青蒿素类过氧桥键的生物合成机制
- 格式:doc
- 大小:10.50 KB
- 文档页数:1
青蒿素的生物合成途径青蒿素是一种重要的抗疟药物,广泛应用于疟疾的治疗和预防。
它的生物合成途径是一个复杂的过程,涉及多个酶的参与和多个中间产物的转化。
本文将介绍青蒿素的生物合成途径,并对每个步骤进行详细解析。
青蒿素的生物合成途径可以分为两个阶段:伯氨基酸途径和萜类化合物途径。
首先,我们来看伯氨基酸途径。
在伯氨基酸途径中,首先是由天冬氨酸合成伯氨基酸。
天冬氨酸通过酮戊二酸和酮戊二酸激酶的作用,转化为伯氨基酸。
接下来,伯氨基酸通过伯氨基酸氨基转移酶的作用,与天冬氨酸结合,形成丙氨酸。
丙氨酸经过一系列的反应,最后转化为伯氨基酸。
在伯氨基酸途径的第二个步骤中,伯氨基酸通过伯氨基酸脱氢酶的作用,转化为酮戊二酸。
酮戊二酸经过一系列的反应,最终形成丙二酸。
丙二酸是青蒿素生物合成途径中的一个重要中间产物。
接下来,我们来看萜类化合物途径。
在萜类化合物途径中,首先是由丙二酸合成异戊二烯二酸。
丙二酸通过异戊二烯二酸合成酶的作用,转化为异戊二烯二酸。
异戊二烯二酸是青蒿素生物合成途径中的另一个重要中间产物。
在萜类化合物途径的第二个步骤中,异戊二烯二酸通过异戊二烯二酸环化酶的作用,转化为环氧酮。
环氧酮经过一系列的反应,最后形成萜类化合物。
在青蒿素的生物合成途径中,最后一个步骤是由萜类化合物合成青蒿素。
萜类化合物经过一系列的反应,最终形成青蒿素。
青蒿素是一种复杂的天然产物,具有强大的抗疟作用。
总结起来,青蒿素的生物合成途径可以分为伯氨基酸途径和萜类化合物途径两个阶段。
在伯氨基酸途径中,天冬氨酸通过多个酶的催化作用,转化为伯氨基酸。
在萜类化合物途径中,丙二酸经过多个酶的催化作用,最终转化为青蒿素。
青蒿素的生物合成途径是一个复杂而精细的过程,对于了解和研究青蒿素的生物合成机制具有重要意义。
通过深入研究青蒿素的生物合成途径,我们可以更好地理解和应用这一重要的抗疟药物。
青蒿素类化合物的合成及其生物活性研究青蒿素,是一种来自植物青蒿中的天然产物,具有治疗疟疾的功效。
在20世纪70年代,中国科学家屠呦呦首次从中提取出青蒿素,为疟疾的治疗开辟了新的途径。
随着近年来药物研究的深入,青蒿素及其衍生物也引起了越来越多的关注,成为治疗多种疾病的前沿研究领域之一。
本文主要介绍青蒿素类化合物的合成及其生物活性研究。
青蒿素类化合物的合成研究青蒿素的药效作用是由其含有的内酯环、大环和过渡金属等多种结构单元共同作用所致。
由于青蒿素的天然来源极为有限,因此合成青蒿素类化合物成为了研究的焦点之一。
近年来,科学家们在合成青蒿素及其衍生物方面取得了重大进展。
1.1 外消旋青蒿素的不对称合成研究外消旋青蒿素是一种含有两个手性中心的化合物,如何实现其对映异构体的选择合成是一个难点。
研究表明,通过使用手性催化剂或手性辅助剂等手段,可以实现对青蒿素对映异构体的选择合成。
例如,有学者使用氨基醇作为手性辅助剂,在对应的氧化反应中合成了具有高对映选择性的青蒿素衍生物。
1.2 单端基的青蒿素类化合物的合成研究单端基的青蒿素衍生物通常指在中环上引入一个含有反式-亲核芳香取代反应活性的单端基基团。
其主要药理作用也是通过识别阴性药物靶标来发挥作用。
近年来,研究显示,使用磺酰胺基团或其他亲核基团可以有效引入单端基,实现对青蒿素类化合物的不对称合成。
青蒿素类化合物的生物活性研究青蒿素及其衍生物不仅具有治疗疟疾的功效,还可以用于治疗多种疾病,如艾滋病、癌症、系统性红斑狼疮等。
下面我们将介绍青蒿素类化合物在不同领域中的生物活性研究进展。
2.1 抗癌作用青蒿素类化合物在抗癌领域中的应用研究非常广泛。
研究表明,青蒿素类化合物具有广谱的抗肿瘤效应,可以抑制多种癌细胞的生长和增殖。
