缺氧诱导因子(HIF-1)的结构、调节与靶基因研究进展
- 格式:pdf
- 大小:222.17 KB
- 文档页数:3
缺氧诱导因子-1α基因多态性与疾病的研究新进展黄朝任1 邹光美2▲1.广西壮族自治区玉林市中医医院检验科,广西玉林 537000;2.广西壮族自治区玉林市第一人民医院检验科,广西玉林537000[摘要]缺氧诱导因子-1α(HIF-1α)是参与机体氧稳态调节转录因子,国内外研究表明,该基因的多态性与糖尿病、心脑血管疾病、肿瘤等的发生有十分紧密的联系,HIF-1α可对100 多种靶基因的表达进行调节,且与缺氧适应、炎症因子的表达、免疫反应等有紧密的联系,证明其在多种疾病发生发展中的重要位置。
HIF-1α基因多态性与疾病易感性间的相关性及遗传规律,为临床疾病的诊疗提供了新方向,现就HIF-1α结构特征、生物学功能、其基因多态性与疾病相关性等研究进行详细综述。
[关键词] 缺氧诱导因子-1α;基因多态性;疾病;研究新进展[中图分类号] R363 [文献标识码] A [文章编号] 2095-0616(2021)03-0025-04缺氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)属于在哺乳动物细胞中存在的转录因子,是在缺氧/低氧条件下通过改变细胞内氧浓度对氧稳态进行调节的关键因子[1]。
在有氧条件下,26S蛋白酶体可降解HIF-1α;而在缺氧条件下HIF-1α稳定,可与HIF-1β结合、对多种靶基因的转录予以激活。
这些基因在血管生成、细胞存活、肿瘤增殖及物质代谢等过程中有着重要作用[2]。
1 HIF-1α结构特征和生物学功能HIF-1α基因在人类染色体14q21-q24上定位。
HIF-1是氧依赖亚单位(HIF-1α)与组成性表达的核亚单位(HIF-1β)组成的异二聚体复合物。
就结构而言,HIF-1α在N端含有碱性多肽-螺旋-襻-螺旋(bHLH)和PAS(Per,ARNT,Sim)结构域[3]。
HIF-1α还表现出一个氧依赖性降解(ODD)结构域、两个反式激活域(TADs)以及两个核定位信号(NLS)。
㊃综 述㊃缺氧诱导因子1在急性肺损伤中的研究进展林红卫 金发光第四军医大学附属唐都医院呼吸与危重症医学科,西安710000通信作者:金发光,E m a i l j i n f a g@f mm u e d u c n ʌ摘要ɔ 急性肺损伤(A L I )是由各种肺内和肺外致伤因素所致的急性低氧性呼吸功能不全,每年造成全世界数以万计的成人和儿童死亡,给患者个人和社会带来了极大的医疗负担㊂缺氧诱导因子1(H I F -1)是调节细胞缺氧应答的关键转录因子,是许多氧依赖性生理和病理生理过程的核心成分㊂大量研究证实,H I F -1与A L I 的发展过程密切相关,且可以作为A L I 的潜在治疗靶点㊂本文就H I F -1在A L I 中的最新研究进展作一综述㊂ʌ关键词ɔ 急性肺损伤;缺氧诱导因子1D O I 10 3760 c m a ji s s n 1673-436X 2019 24 009A d v a n c e m e n t o f p a t h o l o g i c a l r o l e o f h y p o x i a -i n d u c i b l e f a c t o r 1i na c u t e l u n g i n j u r yL i n H o n g w e i J i nF a g u a n gD e p a r t m e n t o f R e s p i r a t o r y a n d C r i t i c a lC a r e M e d i c i n e T a n g d u H o s p i t a l t h eF o u r t h M i l i t a r y M e d i c a lU n i v e r s i t yX i 'a n710000 C h i n a C o r r e s p o n d i n g a u t h o r J i nF a g u a n g E m a i l j i n f a g @fmm u e d u c n ʌA b s t r a c t ɔ A c u t e l u n g i n j u r y A L I i s a n a c u t e h y p o x i c r e s p i r a t o r y i n s u f f i c i e n c y a r i s i n g fr o m v a r i o u s i n t r a p u l m o n a r y a n de x t r a p u l m o n a r y i n j u r i e s c o n s e q u e n t l y r e s u l t i n g i ns i g n i f i c a n tm o r b i d i t ya n dm o r t a l i t y a n da g l ob a ld i s e a s eb u r d e n H y p o x i a -i n d uc i b l ef a c t o r1 H I F -1 i sa ni m po r t a n t t r a n s c r i p t i o n f a c t o r r e g u l a t i n g v a r i o u sh y p o x i a -i n d u c e d c e l l u l a r r e s p o n s e s a n d p l a ys ad o m i n a n t r o l e i nv a r i o u so x y g e n -d e p e n d e n t p h y s i o l o g i c a la n d p a t h o p h y s i o l o g i c a l p r o c e s s e s A l a r g en u m b e ro f e v i d e n c e sh a v e d e m o n s t r a t e d a n i m p o r t a n t r o l e o fH I F -1i n t h e p a t h o g e n e s i s o fA L I i n d i c a t i n g H I F -1a s a p o t e n t i a l t h e r a p e u t i c t a r g e t f o rA L I T h i s p a p e r r e v i e w s t h e l a t e s t r e s e a r c h p r o gr e s so n H I F -1i n t h e p a t h o ge n e s i s o fA L I ʌK e y wo r d s ɔ A c u t e l u n g i n j u r y H y p o x i a -i n d u c i b l e f a c t o r 1D O I 10 3760 c m a ji s s n 1673-436X 2019 24 009急性肺损伤(a c u t e l u n g i n j u r y ,A L I )是由各种肺内和肺外致伤因素所致的急性低氧性呼吸功能不全㊂目前虽然特殊I C U 和肺保护性机械通气策略已经出现,神经肌肉阻滞剂和干细胞治疗正在开发中,但很少有其他方法在A R D S 的治疗中被证明是有效的,这仍然是一个亟待解决的临床问题,迫切需要进一步研究A L I /A R D S 的发病机制,发展判断疾病严重程度㊁治疗反应和预后的生物标志物㊂缺氧诱导因子1(h y p o x i a -i n d u c i b l ef a c t o r1,H I F -1)是调节细胞缺氧应答的关键转录因子,是许多氧依赖性生理和病理生理过程的核心成分㊂A L I 导致缺氧的发生,而缺氧也是调控H I F -1的主要因素之一㊂实验研究发现,H I F -1途径与A L I 密切相关㊂近年来,关于H I F -1与A L I 的研究逐渐成为一个热点㊂1 A L I1 1 概述 A L I 和更严重[氧合指数<200mmH g(1mmH g =0 133k P a )]的A R D S 是急性全身炎症过程的肺部表现,临床表现为双侧肺浸润和严重的低氧血症㊂A L I /A R D S 