C纤维
- 格式:docx
- 大小:15.20 KB
- 文档页数:3
纤维名称缩写代号天然纤维丝S麻L人造纤维粘胶纤维R醋酯纤维CA三醋酯纤维CTA铜氨纤维CVP富强纤维Polynosic蛋白纤维PROT纽富纤维Newcell合成纤维碳纤维CF聚苯硫醚纤维PPS聚缩醛纤维POM酚醛纤维PHE弹性纤维PEA聚醚酮纤维PEEK预氧化腈纶PANOF改性腈纶MAC维纶PVAL聚乙烯醇缩乙醛纤维 PVB氨纶PU硼纤维EF含氯纤维CL高压型阳离子可染聚酯纤维CDP常压沸染阳离子可染纤维ECDP聚乳酸纤维PLA聚对苯二甲酸丙二醇酯纤维PTT聚对苯二甲酸丁二醇酯纤维PBT聚萘二甲酸乙二醇酯纤维PEN聚乙烯、聚丙烯共混纤维ES氯纶Pvo聚对本二氧杂环已酮纤维PDS弹性二烯纤维ED同位芳香族聚酰胺纤维PPT对位芳香族聚酰胺纤维PPTA芳砜纶PDSTA聚酰亚胺纤维Pi超高强高模聚乙烯纤维CHMW-PE其他金属纤维MTF玻璃纤维GE涤纶:PLOYESTER 锦纶:NYLON/POLYAMIDE 醋酸:ACETATE 棉; COTTON 人棉:RAYON 人丝:VISCOSE 仿真丝:IMITATED SILK FABRIC 真丝:SILK氨纶:SPANDEX/ELASTIC/STREC/LYCRA 长丝:FILAMENT 短纤:SPUN 黑丝:BLACK YARN 阳离子:CATION 三角异形丝:TRIANGLE PROFILE 空气变形丝:AIR-JET TEXTURING YARN 超细纤维:MICRO – FIBRIC 全拉伸丝:FDY (FULL DRAWN YARN)预取向丝:POY(PREORIENTED YARN)拉伸变形丝:DTY(DRAW TEXTURED YARN)牵伸加捻丝:DT (DRWW TWIST)。
碳纤维分解产物
碳纤维是一种高性能、高强度的新型纤维材料,其主要成分是碳。
在正常环境下,碳纤维非常稳定,不会发生分解。
但在高温或者极端条件下,碳纤维可能会分解并产生一些气体和其他物质。
1. 高温下的分解:在极高温度下 如超过2000℃),碳纤维可能开始分解,生成碳蒸气或者一氧化碳等气体。
这种分解通常只在特殊环境,如宇宙飞船再入大气层时遇到的高温情况下可能发生。
2. 氧化分解:在氧气充足的环境下,碳纤维可以被氧化为二氧化碳或一氧化碳。
例如,在火灾中,碳纤维增强复合材料中的碳纤维就可能被氧化。
3. 化学反应分解:在某些化学反应中,碳纤维也可能被分解。
例如,强酸或强碱可以与碳纤维反应,产生相应的盐和气体。
碳纤维在正常使用和处理条件下是非常稳定的,不会产生有害的分解产物。
然而,在极端条件下,如高温、火灾或强化学反应中,碳纤维可能会分解,生成一些有害气体。
因此,在处理和使用碳纤维产品时,应避免这些极端条件,以确保安全。
痛觉传入的闸门控制学说痛觉传入的闸门控制学说是指在神经系统中存在一种调节疼痛信号传递的机制,类似于一个闸门,能够控制疼痛信号的传递和强度。
这个理论由Melzack和Wall在1965年首次提出,被广泛应用于临床治疗和药物开发。
一、痛觉传入的基本机制1.1 痛觉神经纤维类型人体内存在A、B、C三种类型的神经纤维,其中C纤维是主要负责传递疼痛信息的纤维,其速度较慢,但对刺激敏感度高。
1.2 神经元结构神经元主要由细胞体、树突、轴突组成。
树突接收来自其他神经元的信号,轴突则将信号传输到下一个神经元或靶组织。
1.3 神经递质神经递质是指神经元之间传递信息所使用的化学物质,包括多巴胺、去甲肾上腺素、乙酰胆碱等。
二、闸门控制学说的提出2.1 理论基础Melzack和Wall在研究疼痛传递过程中发现,大脑中存在一种控制疼痛传递的机制,类似于一个闸门。
当Aβ纤维(快速神经纤维)和C纤维同时传递信息时,Aβ纤维的信号能够通过闸门抑制C纤维的信号传递,从而减轻疼痛感。
2.2 闸门控制学说的内容闸门控制学说认为,在神经系统中存在一个“闸门”,能够调节和控制疼痛信号的传递。
当刺激源刺激人体时,会产生电信号,通过C纤维传递到脊髓后角。
在这里,Aβ纤维也会传输信息并与C纤维相遇。
此时,若Aβ纤维的信号强度足够强,则能够通过“闸门”抑制C纤维的信号传输,从而减轻或消除疼痛感。
三、影响闸门控制机制的因素3.1 心理因素情绪、压力、焦虑等心理因素会影响闸门控制机制的效果,从而影响疼痛感的强度。
3.2 药物因素某些药物可以影响神经递质的释放和再摄取,从而影响闸门控制机制的效果。
例如,阿片类药物能够刺激内源性镇痛系统,增强其抑制作用,从而减轻疼痛感。
3.3 疾病因素某些疾病(如神经性疼痛)会影响神经元之间的信号传递和调节机制,从而降低闸门控制机制的效果。
四、临床应用4.1 物理治疗物理治疗(如冷敷、电刺激)能够通过刺激Aβ纤维来增强闸门控制机制的效果,从而减轻或消除疼痛感。
碳纤维材料强度
碳纤维材料是一种轻质、高强度的新型材料,具有极强的抗拉强度和刚度。
它由碳纤维和树脂组成,通过高温和高压的工艺制成。
碳纤维材料因其独特的结构和优良的性能,在航空航天、汽车制造、体育器材等领域有着广泛的应用。
首先,碳纤维材料具有极高的强度。
碳纤维的强度是钢铁的5-10倍,比铝合金还要轻,这使得碳纤维材料在相同重量下可以承受更大的拉力和压力。
这种轻量高强的特性使得碳纤维材料在航空航天领域有着广泛的应用,可以大幅减轻航空器的重量,提高飞行性能。
其次,碳纤维材料具有优异的刚度。
碳纤维材料的刚度是金属材料的2-5倍,这意味着它具有更好的抗弯和抗扭性能。
在汽车制造领域,碳纤维材料可以用于制造车身结构和零部件,提高整车的强度和刚度,同时减轻整车的重量,提高燃油经济性和行驶性能。
此外,碳纤维材料还具有优异的耐腐蚀性和耐磨性。
由于碳纤维材料是无机非金属材料,不会受到大气、水和化学品的腐蚀,因此有着更长的使用寿命。