此外,青蒿素类化合物还可通过诱导癌细胞凋亡、调节基因表达和代谢等多种方式发挥作用。
2.2 免疫抗病毒作用青蒿素及其衍生物在治疗艾滋病等病毒感染方面也具有较好的疗效。
青蒿素生物合成分子机制及调控研究进展谭何新+肖玲+周正张磊+陈万生[摘要]以青蒿素为基础的联合用药是疟疾特别是恶性疟现有的首选、最佳疗法,青蒿素类药物需求巨大。
青蒿素原料药依旧主要依赖于从药用植物黄花蒿(中药青蒿)提取、分离、纯化,但其在黄花蒿中的含量较低,且含量变异大。
黄花蒿分泌型腺毛是合成、分泌、积累及储存青蒿素的场所,腺毛的正常发育直接关系到青蒿素的产量。
提高青蒿素产量、降低生产成本有重大意义,也是当前国际研究热点。
该文介绍了青蒿素体内生物合成的分子机制和代谢调控,以及青蒿素合成器腺毛的研究进展,这些将为开拓新的方法来提高植物来源青蒿素的产量提供帮助。
[关键词]青蒿素;黄花蒿;腺毛;分子机制;遗传调控疟疾流行于97个国家和地区,威胁着32亿人口的健康。
据世界卫生组织最新统计,2015年约有214亿人感染疟疾,并有约438万人死于疟疾[1]。
以青蒿素为基础的联合用药(artemisininbased combination therapies,ACTs)是治疗疟疾特别是恶性疟现有的首选、最佳方法[12]。
屠呦呦先生也因其在青蒿素的发现及青蒿素在疟疾治疗方面的巨大贡献获得了2015年的诺贝尔生理学或医学奖。
青蒿素是一种含过氧桥基团结构的倍半萜内酯类化合物,其每年需求量巨大,但是供应量却相对紧缺[3],这直接导致了ACTs制剂成本的增加。
此外,青蒿素及其衍生物的药理作用还表现在抗肿瘤、抗寄生虫、抗纤维化、抗心律失常、免疫等多方面[45],随着青蒿素及其衍生物应用的开发,其需求将进一步增大。
青蒿素来源于菊科蒿属药用植物黄花蒿Artemisia annua L,其干燥地上部分被称为中药青蒿[67]。
黄花蒿是青蒿素的唯一天然来源,但是其含量却相对较低,只占干重的01%~08%[89]。
如何提高青蒿素产量,降低生产成本,是当前國内外黄花蒿育种研究的热点。
已有许多科学家正在尝试用不同的方法来增加青蒿素的产量,合成生物学及化学合成在青蒿素生物半合成上取得了较大进展[10]。
【最新】青蒿素生物合成
青蒿素存在于中草药青蒿的花叶中,茎中不含有,是一种含量非常低的萜类化合物,生物合成途径非常复杂。
现已知可通过三种方式进行青蒿素的生物合成:
一是通过对控制青蒿素合成的关键酶进行调控,添加生物合成的前体来增加青蒿素的含量;
二是激活关键酶控制的基因,大幅度增加青蒿素的含量;
三是利用基因工程手段改变关键基因,以增强它们所控制酶的作用效率。
生物合成过程中,青蒿素的含量受光照、外源激素、芽分化等生理生态因子的影响很大,温度对于生物合成也有极大影响,通过试验研究发现,青蒿幼苗在40℃条件下,处理36h后,青蒿素的质量分数提高到最大为68%。
除青蒿之外,其它植物也可以合成青蒿素,2011年研究人员从烟草中合成青蒿素。
此方法与传统化学方法相比,所用的化学试剂大大减少,有利于环境的保护,且该生物合成方法的受体为烟草,在中国较为广泛,因此原料来源较为丰富,但不足的是用烟草合成青蒿素过程中的某些反应基质并不清楚,还有待开发,但该合成方法仍有较好的工业应用前景。
将一个青蒿基因植入大肠杆菌,改造后的大肠杆菌制造出一种中间化合物,这种化合物经过数步处理就能成为青蒿素的原料——青蒿酸。
把一种特殊的酶植入酵母后,酵母把前面提到的中间化合
物改造成了青蒿酸。
通过微生物工业生产青蒿素的技术链条已经基本成形。
这意味着青蒿素的价格将下降90%。
根据青蒿素结构简述其过氧桥键可能具有的化学性质
青蒿素是一种天然的甲基酸,它被广泛用于抗菌药物,此外还有抗击病毒、抗恐惧和抗抑郁等用途。
它主要形式有三氢青蒿素和青蒿素硫腙,其中青蒿素硫腙是一种抗恐惧剂和抗抑郁剂。