的病因很多,包括但不限于感染㊁创伤㊁药物效应㊁脓毒血症㊁摄入物㊁吸入物㊁淹溺㊁休克㊁急性嗜酸粒细胞肺炎㊁呼吸机使用㊁免疫介导的肺出血和血管炎以及放射性肺炎㊂A R D S 的总发病率尚不清楚,据报道每年每10万人中约有2~8例A R D S ;A L I 则更为常见,每年每10万人中约有25例[1]㊂另有文献报道,在美国每年大约有15万人被诊断为A R D S [2]㊂A L I 和A R D S 主要发生在年轻㊁以前体健的人群中,每年造成全世界数以万计的成人和儿童死亡,给患者个人和社会带来了极大的负担㊂据统计,A R D S 的病死率一直保持在40%左右[3]㊂1 2 A L I 的发病机制 A L I 和A R D S 的发展和严重程度与肺泡巨噬细胞活化后中性粒细胞向肺部迁移密切相关[4]㊂同时肺泡上皮和中性粒细胞释放趋化因子(如C X C L -8㊁㊃5881㊃国际呼吸杂志2019年12月第39卷第24期 I n t JR e s p i r ,D e c e m b e r 2019,V o l .39,N o .24Copyright ©博看网. All Rights Reserved.E N A-78)㊁促炎细胞因子[如I L-1㊁I L-6㊁肿瘤坏死因子α(t u m o r n e c r o s i s f a c t o r-α,T N F-α)]㊁急性期反应物(如C 反应蛋白)和基质金属蛋白酶(如基质金属蛋白酶9),过度的中性粒细胞炎症会导致肺泡上皮细胞外基质破坏和通透性增加,损伤肺泡-毛细血管屏障[5-6],引起非心源性肺水肿的发展㊂T a k e u c h i和A k i r a[7]的研究表明模式识别受体在A L I过程中可启动炎症信号级联效应,释放T N F-α㊁I L-8等促炎细胞因子,同时刺激细胞凋亡或自噬㊂在一项小鼠研究中,T o l l样受体(T o l l-l i k er e c e p t o r s,T L R s)信号通路已被证明参与A R D S的发展过程,组织损伤后产生的透明质酸降解产物与T L R4和T L R2相互作用,能够诱导A L I的炎症反应,该研究还报道了肺上皮细胞中高分子量透明质酸的过表达对肺损伤和细胞凋亡具有保护作用[8]㊂此外,补体的血管内活化可导致中性粒细胞活化㊁隔离并黏附于肺毛细血管内皮,导致血管内皮细胞损伤坏死和A L I㊂肺泡内补体的激活可导致补体和中性粒细胞依赖的A L I,引发细胞因子或趋化因子风暴,加重A L I[9]㊂值得注意的是,A R D S的后续过程是可变的㊂部分患者肺泡水肿液再吸收,肺泡上皮损伤区域修复,临床呼吸衰竭恢复㊂其他患者肺泡水肿持续,随后逐渐出现肺泡内纤维化和瘢痕[10]㊂2H I F-121概述H I F-1最初是由S e m e n z a和W a n g[11]在1992年研究缺氧诱导的促红细胞生成素基因表达时从细胞核中提取出的一种蛋白质,广泛存在于机体细胞中㊂目前H I F-1作为调节细胞对氧张力变化反应的主要转录因子被广泛共识[12]㊂H I F-1调节参与能量代谢㊁增殖和细胞外基质重组的基因,从而影响血管张力的调节㊁缺血性心血管功能障碍㊁低氧性肺动脉高压㊁肿瘤的发生和发展㊁糖和能量的代谢㊁铁的代谢㊁休克及炎症等生理和病理生理过程㊂22H I F-1的结构与活性调节H I F-1是一种异源二聚体,由功能亚基H I F-1α和被称为芳香烃受体核转运蛋白的结构亚基H I F-1β组成[13]㊂H I F-1α活性亚基的C末端含有2个反式激活结构域㊁1个富含脯氨酸-丝氨酸-苏氨酸的氧依赖性降解区以及1个抑制域㊂H I F-1有2种转录共激活因子:C R E B结合蛋白和p300,这2种转录共激活因子与反式激活结构域的相互作用是转录激活的必要条件[14]㊂H I F-1β亚基在细胞内比较稳定,H I F-1α亚基的稳定性随细胞内氧含量的变化而波动,其机制与P H D s-H I F s-p V H L 通路密切相关㊂脯氨酸羟化酶(p r o l y l h y d r o x y l a s ed o m a i n p r o t e i n s,P H D s)是一类F e2+依赖性㊁以氧分子为底物的蛋白质,目前只有P H D1㊁P H D2㊁P H D3参与H I F-1α的羟基化作用㊂在常氧条件下,P H D s用氧分子羟化H I F-1α亚基中的2个脯氨酸残基,羟基化的脯氨酸残基被希佩尔㊃林道病肿瘤抑制蛋白/E3泛素-连接酶复合物识别,导致H I F-1α亚基进行蛋白酶体途径水解[15]㊂在缺氧条件下,没有足够的氧气供P H D s羟化H I F-1α亚基,H I F-1α亚基不能被希佩尔㊃林道病肿瘤抑制蛋白识别和进一步降解,从而保持其含量的稳定性㊂H I F-1α进入细胞核后与H I F-1β结合形成H I F-1异源二聚体,结合目标基因启动子中的缺氧反应原件,从而驱动H I F-1依赖的转录程序[16]㊂23 H I F-1在肺中的生物学效应细胞对氧波动的反应在很大程度上由H I F所介导㊂氧气被吸入后,第一个接触到的器官是肺,但目前对肺H I F-1氧敏感通路的认识比较有限㊂在肺血管方面,B r u s s e l m a n s等[17]的研究表明H I F-1α缺失的杂合子小鼠暴露于慢性缺氧环境中,其肺动脉高压进程受阻,部分原因是肺血管重构受限㊂相反,携带R200W突变V H L的小鼠,因不能有效地降解H I F-1,导致其更容易发生肺动脉高压[18]㊂其次,H I F-1在肺动脉平滑肌细胞的活性与缺氧诱导的肺血管重构密切相关㊂体外培养的肺动脉平滑肌细胞在常氧状态下可以表达H I F-1α信号,而在缺氧状态下H I F-1α信号的表达进一步增强㊂B a l l 等[19]的研究显示他莫昔芬诱导的平滑肌特异性H I F-1缺失可减弱慢性缺氧条件下肺血管重构和肺动脉高压㊂另一项研究显示,当肺动脉平滑肌细胞特异性H I F-1α失活的S M22-C r e小鼠暴露于缺氧状态下,细动脉肌化程度有降低的趋势,且H I F-1α可通过抑制肌球蛋白轻链磷酸化来减少血管张力[20]㊂关于H I F-1α在气道上皮的作用机制方面, S h e r m a n等[21]的研究证实了在缺氧的Ⅱ型肺泡上皮细胞中,H I F相关通路和炎性小体激活过程中相关蛋白的表达显著增加㊂其次,有研究证实肺神经上皮小体对持续或慢性缺氧的反应与P H D-H I F依赖机制有关㊂在人类和动物模型中,缺氧导致神经上皮小体的增生,P H D1和P H D3被证实参与了这一反应[22]㊂此外,许多关于H I F-1在肺生物学作用的研究都侧重于慢性缺氧方面,因此有必要进一步研究急性缺氧状态下的H I F-1依赖性通路,以探索肺组织中新的氧敏感相关分子和细胞适应性机制㊂3H I F-1与A L I31 H I F-1与A L I的发病机制311 H I F-1与A L I缺氧缺氧是A L I的表现之一,可以导致肺功能和肺损伤修复的失常㊂A L I的早期事件包括毛细血管内皮损伤㊁肺泡上皮细胞的凋亡和肺水肿,而晚期以Ⅱ型肺泡上皮细胞的反应性增生为主,进而导致肺纤维化㊂有研究指出,H I F-1在肺缺血再灌注损伤中可导致肺血管功能障碍[23],而在脑缺血再灌注损伤诱导的肺损伤研究过程中则发现,机体可能通过H I F-1α/血管内皮生长因子信号通路上调抗氧化应激活性,促进血管生成和修复内皮屏障,实现自我保护[24]㊂虽然这些研究都没有测试H I F-1的缺失与检测到的血管通透性变化是否直接相关,但从表面上看,这些结果意味着H I F-1可能同时发挥屏障保护和屏障破坏的作用㊂关于肺泡上皮细胞损伤和随后的肺纤维化,肺挫伤后低氧Ⅱ型肺泡上皮细胞的分子特征表明H I F-1α在其凋亡过程中起着重要作用[21]㊂通过炎症水平的N O上调H I F-1可能是上皮细胞创伤修复受到抑制的原因[25]㊂此外,有研究证实,上皮-间充质转化可以加剧A L I患者肺纤维化[26],这一过程中肺泡上皮细胞中的活性氧可以起到稳定H I F-1α的作用[27]㊂虽然这些研究为H I F 参与A L I的发展提供了间接证据,但H I F-1在肺毛细血管㊃6881㊃国际呼吸杂志2019年12月第39卷第24期I n t JR e s p i r,D e c e m b e r2019,V o l.39,N o.24Copyright©博看网. All Rights Reserved.