万洪文物理化学教材习题答案
- 格式:doc
- 大小:272.00 KB
- 文档页数:71
第一篇化学热力学第一章热力学基本定律.1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。
试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 , ΔH = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为pϑ,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1·mol-1。
)解:理想气体等压升温(n变)。
Q=nC p,m△T=(1000pϑ)/(8.314×290)×C p,m△T=1.2×107J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH。
(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1), 因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K。
ΔU=W=nCV,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为pϑ,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知C p,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。
习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
第七章基元反应动力学练习题7-2 基元反应,2A(g)+B(g)==E(g),将2mol的A与1mol的B放入1升容器中混合并反应,那么反应物消耗一半时的反应速率与反应起始速率间的比值是多少?:解:[A]:[B]= 2:1 , 反应物消耗一半时[A]=0.5[A]0 ,[B]= 0.5[B]0 , r = k[A]2 [B]r : r0= 1 : 87-3 反应aA==D,A反应掉15/16所需时间恰是反应掉3/4所需时间的2倍,则该反应是几级。
解:r = k[A]n , n=1时t = ln ([A]0/[A])/k , t (15/16) : t (3/4) = ln16/ ln4 = 27-4 双分子反应2A(g) B(g) + D(g),在623K、初始浓度为0.400mol dm-3时,半衰期为105s,请求出(1) 反应速率常数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少?解:(1) r = k[A]2 , t 0.5= 1/(2 k[A]0) , k = 0.012dm3mol-1s-1(2) 1/[A] – 1/[A]0 =2 k t , t = 945 s(3) ln(k/k’)=(Ea/R)(1/T ’-1/T) , 573K时k = 0.00223dm3mol-1s-1,最大反应速率rmax = k[A]02=3.6×10-4 moldm-3s-1.7-5 500K时气相基元反应A + B = C,当A和B的初始浓度皆为0.20 mol dm-3时,初始速率为5.0×10-2 mol dm-3 s-1(1) 求反应的速率系数k;(2) 当反应物A、B的初始分压均为50 kPa(开始无C),体系总压为75 kPa时所需时间为多少?解:(1) r0 = k[A]0 [B]0 , k =1.25 dm3 mol-1 s-1(2) p0(A) = p0(B) , r = kp p (A) 2 , p =2 p0(A) - p (A) , p (A)= p0(A)/ 2 , kp = k/(RT) ,t1/2 =1/[ kp p0(A) ] = 66 s7-6 已知在540―727K之间和定容条件下,双分子反应CO(g)+ NO2(g)→CO2(g)+NO(g)的速率系数k表示为k / (mol-1 dm3 s-1) = 1.2×1010exp[Ea /(RT)],Ea= -132 kJ mol-1。
第七章 基元化学反应动力学习题及答案1. N 2O 5在25℃时分解反应的半衰期为5.7h, 且与N 2O 5的初始压力无关。
试求此反应在25℃条件下完成90%所需时间。
解:由题意知此反应为一级反应 111216.07.56932.06932.021-===h t kt k y1)11ln(=- h k y t 9.181216.0/)%9011ln(/)11ln(1=-=-=即完成90%所需时间为18.9h 。