青蒿素具有一种称为“过氧桥键”的化学特性,是由具有强氧化性质的多氧原子结合而产生的。
它们可通过支持一种高能的双键形式而起作用。
它们主要是以三种原子的形式组成的,例如C−O−O,其中中间的O(氧)原子有两键连接,即过氧桥键,它增强了亲核作用,从而增加了其化学活性。
过氧桥键可以赋予青蒿素具有双性特性,即一端带电中性,另一端带正电荷,使它逐渐成为非常稳定的有机分子。
此外,它还可以被氧化和还原,从而实现药物的释放。
最后,过氧桥键还使青蒿素易于与其他有机分子结合形成复合物,有助于经常尝试合成改变结果的分析。
此外,它还可以改变分子的稳定性,并在一定条件下提高分子的靶向和药物性质。
青蒿素的生物合成与代谢途径青蒿素作为一种重要的抗疟药物,经过几十年的不断研究和应用已经取得了许多突破性的成果。
然而,许多人对于青蒿素的生物合成和代谢途径并不熟悉。
下面就让我们来一起探究一下青蒿素的生物合成和代谢过程。
一、青蒿素的生物合成青蒿素是一种大环内酯类化合物,由多种化学物质经过多步酶催化转化而来。
在青蒿素的合成中,最重要的当属艾滋病疗法药物的前体物质艾洛菲莫的生物合成。
艾洛菲莫最初是由邻苯二甲酸和丙二酸合成,经过一系列酶的催化反应后转化为青蒿酸。
青蒿酸在自身广泛存在的CYP家族酶的帮助下,转化为青蒿素,并被细胞返回到青蒿素的细胞数中储存起来。
在体内,青蒿素的生物合成受到许多因素的影响,如光照、日夜节律以及病原体的侵袭等。
二、青蒿素的代谢途径青蒿素代谢途径主要包括肝脏代谢和肠道代谢两个过程。
青蒿素在进入人体后,会在肝脏中被CYP450酶家族代谢。
这些酶通过氧化、还原和水解等反应将青蒿素代谢成更易于排泄的代谢产物。
另外,肠道微生物群中的某些细菌也可以通过羟化和磺酸化等反应来代谢青蒿素。
这些代谢产物通过肝脏和肾脏进入血液循环并排出体外。
值得注意的是,在青蒿素的代谢过程中,还涉及到一些代谢酶的物种差异。
例如,在人体中,青蒿素主要被CYP450酶家族代谢,而在老鼠和犬中,则主要依赖于UDP-葡糖醛酸转移酶代谢。
这些差异可能与物种的代谢酶谱有关,需要进一步研究。
三、青蒿素的作用机制青蒿素最初用于治疗疟疾,后经发现还具有许多其他的生物活性。
青蒿素的作用机制主要涉及到靶向线粒体、膜和蛋白质等多个生物过程。
青蒿素可以通过与铁离子结合并进入细胞内,与线粒体蛋白质作用从而杀死寄生生物。
同时,青蒿素还可以通过改变细胞膜的物理和化学性质,影响细胞的功能状态。
此外,青蒿素还可以阻断DNA复制、RNA转录以及蛋白质合成等生物过程,从而发挥药物的效果。
总之,青蒿素的生物合成和代谢途径是一项非常复杂的研究课题。
通过深入的研究,我们可以更好地了解青蒿素的化学特性和药理学作用,从而更加有效地应用这种药物来治疗疟疾和其他疾病。
青蒿素生物合成途径及其生物调控研究青蒿素是目前世界上最有效的抗疟药物之一,由于其广泛的药效和低毒性,被认为是未来抗疟药物开发的主要方向。
在生产青蒿素的过程中,生物合成途径是关键步骤之一。
本文将围绕青蒿素的生物合成途径和生物调控进行讨论。
一、青蒿素的生物合成途径青蒿素的生物合成途径可以分为两个阶段,第一阶段是色胺酸途径,第二阶段是梗菜酸途径。
1.色胺酸途径色胺酸途径是青蒿素生物合成的第一步,通过此途径可以合成青蒿素前体物质伪黄酮。
首先,色胺酸被转化为4-羟基苯丙酮,接着通过多个反应步骤最终形成伪黄酮。
该途径最后产生的伪黄酮是所有青蒿素类化合物的前体化合物。
2. 梗菜酸途径梗菜酸途径是青蒿素生物合成途径的第二步,通过该途径可以完成青蒿素的合成。
伪黄酮在梗菜酸途径下,在时相和空相条件下经过多个反应步骤,最终形成青蒿素。
这些反应的主要环节包括:将伪黄酮转化为芳香化二萜中间体、通过氧化、格氏反应和裂环药物催化剂的作用逐步合成青蒿素。