通透性等方面的作用仍不乏争议,因此目前还需要进一步在多种肺损伤模型中研究H I F-1α,以确定其在A L I中的确切作用㊂312 H I F-1与A L I的炎症反应 A L I过程中存在正反馈的促炎效应,大量的炎症因子会提高H I F-1的表达,而增加的H I F-1又会刺激炎症因子大量释放,放大炎症反应,加重肺损伤㊂L i u等[28]利用海水吸入性肺损伤大鼠模型研究证实,高渗通过激活A TM和P I3K促进H I F-1α的m R N A表达和激活p38抑制H I F-1α的蛋白降解2种方式增加H I F-1α的表达,H I F-1α的表达增加促进大鼠肺泡巨噬细胞(N R8383)中炎症因子的产生,促进大鼠肺组织炎症㊂一项体外研究报道,由脓毒症淋巴液培养的人Ⅱ型肺泡上皮细胞(A549)和人肺微血管内皮细胞,其细胞活力显著下降,炎症细胞因子(T N F-α㊁I L-6㊁I L-1)水平升高,利用免疫荧光定位及R T-P C R检测H I F-1的表达被激活[29]㊂这些结果初步表明,脓毒症致急性肺炎症损伤过程是通过H I F-1α依赖途径发生的㊂此外,在A L I中H I F-1也可以作用到具体的炎症因子,发挥促炎作用㊂S u r e s h 等[30]的实验表明,与野生型小鼠相比,Ⅱ型肺泡上皮细胞特异性H I F-1α条件敲除小鼠肺挫伤后各时间点肺损伤程度均显著降低,促炎细胞因子如I L-1㊁I L-6㊁巨噬细胞炎性蛋白2的释放明显降低,这一过程是通过核转录因子κB介导的,且肺上皮细胞中的H I F-1被证明可以调节I L-1的启动子活性,由此可以推断Ⅱ型肺泡上皮细胞中H I F-1的活化是肺挫伤后急性炎症的主要驱动因素㊂另一项研究显示H I F-1α作用于T N F-α的下游,抑制血管扩张刺激磷蛋白的表达,调节急性肺部炎症过程,这些分子在肺泡-毛细血管屏障的损伤中发挥重要作用[31]㊂32 H I F-1与A L I的治疗321 H I F-1抑制与A L I A L I的缺氧及炎症反应都与H I F-1密切相关㊂实验证据表明,H I F-1参与了A L I的急性期与慢性期的全过程,目前很多研究都致力于通过药物抑制H I F-1途径来治疗A L I㊂阿托伐他汀可以通过下调H I F-1α-连环蛋白通路,降低百草枯中毒诱导的上皮-间充质转化,减轻大鼠百草枯中毒引起的肺损伤和肺纤维化,且这种效应与剂量有关[32]㊂盐酸戊乙奎醚可以抑制H I F-1α㊁I L-1β和I L-6表达水平,减弱大鼠的重症急性胰腺炎相关A L I的严重程度[33]㊂缺血前给予右美托咪定可通过调控P I3K/A k t/H I F-1α信号通路,在大鼠肺缺血再灌注损伤中起到保护作用[34-35]㊂57-二羟基-8-甲氧基黄酮对内毒素诱导的A L I的保护机制与上调抗氧化酶㊁抑制核转录因子κB磷酸化和H I F-1的上调有关[36]㊂丙泊酚通过降低H I F-1α㊁B c l-2/E1B-19k D a相互作用蛋白3和细胞因子的产生,减少脂多糖诱导的大鼠肺上皮细胞凋亡,预防脓毒症所致A L I[37]㊂此外,一些传统中草药也被证明可以通过抑制H I F-1途径治疗A L I㊂大花红景天萃取物通过下调H I F-1α的靶基因血浆内皮素1和血管内皮生长因子的水平,保持肺泡-毛细血管屏障的完整性,减轻高原肺水肿[38]㊂丹参㊁白藜芦醇等也被证明可以通过抑制H I F-1途径来治疗A L I[39-41],这为传统中医药治疗A L I提供了科学依据,同时在A L I的药物治疗方面提供了新的研究思路㊂322 H I F-1在A L I中的保护作用虽然目前大多数研究都证实可以通过抑制H I F-1途径减轻A L I,但在一些研究中,H I F-1却被发现可以在多种病因导致的A L I中起到保护作用㊂骨髓间充质干细胞可以在损伤肺组织内分化为肺毛细血管内皮细胞和肺泡上皮细胞,增加肺泡表面活性物质的分泌,减少炎症反应,抑制炎症介质的释放㊂百草枯中毒后肺组织中H I F-1α的表达上调,通过血管内皮生长因子的介导对骨髓间充质干细胞发挥显著的增殖动员作用[42]㊂在脂多糖联合急性缺氧诱导A L I大鼠模型中,缺氧可通过激活肺泡巨噬细胞T L R4信号通路加重A L I炎症,靶向上调H I F-1α可以抑制T L R4基因启动子活性,从而抑制T L R4表达和巨噬细胞炎症,提示H I F-1α与T L R4的交互作用通路在A L I中的潜在治疗和预防价值[43]㊂E c k l e 等[44]报道了H I F-1α通过优化肺泡上皮碳水化合物代谢来减轻A L I㊂M a g n a n i等[45]报道了H I F-1介导的蛋白激酶C z e t a降解可以稳定质膜钠钾A T P酶,以防止缺氧引起的肺损伤㊂这些研究揭示了H I F-1在A L I期肺保护中的惊人作用,为研究H I F-1与A L I的治疗提供了另一个重要的方向㊂4结语A L I与A R D S的病理生理学表现为过度炎症反应,通过破坏肺泡-毛细血管屏障导致富含蛋白的肺水肿液积聚, H I F-1是这些过程中的重要参与者,且参与过程是复杂的,尤其是关于H I F-1在肺血管渗漏方面的作用还存在争议㊂此外,进一步阐明H I F-1在肺多种氧敏感通路中的作用,探索肺泡上皮细胞的凋亡机制都可能成为下一步研究的方向㊂在A L I的治疗方面,虽然目前大多数研究都证实可以通过抑制H I F-1途径减轻A L I,但在肺挫伤㊁移植和其他肺损伤的病例中却发现,H I F-1的升高对恢复和生存是有利的[14],这些都为H I F-1在A L I乃至危重症医学治疗中的应用提供了新思路㊂总之,更全面深入地了解H I F-1在A L I/A R D S中的作用,有助于更好地理解这种常见肺部疾病的发病机制,并为新的治疗方法提供新的靶点和预后生物标志物㊂利益冲突所有作者均声明不存在利益冲突参考文献1 P a r e k hD D a n c e rR C T h i c k e t tD R A c u t el u n g i n j u r y JC l i n M e d L o n d2011116615-618D O I107861c l i n m ed i c i n e11-6-6152 B u t tY K u r d o w s k aA A l l e nT C A c u t e l u n g i n j u r y a c l i n i c a la n dm o l e c u l a rr e v i e w J A r c h P a t h o lL ab M e d20161404345-350D O I105858a r p a2015-0519-R A3S p a d a r oS P a r k M T u r r i n iC e ta l B i o m a r k e r sf o ra c u t er e s p i r a t o r y d i s t r e s ss y n d r o m ea n d p r o s p e c t s f o r p e r s o n a l i s e dm e d i c i n e J J I n f l a mm L o n d2019161D O I101186s12950-018-0202-y4 W i l l i a m s A E C h a m b e r s R C T h e m e r c u r i a l n a t u r e o f㊃7881㊃国际呼吸杂志2019年12月第39卷第24期I n t JR e s p i r,D e c e m b e r2019,V o l.39,N o.24Copyright©博看网. All Rights Reserved.n e u t r o p h i l s s t i l l a n e n i g m a i nA R D S J A mJ P h y s i o l L u n gC e l lM o lP h y s i o l20143063L217-L230D O I101152a j p l u n g0031120135 O'K a n eC M M c K e o w n S W P e r k i n s G D e ta l S a l b u t a m o lu p-r e g u l a t e sm a t r i xm e t a l l o p r o t e i n a s e-9i nt h ea l v e o l a r s p a c ei n t h e a c u t e r e s p i r a t o r y d i s t r e s s s y n d r o m e J C r i t C a r eM e d20093772242-2249D O I101097C C M 0b013e3181a5506c6 