2.异丙烯醚气相异构化成丙烯酮的反应是一级反应,其反应速率系(常)数与温度的关系为:k /s -1 =5.4×1011exp(-122 474 J ·mol -1/RT ),150℃下,反应开始时只有异丙烯醚,其压力为101 325 Pa ,问多长时间后,丙烯酮的分压可达54 kPa ?解:k /S -1=5.4×1011exp[-122474/8.314×(150+273)]=4.055×10-4据题意:kt p p t=0lnt 410005.454000101325101325ln-⨯=-t =1877S3. 双分子反应2A(g)−→−k B(g) + D(g),在623K 、初始浓度为0.400mol dm -3时,半衰期为105s,请求出 (1) 反应速率系数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少? 解:(1) r = k[A]2 , t0.5= 1/(2 k[A]0) , k = 0.012dm3mol-1s-1(2) 1/[A]– 1/[A]0 =2 k t, t = 945 s(3) ln(k/k’)=(E a/R)(1/T ’-1/T) , 573K时k = 0.00223dm3mol-1s-1,最大反应速率r max = k[A]02=3.6×10-4 moldm-3s-1.4. 450℃时实验测定气相反应3A + B→2C的速率数据如下;实验初压 / Pa 初速率-dp B / dt / (Pa/h)P A,0 P B,01. 100 1.00 0.01002. 200 1.00 0.04003. 400 0.50 0.0800(1)若反应的速率方程为r = kP A x P B y,求x、y及k。
第七章 基元化学反应动力学习题及答案1. N 2O 5在25℃时分解反应的半衰期为5.7h, 且与N 2O 5的初始压力无关。
试求此反应在25℃条件下完成90%所需时间。
解:由题意知此反应为一级反应 111216.07.56932.06932.021-===h t kt k y1)11ln(=- h k y t 9.181216.0/)%9011ln(/)11ln(1=-=-=即完成90%所需时间为18.9h 。
2.异丙烯醚气相异构化成丙烯酮的反应是一级反应,其反应速率系(常)数与温度的关系为:k /s -1 =5.4×1011exp(-122 474 J ·mol -1/RT ),150℃下,反应开始时只有异丙烯醚,其压力为101 325 Pa ,问多长时间后,丙烯酮的分压可达54 kPa ?解:k /S -1=5.4×1011exp[-122474/8.314×(150+273)]=4.055×10-4据题意:kt p p t=0lnt 410005.454000101325101325ln-⨯=-t =1877S3. 双分子反应2A(g)−→−k B(g) + D(g),在623K 、初始浓度为0.400mol dm -3时,半衰期为105s,请求出 (1) 反应速率系数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少? 解:(1) r = k[A]2 , t0.5= 1/(2 k[A]0) , k = 0.012dm3mol-1s-1(2) 1/[A]– 1/[A]0 =2 k t, t = 945 s(3) ln(k/k’)=(E a/R)(1/T ’-1/T) , 573K时k = 0.00223dm3mol-1s-1,最大反应速率r max = k[A]02=3.6×10-4 moldm-3s-1.4. 450℃时实验测定气相反应3A + B→2C的速率数据如下;实验初压 / Pa 初速率-dp B / dt / (Pa/h)P A,0 P B,01. 100 1.00 0.01002. 200 1.00 0.04003. 400 0.50 0.0800(1)若反应的速率方程为r = kP A x P B y,求x、y及k。
第一篇化学热力学第一章热力学基本定律.1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。
试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 , ΔH = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为pϑ,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1·mol-1。
)解:理想气体等压升温(n变)。
Q=nC p,m△T=(1000pϑ)/(8.314×290)×C p,m△T=1.2×107J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH。
(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1), 因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K。
ΔU=W=nCV,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为pϑ,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知C p,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。
第七章基元反应动力学练习题7-2 基元反应,2A(g)+B(g)==E(g),将2mol的A与1mol的B放入1升容器中混合并反应,那么反应物消耗一半时的反应速率与反应起始速率间的比值是多少?:解:[A]:[B]= 2:1 , 反应物消耗一半时[A]=0.5[A]0 ,[B]= 0.5[B]0 , r = k[A]2 [B]r : r0= 1 : 87-3 反应aA==D,A反应掉15/16所需时间恰是反应掉3/4所需时间的2倍,则该反应是几级。
解:r = k[A]n , n=1时t = ln ([A]0/[A])/k , t (15/16) : t (3/4) = ln16/ ln4 = 27-4 双分子反应2A(g) B(g) + D(g),在623K、初始浓度为0.400mol dm-3时,半衰期为105s,请求出(1) 反应速率常数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少?解:(1) r = k[A]2 , t 0.5= 1/(2 k[A]0) , k = 0.012dm3mol-1s-1(2) 1/[A] – 1/[A]0 =2 k t , t = 945 s(3) ln(k/k’)=(Ea/R)(1/T ’-1/T) , 573K时k = 0.00223dm3mol-1s-1,最大反应速率rmax = k[A]02=3.6×10-4 moldm-3s-1.7-5 500K时气相基元反应A + B = C,当A和B的初始浓度皆为0.20 mol dm-3时,初始速率为5.0×10-2 mol dm-3 s-1(1) 求反应的速率系数k;(2) 当反应物A、B的初始分压均为50 kPa(开始无C),体系总压为75 kPa时所需时间为多少?解:(1) r0 = k[A]0 [B]0 , k =1.25 dm3 mol-1 s-1(2) p0(A) = p0(B) , r = kp p (A) 2 , p =2 p0(A) - p (A) , p (A)= p0(A)/ 2 , kp = k/(RT) ,t1/2 =1/[ kp p0(A) ] = 66 s7-6 已知在540―727K之间和定容条件下,双分子反应CO(g)+ NO2(g)→CO2(g)+NO(g)的速率系数k表示为k / (mol-1 dm3 s-1) = 1.2×1010exp[Ea /(RT)],Ea= -132 kJ mol-1。
第一篇化学热力学第一章热力学基本定律.1—1 0.1kg C6H6(l)在,沸点353。
35K下蒸发,已知(C6H6) =30。
80 kJ mol-1.试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 ,ΔH = Q = n = 39。
5 kJ ,W= —nRT = -3.77 kJ ,ΔU =Q+W=35.7 kJ1—2 设一礼堂的体积是1000m3,室温是290K,气压为pϑ,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29。
29 J K—1·mol-1。
)解:理想气体等压升温(n变).Q=nC p,m△T=(1000pϑ)/(8.314×290)×C p,m△T=1.2×107J1-3 2 mol单原子理想气体,由600K,1。
0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH.(Cp ,m=2。
5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W ,即nC V,m (T2—T1)= - p2(V2-V1),因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K.ΔU=W=nCV,m(T2—T1)=—5.39kJ ,ΔH=nC p,m(T2—T1)=—8.98 kJ1—4 在298。
15K,6×101。
3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为pϑ,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知C p,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21—γT2γ, T2=145。
6 K ,ΔU=W=nC V,m(T2-T1)=—1.9 kJ , ΔH=nC p,m(T2-T1)=-3。
17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2—T1)= - p2(V2—V1) ,求出T2=198。
第一篇化学热力学第一章热力学基本定律.1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。