二、青蒿素合成途径中的生物调控青蒿素的生物合成途径和一般的生物代谢途径不同,它的合成受到多位调控因子的作用,包括转录因子、底物供应和环境因素等。
1. 上机体调控植物体内的青蒿素含量及生物合成途径的活性受到多个上机体调控因素的调控。
其中包括转录因子和激素信号通路调控。
转录因子在生物合成途径中起着重要作用,如MYC2、MYB、WRKY等转录因子等,在青蒿素生物合成途径中发挥着关键的作用,在激活生物合成途径以促进青蒿素合成方面具有重要作用。
激素信号传导通路也在和青蒿素的生物合成途径之间起到调控作用,激素到达植物的细胞内后会发生配体与受体的结合反应,使得激素的作用发生变化,如茉莉酸、赤霉素等则参与青蒿素生物合成途径的调控。
2. 下机体调控青蒿素的生物合成途径的下机体调控主要包括受骨髓样调节子调控和底物供应控制。
与植物自身的调控相比,下机体菌株对生物合成途径的调控具有更为直接和明显的影响作用。
神奇的过氧键作者:孟凡盛来源:《求学·新高考版》2020年第08期一、抗疟疾神药:青蒿素和双氢青蒿素2015年10月,屠呦呦因创制新型抗疟药的伟大贡献,荣获2015年度诺贝尔生理学或医学奖。
屠呦呦创制的青蒿素和双氢青蒿素拥有对疟原虫100%的抑制率,被誉为“拯救2亿人口”的发现,这一伟大发现与分子结构中的过氧键有关。
1.罕见的过氧键结构青蒿素具有过氧键和内酯环,这在自然界是十分罕见的。
结构中过氧键具有氧化性,是抗疟的必需基团。
作用机理是青蒿素在体内产生的自由基团与疟原虫蛋白结合,改变疟原虫的细胞膜结构,使疟原虫死亡。
双氢青蒿素对红细胞内期疟原虫有强大且快速的杀灭作用,能迅速控制临床发作及症状。
2.青蒿素的性质(1)物理性质青蒿素为无色针状结晶,熔点为156 ℃—157 ℃,易溶于氯仿、丙酮、乙酸乙酯和苯,可溶于乙醇、乙醚,几乎不溶于水。
(2)化学性质因其具有特殊的过氧键,青蒿素对热不稳定,易受湿、热和还原性物质的影响而分解。
由于青蒿素是分子内酯,理论上酯基可以发生水解反应。
3.用途(1)青蒿素是治疗疟疾耐药性效果最好的药物,世卫组织大力推广的以青蒿素类药物为主的联合疗法,也是当下治疗疟疾的最有效最重要手段。
自屠呦呦发现青蒿素以来,青蒿素衍生物一直作为最有效、无并发症的治疗疟疾联合用药。
(2)近年来随着研究的深入,青蒿素的其他作用也越來越多地被发现和应用研究,如抗肿瘤、治疗肺动脉高压、抗糖尿病、抗真菌、免疫调节等。
【例1】我国科学家屠呦呦因创制新型抗疟药——青蒿素和双氢青蒿素(结构图略)的贡献,荣获2015年诺贝尔奖。
下列有关叙述错误的是()A.双氢青蒿素分子式为C15H22O5B.青蒿素可溶于C2H5OC2H5,难溶于水C.分子中都含有醚键和过氧键D.青蒿素与氢气发生加成反应生成双氢青蒿素【命题意图】精选我国科学家对世界抗疟疾的巨大贡献设计试题,弘扬立德树人的同时,考查考生“宏观辨识与微观探析”的化学核心素养。
龙源期刊网
青蒿素类过氧桥键的生物合成机制
作者:
来源:《科学中国人》2016年第01期
中科院微生物所张立新团队与美国刘平华和张燕教授团队合作,解析出青蒿素类过氧桥键的生物合成机制。
研究结果发布于《自然》杂志。
自然界中含有过氧桥键的化合物具有多种生物活性,包括抗感染、抗肿瘤、以及抗心律失常,其中最具代表性的青蒿素已经作为抗疟疾药物应用于临床接近40年。
青蒿素抗疟疾作用机理主要在于通过青蒿素活化产生自由基,自由基与疟原蛋白结合,作用于疟原虫的膜系结构,使其泡膜、核膜以及质膜均遭到破坏,线粒体肿胀,内外膜脱落,从而对疟原虫的细胞结构及其功能造成破坏。
青蒿素的生物活性与过氧键密不可分,但是催化青蒿酸形成青蒿素的环内过氧键合酶却一直没有找到,成为一道世界难题。
该研究阐明这一特别的环内过氧桥键的生物合成新机制,也为发现催化青蒿酸形成青蒿素的环内过氧键合酶提供了研究基础。