N a t h a n iN P e r k i n s G D T u n n i c l i f f e W e t a l K e r b s v o nL u n g r e n6a n t i g e ni sa m a r k e ro f a l v e o l a r i n f l a mm a t i o nb u t n o to fi n f e c t i o ni n p a t i e n t s w i t h a c u t er e s p i r a t o r y d i s t r e s s s y n d r o m e J C r i tC a r e2008121R12D O I101186c c67857 T a k e u c h i O A k i r a S P a t t e r n r e c o g n i t i o n r e c e p t o r s a n di n f l a mm a t i o n J C e l l20101406805-820D O I101016j c e l l2010010228J i a n g D L i a n g J F a nJ e ta l R e g u l a t i o no f l u n g i n j u r y a n d r e p a i r b y T o l l-l i k er e c e p t o r sa n dh y a l u r o n a n J N a t M e d200511111173-1179D O I101038n m13159 B o s m a n n M W a r d P A R o l eo fC3C5a n da n a p h y l a t o x i nr e c e p t o r s i na c u t e l u n g i n j u r y a n d i n s e p s i s J A d vE x p M e dB i o l2012946147-159D O I101007978-1-4614-0106-3_910 F a n e l l iV R a n i e r iVM M e c h a n i s m s a n d c l i n i c a l c o n s e q u e n c e so f a c u t e l u n g i n j u r y J A n nA m T h o r a cS o c201512S u p p l 1S3-S8D O I101513A n n a l s A T S201407-340M G11S e m e n z aG L W a n g G L An u c l e a r f a c t o r i n d u c e db y h y p o x i a v i a d e n o v o p r o t e i n s y n t h e s i s b i n d s t o t h e h u m a ne r y t h r o p o i e t i n g e n e e n h a n c e r a t a s i t e r e q u i r e df o rt r a n s c r i p t i o n a l a c t i v a t i o n J M o lC e l lB i o l199212125447-5454D O I101128m c b1212544712S u r e s h MV B a l i j e p a l l iS Z h a n g B e ta l H y p o x i a-i n d u c i b l ef a c t o r H I F-1αp r o m o t e s i n f l a mm a t i o na n d i n j u r y f o l l o w i n ga s p i r a t i o n-i n d u c e dl u n g i n j u r y i n m i c e J S h o c k2018I np r e s s D O I101097S H K 000000000000131213 W a n g G L J i a n g B H R u eE A e t a l H y p o x i a-i n d u c i b l e f a c t o r1i sa b a s i c-h e l i x-l o o p-h e l i x-P A S h e t e r o d i m e rr e g u l a t e d b yc e l l u l a rO2t e n s i o n J P r o cN a t lA c a dS c iU S A 199592125510-5514D O I101073p n a s9*******14 B o g d a n o v s k i D A D i F a z i o L T B o g d a n o v s k i A K e t a lH y p o x i a-i n d u c i b l e-f a c t o r-1i nt r a u m aa n dc r i t i c a lc a r e J JC r i tC a r e201742207-212D O I101016j j c r c20170702915I v a nM K o n d oK Y a n g H e t a l H I F a l p h a t a r g e t e d f o rV H L-m e d i a t e dd e s t r u c t i o n b y p r o l i n eh y d r o x y l a t i o n i m p l i c a t i o n sf o rO2s e n s i ng J S c i e n c e20012925516464-468D O I101126s c i e n c e105981716S e m e n z a G L H y p o x i a-i n d u c i b l ef a c t o r si n p h y s i o l o g y a n d m e d i c i n e J C e l l20121483399-408D O I101016jc e l l20120102117 B r u s s e l m a n sK C o m p e r n o l l eV T j w a M e t a l H e t e r o z y g o u sd e f i c i e n c y o fh y p o x i a-i n d u c i b l ef a c t o r-2a l p h a p r o t e c t s m i c ea g a i n s t p u l m o n a r y h y p e r t e n s i o n a n d r i g h t v e n t r i c u l a rd y s f u n c t i o n d u r i n g p r o l o n ge d h y p o x i a J J C l i n I n v e s t2003111101519-1527D O I101172J C I1549618S m i t hT G B r o o k sJ T B a l a n o s GM e ta l M u t a t i o no fv o nH i p p e l-L i n d a u t u m o u r s u p p r e s s o r a n d h u m a nc a rd i o p u l m o n a r y p h y s i o l o g y J P L o S Me d200637e290D O I101371j o u r n a l p m e d003029019 B a l lMK W a y p aG B M u n g a i P T e t a l R e g u l a t i o n o f h y p o x i a-i n d u c e d p u l m o n a r y h y p e r t e n s i o nb y v a s c u l a rs m o o t h m u s c l eh y p o x i a-i n d u c i b l e f a c t o r-1αJ A mJR e s p i rC r i tC a r e M e d20141893314-324D O I101164r c c m 201302-0302O C20 K i m YM B a r n e s E A A l v i r a C M e ta l H y p o x i a-i n d u c i b l ef a c t o r-1αi n p u l m o n a r y a r t e r y s m o o t h m u s c l ec e l l sl o w e r sv a s c u l a r t o n e b y d e c r e a s i n g m y o s i n l i g h t c h a i n p h o s p h o r y l a t i o n J C i r cR e s201311291230-1233D O I101161C I R C R E S A HA 11230064621S h e r m a n MA S u r e s h MV D o l g a c h e v V A e ta l M o l e c u l a rc h a r a c t e r i z a t i o no f h y p o x i ca l v e o l a r e p i t h e l i a l c e l l sa f t e r l u n gc o n t u s i o ni nd i c a te sa ni m p o r t a n tr o l ef o r H I F-1αJ A n nS u r g2018 2672 382-391 D O I 10 1097S L A 000000000000207022 P a n J B i s h o p T R a t c l i f f e P J e t a l H y p e r p l a s i a a n dh y p e r t r o p h y o f p u l m o n a r y n e u r o e p i t h e l i a lb o d i e s p r e s u m e da i r w a y h y p o x i a s e n s o r s i n h y p o x i a-i n d u c ib l ef ac t o r p r o l y lh y d r o x y l a s e-d e f i c i e n tm i c e J H y p o x i a A u c k l2016469-80D O I102147H P S10395723 Z h a oX J i n Y L iH e ta l H y p o x i a-i n d u c i b l e f a c t o r1a l p h ac o n t r i b u t e s t o p u l m o n a r y v a s c u l a rd y s f u n c t i o n i n l u n gi s c h e m i a-r e p e r f u s i o n i n j u r y J I n t JC l i nE x p P a t h o l2014763081-308824 F a n J L v H L i J e ta l R o l e so fN r f2H O-1a n d H I F-1αV E G Fi nl u n g t i s s u ei n j u r y a n dr e p a i rf o l l o w i n g c e r e b r a li s c h e m i a r e p e r f u s i o n i n j u r y J JC e l l P h y s i o l201923467695-7707D O I101002j c p2776725 B o v eP F H r i s t o v a M W e s l e y U V e t a l I n f l a mm a t o r y l e v e l so fn i t r i c o x i d ei n h i b i ta i r w a y e p i t h e l i a lc e l l m i g r a t i o n b yi n h i b i t i o no f t h ek i n a s eE R K12a n da c t i v a t i o no fh y p o x i a-i n d u c i b l e f a c t o r-1a l p h a J J B i o lC h e m 20082832617919-17928D O I101074j b c M70991420026 G o u d a MM S h a i k h S B B h a n d a r y Y P I n f l a mm a t o r y a n df i b r i n o l y t i c s y s t e mi n a c u t e r e s p i r a t o r y d i s t r e s s s y n d r o m e JL u n g20181965609-616D O I101007s00408-018-0150-627S c h r o e d l C M c C l i n t o c kD S B u d i n g e rG R e t a l H y p o x i cb u t n o t a n o x i c s t a b i l i z a t i o no fH I F-1a l p h a r e q u i r e sm i t o c h o n d r i a l r e a c t i v eo x y g e ns p e c i e s J A m J P h y s i o lL u n g C e l l M o l P h y s i o l20022835L922-L931D O I101152a j p l u n g00014200228 L i uZ Z h a n g B W a n g X B e t a l H y p e r t o n i c i t y c o n t r i b u t e s t os e a w a t e r a s p i r a t i o n-i n d u c e d l u n g i n j u r y r o l e o f h y p o x i a-i n d u c i b l e f a c t o r1αJ E x p L u n g R e s2015416301-315D O I103109019021482015103080329S u nH D L i uY J C h e nJ e t a l T h e p i v o t a l r o l eo fH I F-1αi n l u n g i n f l a mm a t o r y i n j u r y i n d u c e db y s e p t i cm e s e n t e r i c l y m p hJ B i o m e dP h a r m a c o t h e r201791476-484D O I101016㊃8881㊃国际呼吸杂志2019年12月第39卷第24期I n t JR e s p i r,D e c e m b e r2019,V o l.39,N o.24Copyright©博看网. All Rights Reserved.j b i o p h a20170410330S u r e s h MV R a m a k r i s h n a nS K T h o m a s B e t a l A c t i v a t i o n o fh y p o x i a-i n d u c i b l e f a c t o r-1αi n t y p e2a l v e o l a r e p i t h e l i a l c e l l i sam a j o r d r i v e r o f a c u t e i n f l a mm a t i o n f o l l o w i n g l u n g c o n t u s i o nJ C r i tC a r eM e d2*******e642-e653D O I101097C C M 