在体育器材领域,碳纤维材料可以用于制造高档的自行车、高尔夫球杆、网球拍等,提高器材的使用寿命和性能。
综上所述,碳纤维材料具有极高的强度和刚度,以及优异的耐腐蚀性和耐磨性,这使得它在航空航天、汽车制造、体育器材等领域有着广泛的应用前景。
随着技术的不断进步,碳纤维材料将会在更多领域发挥重要作用,为各行业的发展注入新的动力。
a类纤维和c类纤维的作用
A类纤维(A fibers)和C类纤维(C fibers)是两种不同类型的神经纤维,它们在神经系统中传递不同种类的信息,具有不同的功能。
以下是它们的主要作用:
1.A类纤维的作用:
Aα纤维:主要负责传递运动信息,特别是快速传递关于肌肉运动的信息。
这些纤维具有较大的直径,传导速度很快,因此被用于传递对身体运动控制至关重要的信号。
Aβ纤维:传递关于触摸和压力的信息,也参与运动感知。
Aβ纤维的传导速度较快,通常用于传递身体感觉信息。
Aγ纤维和Aδ纤维:Aγ纤维参与控制肌肉的平滑运动,而Aδ纤维主要传递痛觉和温度感知的信息。
Aδ纤维传导速度较快,介于Aβ和C纤维之间。
2.C类纤维的作用:
C类纤维包括两个主要类型:Cα纤维和Cβ纤维。
它们主要传递关于疼痛、温度感知和其他非明显触觉的信息。
Cα纤维:负责传递痛觉和持续性的慢性疼痛信息。
这些纤维的直径相对较小,传导速度慢。
Cβ纤维:主要传递温度感知和冷感的信息。
它们的传导速度相对较快,但仍然较慢,比A类纤维慢。
总体而言,A类纤维主要涉及运动和触觉感知,而C类纤维则涉
及疼痛、温度和其他感觉。
这些纤维在神经系统中协同工作,以确保我们对身体周围环境和内部状态的感知和响应。
一、常用纤维代码1、A-acrylic腈纶2、PP-polypropylene丙纶3、AL-alpaca羊驼毛4、PV-polyvinyi维纶5、C-cotton棉6、R-rayon人造丝7、CH-camelhair驼绒8、Rrm-Famine苎麻9、CVC-涤棉倒比(涤含量低于60%以下)10、HR-rabbithair兔毛11、S-silk真丝12、soybeanproteinfibre大豆蛋白纤维13、Hem-hemp大麻14、SP-spandex氨纶15、J-jute黄麻16、T-polyester涤纶17、Apocynum罗布麻18、Td-tencel天丝19、L-Unen亚麻20、TStussahsilk柞蚕丝21、La-lambswool羊羔毛22、V-viscose粘胶23、Ly-Lycra莱卡24、w-wool羊毛25、M-mohair马海毛26、WA-angora安哥拉山羊毛27、Md-model莫代尔28、WS-cashnere羊绒29、MS-mulberrysilk桑蚕丝30、YH-yarkhair牦牛毛31、N-nylon尼龙二、常用纱线英文棉纱Cotton Yarns涤棉纱T/C & CVC Yarns粘棉纱Cotton/Rayon Yarns棉晴纱Cotton/Acrylic Yarns棉/氨纶包芯纱Cotton/Spandex Yarns毛纺系列纱线Woolen Yarn Series羊绒纱Cashmere Yarn Series全羊毛纱Wool(100) Yarns毛晴纱Wool/Acrylic Yarns毛涤纱Wool/Polyester Yarns毛粘纱Wool/Viscose Yarns毛/丝纱Wool/Silk Yarns羊毛/其他Wool/Other Yarns兔毛纱Angora Yarns 雪兰毛线Shetland Yarns牦牛毛纱Yak Hair Yarns羊仔毛纱Lambs wool Yarns真丝系列纱线Silk Yarn Series白厂丝White Steam Filature Yarns双宫丝Double Silk Yarns柞蚕丝Tussah Silk Yarns绢丝Spun Silk Yarns柞绢丝Tussah Spun Silk Yarns柚丝Silk Noil Yarns真丝线Silk Threads丝棉混纺纱Silk/Cotton Blended Yarns麻纺系列纱线Halm Yarn Series亚麻系列纱线Linen Yarn Series苎麻系列纱线Ramie Yarn Series黄麻系列纱线Jute Yarn Series其他植物纤维纱线Other Plant Yarns剑麻系列纱线Sisal Yarn Series人造纤维和合成纱线Manmade & Synthetic Yarns 晴纶纱Acrylic Yarns晴纶仿羊绒Cashmere-like Acrylic Yarns仿兔毛Sunday Angora Yarns锦纶丝Polyamide Yarns涤纶纱/丝Polyester Yarns人造棉纱Spun Rayon Yarns天丝纱Tencell Yarns弹力纱线Elastane Yarns涤粘纱T/R(Polyester/Rayon)Yarns人棉混纺纱Spun Rayon Blended Yarns其他化纤纱线Other Synthetic Yarns 人造长丝或线Viscose Filament Yarnsor Threads 花色纱线fancy yarns 雪尼尔纱Chenille Yarns 大肚纱Big-belly Yarns 带子纱Tape Yarns 马海毛纱Mohair Yarns 羽毛纱Feather Yarns 蜈蚣纱Centipede like Yarns 项链纱Neckline Yarns 辫子纱Pigtail Yarns 梯子纱Ladder Yarns 圈圈纱Loop Yarns TT纱TT Yarns 结子纱Knot Yarns 乒乓纱Ping-Pong Yarns 其它花色纱线Other Fancy Yarns 金属纱线Metal Yarns 绳、索及缆Twine, Cordage, Rope & Cables 传统纺纱(conventional spinning)分为: 环锭纺(ring spinning) 翼锭纺(flying spinning) 帽锭纺(cap spinning). 