试计算此过程Q,W,ΔU和ΔH值。
解:等温等压相变。
n/mol =100/78 , ΔH = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ ,ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为pϑ,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1·mol-1。
)解:理想气体等压升温(n变)。
Q=nC p,m△T=(1000pϑ)/(8.314×290)×C p,m△T=1.2×107J1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。
计算该过程的Q、W、ΔU和ΔH。
(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。
ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1),因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K。
ΔU=W=nCV,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为pϑ,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。
(已知C p,m=2.5 R)。
解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。
同理,ΔU=W=-1.24kJ,ΔH=-2.07kJ。
1-5 1 mol水在100℃,pϑ下变成同温同压下的水蒸气(视水蒸气为理想气体),然后等温可逆膨胀到pϑ,计算全过程的ΔU,ΔH。
已知g∆H m(H2O , 373.15K,pϑ)= 40.67kJ mol-1。
l解:过程为等温等压可逆相变+理想气体等温可逆膨胀,对后一步ΔU,ΔH均为零。
ΔH=Hm= 40.67kJ ,ΔU=ΔH –Δ(pV) = 37.57kJ1-6 某高压容器中含有未知气体,可能是氮气或氩气。
在29K时取出一样品,从5dm3绝热可逆膨胀到6dm3,温度下降21K。
能否判断容器中是何种气体?(若设单原子气体的C V,m=1.5R,双原子气体的C V,m=2.5R)解:绝热可逆膨胀: T2=277 K , 过程方程T1V1γ-1= T2V2γ-1, 求出γ=7/5 , 容器中是N2.1-7 1mol单原子理想气体(C V,m=1.5R ),温度为273K,体积为22.4dm3,经由A途径变化到温度为546K、体积仍为22.4dm3;再经由B途径变化到温度为546K、体积为44.8dm3;最后经由C途径使系统回到其初态。
试求出:(1)各状态下的气体压力;(2)系统经由各途径时的Q,W,ΔU,ΔH值;(3)该循环过程的Q, W,ΔU,ΔH。
解:A途径: 等容升温,B途径等温膨胀,C途径等压降温。
(1) p1= , p2=2 , p3=(2) 理想气体: ΔU=nCV,mΔT, ΔH=nCp,mΔT .A途径, W=0, Q=ΔU ,所以Q,W,ΔU,ΔH分别等于3.40 kJ , 0 , 3.40 kJ , 5.67 kJB途径,ΔU=ΔH=0,Q=-W,所以Q,W,ΔU,ΔH分别等于3.15 kJ , -3.15 kJ , 0 , 0 ;C途径, W=-pΔV, Q=ΔU–W, 所以Q,W,ΔU,ΔH分别等于-5.67 kJ , 2.27 kJ , -3.40 kJ , -5.67 kJ(3)循环过程ΔU=ΔH=0 ,Q = -W= 3.40+3.15+(-5.67)=0.88 kJ1-8 2mol某双原子分子理想气体,始态为202.65kPa,11.2dm3,经pT=常数的可逆过程,压缩到终态为405.20kPa.求终态的体积V2温度T2及W,ΔU,ΔH.( Cp ,m=3.5 R).解:p1T1= p2T2 , T1=136.5K求出T2=68.3K,V2=2.8dm3,ΔU=nCV,mΔT=-2.84kJ,ΔH=nCp,mΔT=-3.97kJ , δW = -2nRdT , W= -2nRΔT=2.27 kJ1-9 2mol,101.33kPa,373K的液态水放入一小球中,小球放入373K恒温真空箱中。
打破小球,刚好使H2O(l)蒸发为101.33kPa,373K的H2O(g)(视H2O(g)为理想气体)求此过程的Q,W,ΔU,ΔH; 若此蒸发过程在常压下进行,则Q,W,ΔU,ΔH的值各为多少?已知水的蒸发热在373K, 101.33kPa时为40.66kJmol-1。