000000000000048831 T a n g M T i a nY L i D e t a l T N F-αm e d i a t e d i n c r e a s e o fH I F-1αi n h i b i t sV A S Pe x p r e s s i o n w h i c h r e d u c e s a l v e o l a r-c a p i l l a r yb a r r i e r f u nc t i o nd u r i n g a c u t el u n g i n j u r y A L I J P L o SO n e201497e102967D O I101371j o u r n a l p o n e010296732 D u J Z h uY M e n g X e t a l A t o r v a s t a t i na t t e n u a t e s p a r a q u a tp o i s o n i n g-i n d u c e d e p i t h e l i a l-m e s e n c h y m a l t r a n s i t i o n v i ad o w n re g u l a t i n g h y p o x i a-i n d u c i b l ef a c t o r-1a l p h a J L i f eS c i2018213126-133D O I101016j l f s20181002633 Z h u R Z h a o Y L i X e t a l E f f e c t s o f p e n e h y c l i d i n eh y d r o c h l o r i d eo n s e v e r ea c u t e p a n c r e a t i t i s-a s s o c i a t e d a c u t el u n g i n j u r y i n r a t s J B i o m e dP h a r m a c o t h e r2018971689-1693D O I101016j b i o p h a20171202534 Z h a n g W Z h a n g J Q M e n g F M e t a l D e x m e d e t o m i d i n ep r o t e c t s a g a i n s t l u n g i s c h e m i a-r e p e r f u s i o n i n j u r y b y t h e P I3K A k t H I F-1αs i g n a l i n gp a t h w a y J JA n e s t h2016305826-833D O I101007s00540-016-2214-135 L i a n g S W a n g Y L i u Y D e x m e d e t o m i d i n ea l l e v i a t e sl u n gi s c h e m i a-r e p e r f u s i o ni n j u r y i nr a t sb y a c t i v a t i n g P I3K A k tp a t h w a y J E u rR e v M e dP h a r m a c o lS c i2019231370-377D O I1026355e u r r e v_201901_1678536S u n H L P e n g M L L e eS S e ta l E n d o t o x i n-i n d u c e da c u t e l u n g i n j u r y i n m i c e i s p r o t e c t e d b y57-d i h y d r o x y-8-m e t h o x y f l a v o n e v i a i n h i b i t i o no f o x i d a t i v e s t r e s s a n d H I F-1αJ E n v i r o n T o x i c o l201631121700-1709D O I101002t o x2217237 Y e h C H C h o W S o E C e t a l P r o p o f o l i n h i b i t sl i p o p o l y s a c c h a r i d e-i n d u c e d l u n g e p i t h e l i a l c e l l i n j u r y b y r e d u c i n g h y p o x i a-i n d u c i b l e f a c t o r-1a l p h ae x p r e s s i o n J B rJA n a e s t h20111064590-599D O I101093b j a a e r00538 L e eS Y L i MH S h iL S e ta l R h o d i o l ac r e n u l a t ae x t r a c ta l l e v i a t e sh y p o x i c p u l m o n a r y e d e m ai nr a t s J E v i d B a s e dC o m p l e m e n t A l t e r n a t M e d20132013718739D O I101155201371873939 M aL Z h a o Y L iB e ta l354'-T r i-O-a c e t y l r e s v e r a t r o la t t e n u a t e s s e a w a t e r a s p i r a t i o n-i n d u c e d l u n g i n j u r yb yi n h i b i t i n g a c t i v a t i o no fn u c l e a rf a c t o r-k a p p aBa n dh y p o x i a-i n d u c i b l e f a c t o r-1αJ R e s p i rP h y s i o lN e u r o b i o l20131853608-614D O I101016j r e s p20121101640 M aL Z h a oY W a n g R e t a l354'-T r i-O-a c e t y l r e s v e r a t r o la t t e n u a t e s l i p o p o l y s a c c h a r i d e-i n d u c e d a c u t e r e s p i r a t o r yd i s t re s s s y n d r o m e v i a MA P K S I R T1p a t h w a y J M e d i a t o r sI n f l a mm 20152015143074D O I101155201514307441 X u M C a o F L Z h a n g Y F e t a l T a n s h i n o n e I I At h e r a p e u t i c a l l y r e d u c e s L P S-i n d u c e d a c u t el u n g i n j u r y b yi n h i b i t i n g i n f l a mm a t i o n a n d a p o p t o s i si n m i c e J A c t aP h a r m a c o lS i n2015362179-187D O I101038a p s201411242刘泽岩程景林戚金威等低氧诱导因子1α干预诱导骨髓间充质干细胞增殖治疗百草枯中毒后肺损伤J国际免疫学杂志201841113-18D O I103760c m a j i s s n1673-439420180100343 W u G X u G C h e n D W e t a l H y p o x i a e x a c e r b a t e si n f l a mm a t o r y a c u t el u n g i n j u r y v i at h et