新型纺纱(new methods of making yarns)分为: 自由端纺纱或断裂纺(OPEN-END or break spinning) 摩擦纺(friction spinning) 自捻纺(self-twist spinning) 喷气纺(air-jet spinning) 无捻纺(twistless spinning) 其中自由端纺纱或断裂纺(OPEN-END OR BREAK SPINNING)又分为机械纺(mechanical spinning)流体纺部分面料英文简写 C:Cotton 棉W:Wool 羊毛 M:Mohair 马海毛 RH:Rabbit hair 兔毛 AL:Alpaca 羊驼毛 S:Silk真丝 J:Jute 黄麻 L:linen 亚麻 Ts:Tussah silk 柞蚕丝 YH:Yark hair 牦牛毛 Ly:lycra莱卡 Ram:Ramine 苎麻 Hem:Hemp 大麻 T:Polyester 涤纶 WS:Cashmere 羊绒 N:Nylon 锦纶(尼龙) A:Acrylic 腈纶 Tel:Tencel 天丝,是Lyocell莱赛尔纤维的商品名 La:Lambswool 羊羔毛 Md:Model 莫代尔 CH:Camel hair 驼毛 CVC:chief value of cotton涤棉倒比(涤含量低于60%以下) Ms:Mulberry silk 桑蚕丝 R:Rayon 粘胶。
牙髓病和根尖周病考试重点总结牙髓功能形成功能:牙本质营养功能:牙本质感觉功能神经:Aδ纤维——牙本质敏感C纤维——牙髓炎炎症性疼痛:压力升高,炎症介质直接作用于神经末梢防御功能病因细菌感染:主要病因感染途径:由冠方经牙体感染:牙本质小管、牙髓从牙根逆向感染:牙周袋、血源感染细菌种类:牙髓炎——以兼性厌氧菌为主根尖周炎——以专性厌氧菌为主细菌种类:牙髓卟啉菌——牙髓感染特有病原菌卟啉菌、普氏菌、消化链球菌、真杆菌——根尖肿胀、疼痛、叩痛、瘘管产黑色素普氏菌、牙龈卟啉菌、牙髓卟啉菌——急性根尖周炎、根管内恶臭放线菌——顽固性根尖周病变、窦道经久不愈牙髓诊断性试验1.温度测验2.电测验温度测验1)正常牙髓可耐受温度:20~50℃2)低于10℃的冷刺激:小冰棒;高于60℃的热刺激:热牙胶棒(不能冒烟燃烧)①正常②敏感:一过性敏感、敏感③迟钝:包括迟钝和迟缓性痛④无反应电测验电活力测验用于反映患牙牙髓活力的有无,不能指示不同的病理状态。
测试牙与对照牙的电测值之差大于10时,表示测试牙的牙髓活力与正常有差异。
如电测值到达最大时测试牙仍无反应,表示牙髓已无活力。
正常和无反应装有心脏起搏器的患者慎做电活力测试。
电测验假阳性反应的原因1)探头或电极接触大面积的金属修复体或牙龈,使电流流向牙周组织。
2)未充分隔湿或干燥受试牙,以致电流泄漏到牙周组织。
3)液化坏死的牙髓有可能传导电流至根尖周,当电流调节到最大刻度时,患者可能有轻微反应。
4)患者过度紧张和焦虑,以致在探头刚接触牙面或被问知感受时即示意有反应。
电测验假阴性反应的原因1)患者事先用过镇痛剂、麻醉剂或酒精饮料等,不能正常地感知电刺激。
2)探头或电极未能有效地接触牙面,妨碍电流传导到牙髓。
3)根尖尚未发育完全的新萌出牙,其牙髓通常对电刺激无反应。
4)根管内过度钙化的牙,牙髓对电刺激通常无反应。
5)才受过外伤的患牙可对电刺激无反应。
可复性牙髓炎临床表现受到温度刺激尤其是冷刺激时,产生短暂、尖锐的疼痛,当刺激除去后,疼痛很快消失或仅延续数秒钟。
面料成分英文缩写C:Cotton 棉人造纤维:R:Rayon 人棉V:Viscose 粘胶MD:Modal莫代尔合成纤维:T:Polyester 涤纶N:Nylon 锦纶(尼龙)A:Acrylic 腈纶PP:Polypropylene 丙纶PV:Polyvinyl 维纶SP:Spendex 氨纶LY:Lycra 莱卡CVC:chief value of cotton涤棉倒比(涤含量低于60%以下)L:Linen 亚麻Ram:Ramine 苎麻Kender罗布麻Hem:Hemp 大麻J:Jute黄麻W:Wool 羊毛AL:Alpaca 羊驼毛YH:Yark hair 牦牛毛CH:Camel hair 驼毛,驼绒WS:Cashmere 羊绒LA(La):Lambswool 羊羔毛WA:Angora 安哥拉山羊毛M:Mohair马海毛RH:Rabbit hair 兔毛S:Silk 真丝TS:Tussah silk 柞蚕丝MS:Mulberry silk 桑蚕丝Tel:Tencel 天丝,是Lyocell莱赛尔纤维的商品名CUP: CUPRA酮氨===BEM:BEMBERG酮氨丝,宾霸SILKOOL:Silkool 大豆蛋白纤维CU:Cupro 铜人造纤维粘胶纤维R醋酯纤维CA三醋酯纤维CT A铜氨纤维CVP富强纤维Polynosic蛋白纤维PROT纽富纤维Newcell合成纤维碳纤维CF聚苯硫醚纤维PPS聚缩醛纤维POM酚醛纤维PHE弹性纤维PEA聚醚酮纤维PEEK预氧化腈纶PANOF改性腈纶MAC维纶PV AL聚乙烯醇缩乙醛纤维PVB氨纶PU硼纤维EF含氯纤维CL高压型阳离子可染聚酯纤维CDP常压沸染阳离子可染纤维ECDP聚乳酸纤维PLA聚对苯二甲酸丙二醇酯纤维PTT聚对苯二甲酸丁二醇酯纤维PBT聚萘二甲酸乙二醇酯纤维PEN聚乙烯、聚丙烯共混纤维ES氯纶Pvo聚对本二氧杂环已酮纤维PDS弹性二烯纤维ED同位芳香族聚酰胺纤维PPT对位芳香族聚酰胺纤维PPT A芳砜纶PDST A聚酰亚胺纤维Pi超高强高模聚乙烯纤维CHMW-PE其他金属纤维MTF玻璃纤维GE动物纤维(蛋白质):桑蚕丝 mulberry silk ,家蚕丝,以桑叶为食的蚕所吐出的长丝柞蚕丝 tussah silk ,野蚕丝,以柞树叶为食的蚕所吐出的长丝羊毛 wool ,主要指绵羊毛,属于蛋白质短纤维兔毛 rabbit hair ,主要为安哥拉兔和家兔所产蛋白质短纤维驼毛 camel hair ,纤维较粗,主要用于工业纺织品植物纤维(纤维素)棉花 cotton fiber ,主要有陆地棉和海岛棉,主要的天然纤维黄麻 jute ,田麻科黄麻属一年生草本植物的茎皮纤维苎麻 ramie,china grass ,苎麻科苎麻属多年生植物的茎皮亚麻 flax ,亚麻科亚麻属一年或多年生植物的韧皮纤维*化学纤维分合成纤维与再生纤维。