.解:101.33kPa , 373K H2O(l)→H2O(g)(1)等温等压可逆相变, ΔH=Q=n Hm= 81.3kJ , W= -nR T=-6.2kJ, ,ΔU=Q+W=75.1kJ(2)向真空蒸发W=0, 初、终态相同ΔH=81.3kJ,,ΔU =75.1kJ,Q =ΔU =75.1kJ1-10将373K,50650Pa的水蒸气0.300m3等温恒外压压缩到101.325kPa(此时仍全为水气),后继续在101.325kPa恒温压缩到体积为30.0dm3时为止,(此时有一部分水蒸气凝聚成水).试计算此过程的Q,ΔU,ΔH.假设凝聚成水的体积忽略不计,水蒸气可视为理想气体,水的气化热为22.59 Jg-1。
.解:此过程可以看作:n= 4.9mol理想气体等温压缩+n’= 3.92mol水蒸气等温等压可逆相变。
W =-pΔV+ n’RT=27 kJ, Q= pΔV+ n’Hm= -174 kJ, 理想气体等温压缩ΔU,ΔH 为零,相变过程ΔH= n’Hm=-159 kJ, ΔU=ΔH-Δ(pV)= ΔH+ n’RT=-147 kJ1-11 试以T为纵坐标,S为横坐标,画出卡诺循环的T-S 图,并证明线条所围的面积就是系统吸的热和数值上等于对环境作的功。
1-12 1mol单原子理想气体,可逆地沿T=aV (a为常数)的途径,自273K升温到573K,求此过程的W,ΔU,ΔS。
解:可逆途径T=aV (a为常数)即等压可逆途径W=-nR(T2-T1)= -2.49kJΔU=nCV,mΔT=3.74kJ,ΔS= nCp,mln(T2/T1)= 15.40JK-11-13 1 mol理想气体由25℃,1MPa膨胀到0.1MPa,假定过程分别为:(1)等温可逆膨胀;(2)向真空膨胀。
计算各过程的熵变。
解:(1)等温可逆膨胀;ΔS=nRln(V2/V1)= 19.14 J K-1 (2)初、终态相同ΔS= 19.14 J K-11-14 2 mol、27℃、20dm3 理想气体,在等温条件下膨胀到50dm3 ,假定过程为:(1)可逆膨胀;(2)自由膨胀;(3)对抗恒外压膨胀。
计算以上各过程的Q、W、ΔU、ΔH及ΔS。
解:理想气体等温膨胀,ΔU=ΔH=0及ΔS = nRln(V2/V1)= 15.2 J K-1。
(1) 可逆膨胀W= - nRTln(V2/V1)= -4.57 kJ 、Q = - W=4.57 kJ(2) 自由膨胀W=0, Q = - W=0(3) 恒外压膨胀W=-pΔV = -3.0 kJ, Q = - W=3.0 kJ1-15 5 mol某理想气体(Cp,m= 29.10 J K-1 mol-1 ),由始态(400 K,200 kPa)分别经下列不同过程变到该过程所指定的终态。
试分别计算各过程的Q、W、ΔU、ΔH及ΔS。
(1)等容加热到600K;(2)等压冷却到300K;(3)对抗恒外压绝热膨胀到;(4)绝热可逆膨胀到。
解:理想气体ΔU=nCV,mΔT , ΔH=nCp,mΔT , ΔS= nRln(p1/p2)+ nCp,mln(T2/T1)(1)等容升温T2=600K, W=0, Q=ΔU, ΔS=nCV,mln(T2/T1) 所以Q,W,ΔU,ΔH,ΔS分别等于20.79 kJ, 0, 20.79 kJ, 29.10 kJ, 42.15 J K-1(2)等压降温T2=300K ,W=-pΔV , Q=ΔU –W, ΔS= nCp,mln(T2/T1) 所以Q,W,ΔU,ΔH,ΔS分别等于-14.55 kJ, 4.16 kJ,–10.4 kJ,–14.55kJ,–41.86JK-1(3)恒外压绝热膨胀Q=0, W=ΔU, T2=342.9K, ΔS= nRln(p1/p2)+ nCp,mln(T2/T1)=6.40 J K-1(4)绝热可逆膨胀ΔS=0, Q=0,γ=7/5, p1V1γ= p2V2γ, T2=328K所以Q,W,ΔU,ΔH,ΔS分别等于0, –7.47 kJ, –7.47 kJ , –10.46 kJ, 01-16 汽车发动机(通常为点火式四冲程内燃机)的工作过程可理想化为如下循环过程(Otto循环):(1)利用飞轮的惯性吸入燃料气并进行绝热压缩(2)点火、燃烧,气体在上死点处恒容升温(3)气体绝热膨胀对外做功(4)在下死点处排出气体恒容降温。
设绝热指数=1.4 、V1/V2=6.0,求该汽车发动机的理论效率。
解:①→②绝热可逆压缩②→③恒容V2升温③→④绝热可逆膨胀④→①恒容V1降温②→③Q+=CV(T3-T2),④→①Q-=CV(T1-T4), η= |Q++Q-|/ Q+利用绝热可逆过程方程求出η=1-( T2- T3)/( T1-T4)= 1- (V1/V2)1-γ=1-6-0.41-17 1 mol水由始态( ,沸点372.8K)向真空蒸发变成372.8K,水蒸气。
计算该过程的ΔS (已知水在372.8K时的=40.60kJ mol-1)解:设计等温等压可逆相变ΔS= /T=109 J K-11-18 已知水的沸点是100℃,Cp,m(H2O,l)=75.20 J K-1 mol-1,(H2O) =40.67 kJ·mol-1 ,Cp,m(H2O,g)= 33.57 J K-1 mol-1,Cp,m和均可视为常数。
(1)求过程:1 mol H2O(1,100℃,)→1 mol H2O(g,100℃,)的ΔS;(2)求过程:1 mol H2O(1,60℃,)→1 mol H2O(g,60℃,)的ΔU,ΔH,ΔS。