o l l-l i k er e c e p t o r4s i g n a l i n gp a t h w a y J F r o n tI mm u n o l201891667D O I103389f i mm u20180166744 E c k l eT B r o d s k y K B o n n e y M e ta l H I F1Ar e d u c e sa c u t el u n g i n j u r y b y o p t i m i z i n g c a r b o h y d r a t e m e t a b o l i s m i nt h ea l v e o l a re p i t h e l i u m J P L o S B i o l2013119e1001665D O I101371j o u r n a l p b i o100166545 M a g n a n iN D D a d aL A Q u e i s s e r MA e t a l H I Fa n d H O I L-1L-m e d i a t e dP K Cζd e g r a d a t i o ns t a b i l i z e s p l a s m a m e m b r a n e N a K-A T P a s e t o p r o t e c t a g a i n s t h y p o x i a-i n d u c e d l u n g i n j u r yJ P r o c N a t l A c a d S c i U S A 201711447E10178-E10186D O I101073p n a s1713563114收稿日期2019-03-26㊃9881㊃国际呼吸杂志2019年12月第39卷第24期I n t JR e s p i r,D e c e m b e r2019,V o l.39,N o.24Copyright©博看网. All Rights Reserved.。
缺氧诱导因子-1生物学特性的研究新进展
李国青;张育
【期刊名称】《实用医药杂志》
【年(卷),期】2005(22)8
【摘要】缺氧诱导因子-1(Hypoxia inducible factor-1,HIF-1)是在缺氧条件下广泛存在于哺乳动物和人体内的一种转录因子,它最先由Semenza于1992年在缺氧诱导的细胞核抽提物中发现。
目前已发现HIF-1可调控一系列靶基因的表达,具有许多重要的生物学效应,其已成为近年来的研究热点。
本文主要就HIF-1在结构、功能调节、靶基因及其调控方面的研究新进展综述如下。
【总页数】2页(P749-750)
【作者】李国青;张育
【作者单位】扬州大学医学院,江苏,扬州,225001;扬州大学医学院,江苏,扬
州,225001
【正文语种】中文
【中图分类】Q5;Q7
【相关文献】
1.缺氧诱导因子-1α对A549细胞株中生存素表达及其生物学特性的影响 [J], 舒红梅;赵成岭;孙艳;李伟;陈余清
2.人脐带华通胶间充质干细胞的生物学特性及研究新进展 [J], 何蓓;杨晓清
3.空肠弯曲杆菌生物学特性及分型技术研究新进展 [J], 翟海华;王娟;王君玮;常维山;邵卫星
4.缺氧诱导因子-1α基因多态性与疾病的研究新进展 [J], 黄朝任;邹光美
5.肝缺氧诱导因子-1α与肝癌发生、发展及治疗研究新进展 [J], 李姗姗;姚登福;董志珍
因版权原因,仅展示原文概要,查看原文内容请购买。
2023-10-28CATALOGUE 目录•缺氧诱导因子的基本介绍•缺氧诱导因子在生理病理过程中的作用•缺氧诱导因子研究的实验方法与技术•缺氧诱导因子研究的临床应用与前景•总结与展望01缺氧诱导因子的基本介绍缺氧诱导因子的定义缺氧诱导因子(HIF)是一种转录因子,它能够响应细胞缺氧的刺激,并激活一系列与缺氧适应相关的基因表达。
HIF是由α和β两个亚基组成的异二聚体,其中α亚基负责调节HIF的稳定性,β亚基则负责调节HIF的活性。
缺氧诱导因子的作用机制当细胞处于缺氧状态时,HIF的α亚基会被脯氨酸羟化酶羟化,进而被泛素-蛋白酶体系统降解,使得HIF的稳定性降低。
被降解的HIF的α亚基与β亚基分离,然后通过与激活蛋白(HIF-1β/ARNT)重新结合形成具有活性的HIF二聚体。
有活性的HIF二聚体能够进入细胞核,与靶基因的启动子结合,从而激活一系列与缺氧适应相关的基因表达。
HIF的研究起源于20世纪90年代,早期的研究主要集中在低氧条件下HIF 的表达和功能。
随着研究的深入,人们发现HIF在肿瘤、心血管疾病、神经系统疾病等多种疾病中发挥重要作用,因此对HIF的研究逐渐扩展到各种疾病的治疗和预防。
目前,对HIF的研究已经深入到分子机制和基因调控水平,同时也涌现出许多针对HIF的治疗策略,如抑制脯氨酸羟化酶、抑制泛素-蛋白酶体系统等。
缺氧诱导因子的研究历史与现状02缺氧诱导因子在生理病理过程中的作用缺氧诱导因子与呼吸循环系统总结词缺氧诱导因子在呼吸循环系统中具有重要调节作用详细描述缺氧诱导因子(HIF)是一种转录因子,在低氧环境下可诱导多种基因表达,以适应缺氧环境。
在呼吸循环系统中,HIF可调节红细胞生成、血管生成、血压以及心脏功能等。
HIF参与能量代谢的调节并具有重要生物学意义详细描述在能量代谢过程中,HIF可诱导与糖酵解、脂肪酸氧化以及线粒体生物合成等相关的基因表达,以适应缺氧环境下的能量需求。
总结词HIF对免疫系统具有重要影响和生物学意义详细描述HIF不仅参与免疫细胞的激活和分化,还可调节炎症反应以及抗感染能力。
低氧诱导因子-1调控肿瘤代谢的研究进展摘要:低氧诱导因子-1(hypoxia-inducible factor 1,HIF-1)是一种对氧敏感的核转录因子,其表达与肿瘤的生长密切相关,尤其在调控肿瘤细胞能量代谢重编程中发挥着重要的作用,它通过激活编码葡萄糖转运体,糖酵解酶类以及丙酮酸脱氢酶激酶等基因,在低氧条件下实现由氧化磷酸化代谢方式向糖酵解方式的转变,维持了肿瘤细胞内氧化还原的稳态和能量供给。
因此,靶向HIF-1及其编码的与代谢相关的酶系将成为肿瘤治疗的新策略。
关键词:低氧诱导因子;代谢重编程;糖酵解;靶向治疗恶性肿瘤为了满足快速生长的需求,会发生代谢的重编程。
在常氧条件下,正常组织细胞摄取葡萄糖进入糖酵解途径生成丙酮酸,经过三羧酸循环由线粒体氧化磷酸化产生三磷酸腺苷(ATP)。
在缺氧条件下,丙酮酸在乳酸脱氢酶的作用下生成乳酸产生ATP。
而肿瘤细胞无论氧气是否充足都以生成乳酸的糖酵解代谢方式产生能量,这种特殊的代谢方式称为有氧糖酵解[1]。
随着肿瘤研究的不断深入,肿瘤细胞调控代谢重编程的重要信号通路及转录因子已初步阐明。
本文将重点对低氧诱导因子-1(HIF-1)调控肿瘤细胞代谢重编程的分子机制及靶向HIF-1治疗策略的研究进行综述。
1 HIF-1的调节机制转录因子HIF-1是由HIF-1α和HIF-1β两个亚基组成的异源二聚体蛋白[2]。
在常氧条件下,HIF-1α蛋白的第402位和第564位脯氨酸残基在羟基化酶的作用下发生羟基化,然后被泛素化降解,这个过程需要氧气、α-酮戊二酸和二价铁离子作为底物参与其中[3]。
在低氧条件下,羟基化酶的活性被抑制,HIF-1α蛋白迅速积累,并与HIF-1β形成二聚体结合于靶基因的低氧反应元件上,并招募共激活分子P300/CBP,激活靶基因的转录[4]。
研究发现HIF-1能调控1000多个靶基因,其中大多数基因都是促进肿瘤细胞存活,包括代谢重编程,血管新生和迁移等相关的基因[5]。
低氧诱导因子HIF-1α在人体内是一种重要的生物活性蛋白质,它在缺氧情况下对能量代谢起着至关重要的调控作用。
本文将围绕HIF-1α在能量代谢中的作用进行文献解读,以期全面了解该蛋白对人体功能的影响。
1. HIF-1α的基本介绍HIF-1α是一种由基因HIF1A编码的蛋白质,其编码基因位于人类染色体14q23.2-q24.1上,由该基因转录、翻译得到的蛋白质主要分布在细胞的细胞质内。
HIF-1α的主要功能是在细胞缺氧时,通过调节多种基因的表达,以适应低氧环境。
其中,其对能量代谢的调控作用备受研究者的关注。
2. HIF-1α与能量代谢研究表明,HIF-1α在细胞缺氧时能够促进糖酵解途径的进行,增加葡萄糖转化为丙酮酸和乳酸的速率,从而增加ATP的产生。
HIF-1α还可以抑制线粒体的功能,减少线粒体呼吸链的活性,从而减少氧化磷酸化的过程,进一步节约细胞内氧气的利用。
通过这些方式,HIF-1α能够在细胞缺氧时维持细胞内的能量供应,保障细胞正常的生理功能。