HistoryIn 1879, Thomas Edison baked cotton threads or bamboo slivers at high temperatures carbonizing them into an all-carbon fiber filament used in one of the first incandescent light bulbs to be heated by electricity.[1] In 1880, Lewis Latimer developed a reliable carbon wire filament for the incandescent light bulb, heated by electricity.[2]In 1958, Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, now GrafTech International Holdings, Inc., located outside of Cleveland, Ohio.[3] Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed by Dr. Akio Shindo at Agency of Industrial Science and Technology of Japan, using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon. In 1960 Richard Millington of H.I. Thompson Fiberglas Co. developed a process (US Patent No. 3,294,489) for producing a high carbon content (99%) fiber using rayon as a precursor. These carbon fibers had sufficient strength (modulus of elasticity and tensile strength) to be used as a reinforcement for composites having high strength to weight properties and for high temperature resistant applicationsThe high potential strength of carbon fiber was realized in 1963 in a process developed by W. Watt, L. N. Phillips, and W. Johnson at the Royal Aircraft Establishment at Farnborough, Hampshire. The process was patented by the UK Ministry of Defence, then licensed by the NRDC to three British companies: Rolls-Royce already making carbon fiber, Morganite, and Courtaulds. Within a few years, after successful use in 1968 of a Hyfil carbon-fiber fan assembly in the Conways of the Vickers VC10s operated by BOAC,[4] Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine with carbon-fiber compressor blades. Unfortunately, the blades proved vulnerable to damage from bird impact. This problem and others caused Rolls-Royce such setbacks that the company was nationalized in 1971. The carbon-fiber production plant was sold off to form "Bristol Composites".In the late 1960s, the Japanese took the lead in manufacturing PAN-based carbon fibers. The 1970 joint technology agreement allowed Union Carbide to manufacture the Japan’s Toray Industries superior product and USA to dominate the market. Morganite decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer. Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality and improvements in the speed of production as Courtaulds developed two main markets: aerospace and sports equipment. However Courtaulds's big advantage asmanufacturer of the "Courtelle" precursor now became a weakness. Courtelle's low cost and ready availability were potential advantages, but the water-based inorganic process used to produce it made the product susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers.Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goods market, with Mitsubishi its main customer until a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area and Courtaulds ceased carbon-fiber production in 1991. Ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd concentrated on producing carbon fiber for industrial applications, removing the need to compete at the quality levels reached by overseas manufacturers.During the 1960s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength. Also, during this period, the Japanese Government heavily supported carbon fiber development at home and several Japanese companies such as Toray, Nippon Carbon, Toho Rayon and Mitsubishi started their own development and production. As they subsequently advanced to become market leaders, companies in USA and Europe were encouraged to take up these activities as well, either through their own developments or contractual acquisition of carbon fiber knowledge. These companies included Hercules, BASF and Celanese USA and Akzo in Europe.Since the late 1970s, further types of carbon fiber yarn entered the global market, offering higher tensile strength and higher elastic modulus. For example, T400 from Toray with a tensile strength of 4,000 MPa and M40, a modulus of 400 GPa. Intermediate carbon fibers, such as IM 600 from Toho Rayon with up to 6,000 MPa were developed. Carbon fibers from Toray, Celanese and Akzo found their way to aerospace application from secondary to primary parts first in military and later in civil aircraft as in McDonnell Douglas, Boeing and Airbus planes. By 2000 the industrial applications for highly sophisticated machine parts in middle Europe was becoming more important.Structure and propertiesCarbon fiber is frequently supplied in the form of a continuous tow wound onto a reel. The tow is a bundle of thousands of continuous individual carbon filaments held together and protected by an organic coating, or size, such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA). The tow can be conveniently unwound from the reel for use. Each carbon filament in the tow is a continuous cylinder with a diameter of 5–10 micrometers and consists almost exclusively of carbon. The earliest generation (e.g. T300, HTA and AS4) had diameters of 16–22 micrometers.