车辆的行驶距离与时间;④球的半径与体积.其中有相关关系的是___ ___. 25. 2009年高考英语听力考试中,甲能听懂的概率是80%,乙能听懂的概率是70%.甲、乙两人同时听这段录音,其中至少有一人能听懂的概率是 ___.
26. 若P (A )=0.5,P (B )=0.3,P (AB )=0.2,则P (A |B )=_ ____,P (B |A )=_____.
27.某单位订阅大众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,则至少订阅其中一种报纸的概率为 .
28. 淮北气象台统计,明天下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是1
10
.设A 为下雨,B
为刮风,则P (A |B )=____ __,P (B |A )=___ __.
29.设A 、B 为两个事件,若事件A 和B 同时发生的概率为3
10
,在事件A 发生的条件下,事件B 发生的概
率为1
2
,则事件A 发生的概率为__ ____.
30.
):
则有___ __31
根据列联表数据,求得2K = .
32.为了考察某种药物预防疾病的效果,进行动物试验,得到了如下的列联表:
三、解答题
34.某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:
已知7
21
280i
i x ==∑,7
21
45309i
i y ==∑,7
1
3487i i i x y ==∑.
(1
)求x y ,;
(2)画出散点图; (3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.
35. 甲、乙两市位于长江下游,根据一百多年的记录知道,一年中雨天的比例,甲为20%,乙为18%,两市同时下雨的天数占12%. 求:(1)乙市下雨时甲市也下雨的概率;(2)甲、乙两市至少一市下雨的概率.
36.甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算:
(1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率.
37. 某课程考核分理论与实验两部分进行,每部分考核只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”.若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9.所有考核是否合格相互之间没有影响.
(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率.(结果保留3位小数)
38.某聋哑研究机构,对聋哑关系进行抽样调查,在耳聋的657人中有416人哑,而另外不聋的680人中有249人哑,你能运用这组数据,得出相应结论吗?
39.在500名患者身上试验某种血清治疗SARS的作用,与另外500名未用血清的患者进行比较研究.结果如下表:
问该种血清能否起到治疗SARS的作用?
参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析;学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.。