3. HIF-1α与疾病的关系近年来的研究发现,HIF-1α在多种疾病的发生发展中发挥着重要的作用。
在肿瘤的发生过程中,肿瘤组织由于生长速度快、造血不足等原因,常常处于低氧状态,HIF-1α的异常活化对肿瘤的代谢、侵袭和转移等过程起着重要的调节作用。
另外,在心脏缺血再灌注损伤、糖尿病等多种疾病中,HIF-1α的异常表达也与疾病的发生发展密切相关。
4. HIF-1α的研究进展目前,针对HIF-1α的研究已经取得了许多重要的进展。
通过基因工程技术,研究者可以对HIF-1α基因进行敲除或过表达,从而揭示了该基因在细胞能量代谢中的重要作用。
另外,一些研究还发现了HIF-1α的调控机制,比如HIF-1α的翻译后修饰、HIF-1α与其他蛋白的相互作用等,这为进一步揭示HIF-1α的功能机制打下了重要的基础。
5. 未来的研究方向虽然HIF-1α在能量代谢中的作用已经得到了一定程度的解析,但其在细胞生理和病理过程中的复杂调控机制仍有待进一步研究。
HIF-1在肿瘤细胞中的研究进展【中图分类号】R418【文献标识码】B【文章编号】1005-0515(2011)02-0038-01肿瘤最主要的特征是肿瘤细胞的失控性生长,不断增加的细胞数及高代谢状态将导致绝大多数肿瘤耗氧量的增加,造成肿瘤内缺氧微环境的形成,且在实体瘤中表现更明显。
肿瘤细胞适应缺氧的策略,一是提高糖酵解的速率,二是形成多血管体系,在肿瘤发生发展过程中,肿瘤增殖速度超过血管生成速度就会造成局部组织缺氧,肿瘤组织内血管结构及功能的异常,肿瘤细胞血供减少以及快速增殖导致肿瘤细胞耗氧量增加。
肿瘤组织的缺氧在肿瘤病理过程中异常重要,缺氧与肿瘤细胞的生长、分化、浸润、转移等生物学行为都有关系,而且导致肿瘤细胞对放疗、化疗耐受抵抗及治疗的失败[1]。
诱导因子-1( Hypoxia-inducible factor-1,HIF-1)HIF-1是在缺氧条件下存在于哺乳动物和人体内的一种转录因子,是由Semeza和Wang于1992年在低氧的肝癌细胞株Hep3B细胞的核提取物中发现的一种蛋白特异性结合于红细胞生成素基因增强子的寡核苷酸序列。
缺氧诱导因子-1作为细胞平衡和缺氧诱导基因表达的中心调节因子,可调控一系列靶基因(如VEGF,GLUT1,GLUT3)的转录,在肿瘤的增殖、转移以及发生、发展中起着重要作用。
它不仅在肿瘤细胞及其转移细胞中过度表达,而且能诱导肿瘤组织中异常基因的表达,同时对肿瘤细胞的生长、肿瘤新生血管形成密切相关。
1HIF-1a功能1.1促进红细胞生成。
肿瘤乏氧条件下HIF-1表达增加,诱导促红细胞生成素(erythropoiesis,EPO)受体表达增加。
EPO在许多组织及细胞包括红细胞、肿瘤细胞等存在,是促红细胞生成的刺激因子。
HIF-1诱导EPO表达增加可促进红细胞生成,增加血液氧的运输,减轻肿瘤组织缺氧,增强肿瘤细胞的适应性[2]。
1.2促进肿瘤血管形成及能量代谢。
HIF-1的目的基因中包含有许多与葡萄糖代谢和糖酵解相关的酶,缺氧状态下,肿瘤细胞通过HIF-1上调这些酶的表达,使细胞适应缺氧状态。
2005,25(9):3563.[12]Arnold J M,M ok SC,Purdie D,et al.Decreased expres sion of the Id3geneat 1p36.1i n ovarian adenocarcinomas[J].Br J Cancer,2001,84(3):352.[13]Damdi nsuren B,Nagano H,Kondo M,et al.Expression of Id proteins inhuman hepatocellular carci noma:relevance to tumor dedifferentiati on[J].Int.J.Oncol,2005,26(2)319.[14]Gupta GP,Perk J,Acharyya S.ID genes mediate tumor rei nitiati on duri ngbreas t cancer lung metastasis[J ].Proc Natl Acad Sci,2007,104(49):19506.[15]Asirvatham AJ,Care y J P,Chaudhary J.ID1 ,ID2 ,and ID3 regulatedgene expression i n E2A positive or negative prostate cancer cells[J ].Prostate,2007,67(13):1411.[16]Ts uchiya T,Okaji Y,Tsuno N H,et al.Targeti ng Id1and Id3inhibi tsperitoneal metastasis of gas tric cancer [J ].Cancer Sci,2005,96(11):784.[17]Kee Y,Bronner Fraser M.To proliferate or to Id3in cell c ycle progression and survival of neural progenitors[J].Genes Dev,2005,19(6):744.[18]Stighall M,Manetopoulos C,Axelson H,et al.High ID2protein expression correlates with a favourable prognosis i n patients with pri mary breas t cancer and reduces cell ular invasiveness of breast cancer cells [J].Int J Cancer,2005,115(3):403.[19]Vandeputte D A,Troos t D,Leenstra S,et al.Expres sion and distributi onof i d helix loop helix proteins in human astrocytic tumors[J].Glia,2002,38(4):329.(收稿日期:2010-04-16)*通讯作者文章编号:1007-4287(2011)01-0177-03缺氧诱导因子(HIF 1)的结构、调节与靶基因研究进展邢英琦,徐 静,李 琳,江新梅*(吉林大学第一医院神经内科,吉林长春130021)O 2对于所有微生物的生存至关重要,是维持细胞内能量平衡的有氧代谢必不可少的物质。
·84·困讣压学呼吸系统分册2003年第2={卷第2期缺氧诱导因子一1信号转导通路的研究进展南华大学附属第三医院呼吸病研究室(衡阳421900)李炽观综述载爱国审校摘要缺氧诱导因子1(HIF1)是机体细胞在低氧环境中产牛的一种结合DNA蛋山质因子.枉低氧信号转导中起刮一个咀曼的中介作Ⅲ.通过转录水平参与对低氧反应基因的调控,从Ifij使机体刘低氧刺激作出复朵的病理生理反J矗。
但其洋细的信号转导通路机制还未完全清楚关键词缺氧诱导因子1;信号转导通路;低氧低氰环境中,机体及细胞对缺氧的反应极其复杂。
细胞适应低氧环境足通过对一些特殊基因的凋甘来文现的,象血管内发细胞生长因子(VEGF)、红细胞生成素(EP())和HIF一1。
其巾,I¨F1足一个蕈要的中介物质。
通过它进而对一系列的低氧反应基凶(bypox[aresponsivegenes.HRG)进行转录调节.从而产牛·系列的生理适应,如红细胞生成增多.使携氧能力增强;血管再生和重建;糖酵解能力增强.使尤氧条什下ATP乍成增多,以满足组织细胞的能星代谢。
但低氧环境下,细胞是通过何种信号转导通路产生H1F一1还未完全清楚。
本文就其可能的信号转导通路作一综述。
1缺氧诱导园子-lHIF一1是在缺氧诱导的细胞核抽取物中发现的一种I)NA结台挫蜇自质分了,被认为足信号转导通路中晌一个关键成分。
结构分析表明HIF1丰要以异源二聚体形式存在。
由分子质量为120ku的d亚基(111F1n)和由91/93/94kii_种13亚基(H1F—10)绀成。
在活性的HIF一1中。
HIF1以双亚基形式和IIlFl结合位点DNA相互作用,进行转求调控。
HIF一1“为HIFl所特有,仅在缺氧细胞孩中存存。
常氧环境中,HIF—let的含量甚微,很难检测到.『『『『存低氧环境中.HIF一1a却大量集聚并转移至细胞核中,此过程称作核转位。
其可能机制是常氧rJ“生的HIF一1Q被vorl—hippel—lindau蛋白结台而被修饰,从而成为Ubiquitin蛋白酶降解的靶LI标。