[5] Later fibers (e.g. IM6 or IM600) have diameters that are approximately 5 micrometers.[5]The atomic structure of carbon fiber is similar to that of graphite, consisting of sheets of carbon atoms arranged in a regular hexagonal pattern (graphene sheets), the difference being in the way these sheets interlock. Graphite is a crystalline material in which the sheets are stacked parallel to one another in regular fashion. The intermolecular forces between the sheets are relatively weak Van der Waals forces, giving graphite its soft and brittle characteristics.Depending upon the precursor to make the fiber, carbon fiber may be turbostratic or graphitic, or have a hybrid structure with both graphitic and turbostratic parts present. In turbostratic carbon fiber the sheets of carbon atoms are haphazardly folded, or crumpled, together. Carbon fibers derived from Polyacrylonitrile (PAN) are turbostratic, whereas carbon fibers derived from mesophase pitch are graphitic after heat treatment at temperatures exceeding 2200 °C. Turbostratic carbon fibers tend to have high tensile strength, whereas heat-treated mesophase-pitch-derived carbon fibers have high Young's modulus (i.e., high stiffness or resistance to extension under load) and high thermal conductivity.REFERENCESSACMA Releases “Carbon Fiber Industry Statistics”, Composites News, No. 1, 1998 SAMPE Plenary Describes “Carbon Fiber Capacity, Trends”, Composites News, No. 6, 1998Carbon fibers Seen as Having Big Long Term Growth Infrastructure is Next Big Trend Driver, “Advanced Materials & Composites”News, No. 3, 1999Composites Edge; 1992US5536486, “Carbon fibers and Nonwoven Fabrics“6. Rehabilitation Bridges: Carbon Fiber-reinforced Polymer Shows Promise for RepairingStructures, Advanced Materials & Composites News, No. 2, 19998. New Company Launches Carbon Fiber Fabrics for Decorative Applications, AdvancedMaterials & Composites News, No. 8, 1998Carbon fibers Electrical Conductivity Found to Offer New Uses, Composites News, No. 3, 1998 9Jean-Baptiste Donnet, Roop Chand Bansal, “Carbon“Fibers”, published by Marcel Dekker Inc., 1990, p370.。