9-1,2+一阶常微分方程
- 格式:ppt
- 大小:1.08 MB
- 文档页数:42
常微分方程的解法总结前言常微分方程(Ordinary Differential Equation,ODE)是研究一阶或高阶导数与未知函数之间关系的数学方程。
在物理学、工程学和计算机科学等领域,常微分方程扮演着重要的角色。
解决常微分方程是这些领域中许多问题的关键。
本文将总结常用的常微分方程解法方法,帮助读者加深对常微分方程的理解并提供解决问题的思路。
一、可分离变量法可分离变量法是一种常见且简单的求解常微分方程的方法。
它适用于形如dy/dx = f(x)g(y)的一阶常微分方程。
解题思路:1.将方程写成dy/g(y) = f(x)dx的形式,将变量进行分离。
2.两边同时积分得到∫(1/g(y))dy = ∫f(x)dx。
3.求出积分后的表达式,并整理得到解 y 的表达式。
使用这种方法解决常微分方程的步骤相对简单,但要注意确认分母不为零以及选取合适的积分常数。
二、特殊方程类型的求解除了可分离变量法,常微分方程还存在一些特殊的方程类型,它们可以通过特定的方法进行解决。
1. 齐次方程齐次方程是指形如dy/dx = F(y/x)的方程。
其中,F(t) 是一个只有一个变量的函数。
解题思路:1.令 v = y/x,即 y = vx。
将方程转化为dy/dx = F(v)。
2.对于dv/dx = F(v)/x这个方程,可以使用分离变量法进行求解。
3.求出 v(x) 后,将其代入 y = vx 得到完整的解。
2. 齐次线性方程齐次线性方程是指形如dy/dx + P(x)y = 0的方程。
解题思路:1.使用积分因子法求解,将方程乘以一个积分因子,使得左边变成一个可积的形式。
2.求积分因子的方法是根据公式μ = e^(∫P(x)dx),其中 P(x) 是已知的函数。
3.通过乘积的方式求解完整的方程。
3. 一阶线性常微分方程一阶线性常微分方程是指形如dy/dx + P(x)y = Q(x)的方程。
解题思路:1.使用积分因子法,将方程乘以一个积分因子,使得左边变成一个可积的形式。
一阶常微分方程一阶常微分方程(Ordinary Differential Equation,简称ODE)是一类重要的数学模型,它可以用来描述大量的现实世界的物理系统或者生物系统。
它是定义在有界区间上的可微函数的一阶求导方程。
其形式为:$$\frac{dy}{dx}=f(x,y)$$其中,$y=y(x)$,表示随着$x$变化,$y$也会随之变化;而$f(x, y)$则表示$y$对$x$的变化率,即$y$的导数。
一阶常微分方程可以分为两类:一类是线性方程,其形式为:$$\frac{dy}{dx}+P(x)y=Q(x)$$其中$P(x)$和$Q(x)$是有限可微函数。
这类方程被称为常系数线性方程,它们的解可以表示为:$$y=e^{-\int P(x)dx}\left[\int Q(x)e^{\intP(x)dx}dx + c \right]$$还有一类是非线性方程,其形式为:$$\frac{dy}{dx}=f(x,y)$$其中$f(x,y)$是有限可微函数。
这类方程的解不能通过积分求得,只能通过数值方法求解,如Euler法、龙格库塔法和Runge-Kutta法等。
一阶常微分方程可以用来描述很多现实世界的物理系统或者生物系统。
例如,可以用一阶常微分方程描述悬挂体的平衡性,可以用来描述水的流动,也可以用来描述人类的行为。
一阶常微分方程的解方法也很多。
例如,可以使用分析解法,如积分法、变分法、Laplace变换法等;也可以使用数值解法,如Euler法、龙格库塔法和Runge-Kutta法等。
一阶常微分方程在现代科学技术中有着重要的作用,它可以用来描述和分析现实世界各种系统的行为,从而更好地分析和控制这些系统。
二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:'''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本身的特解之和。
微分方程阶数越高, 相对于低阶的解法越难。
那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。
而由此产生的通解公式给出了该方程通解的更一般的形式。
设二阶常系数线性非齐次方程为'''()y ay by f x ++= (1) 这里b a 、都是常数。
为了使上述方程能降阶, 考察相应的特征方程20k ak b ++= (2) 对特征方程的根分三种情况来讨论。
1 若特征方程有两个相异实根12k 、k 。
则方程(1) 可以写成'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---=记'2z y k y =- , 则(1) 可降为一阶方程'1()z k z f x -=由一阶线性方程的通解公()()[()]p x dx p x dx y e Q x e dx c -⎰⎰=+⎰[5] (3) 知其通解为1130[()]x k x k t z e f t e dt c -=+⎰这里0()xh t dt ⎰表示积分之后的函数是以x 为自变量的。
再由11230[()]x k x k t dy k y z e f t e dt c dx--==+⎰ 解得12212()()340012[(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-⎰⎰ 应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---⎰⎰ 1122121200121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰ (4) 2 若特征方程有重根k , 这时方程为'''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]xkx kt y ky e e f t dt c --=+⎰再改写为'10()xkx kx kt e y ke y e f t dt c ----=+⎰ 即10()()xkx kt de y ef t dt c dx --=+⎰故120()()xkx kt kx kx y e x t e f t dt c xe c e -=-++⎰(5)例1 求解方程'''256x y y y xe -+=解 这里2560k k -+= 的两个实根是2 , 32()x f x xe =.由公式(4) 得到方程的解是332222321200x x x t t x t t xxy e e te dt e e te dt c e c e --=-++⎰⎰32321200x xx t x x x e te dt e tdt c e c e -=-++⎰⎰2232132x x xx x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里321c c =-.例2 求解方程'''2ln x y y y e x -+=解 特征方程2210k k -+= 有重根1 , ()ln x f x e x =.由公式(5) 得到方程的解是 120()ln x x t t x x y ex t e e tdt c xe c e -=-++⎰120()ln x x x x e x t tdt c xe c e =-++⎰ 1200[ln ln ]x xxx x e x tdt t tdt c xe c e =-++⎰⎰ 21213ln 24x x x x e x c xe c e ⎡⎤=-++⎢⎥⎣⎦ 二 常数变易法二阶常系数非齐次线性微分方程的一般形式是'''()y py qy f x ++=, (6) '''0y py qy ++= , (7) 其中p q 、 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方程(7) 的通解。
《高等数学》各章知识点总结——第9章第9章是《高等数学》中的微分方程章节。
微分方程是研究函数与其导数之间的关系的一门数学学科,是应用数学的基础。
本章主要介绍了常微分方程的基本概念和解法,包括一阶和二阶常微分方程的解法、线性常微分方程、齐次线性常微分方程和非齐次线性常微分方程等。
本章的主要内容如下:1.一阶常微分方程的解法:-可分离变量法:将方程两边进行变量分离,然后分别对两边积分得到解。
-齐次方程法:通过对方程的两边同时除以y的幂次,转化为可分离变量的形式。
- 线性方程法:将方程整理为dy/dx + P(x)y = Q(x)的形式,然后通过积分因子法求解。
2.二阶常微分方程的解法:- 齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = 0的形式,然后通过特征方程求解。
- 非齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = f(x)的形式,然后通过待定系数法求解。
3.线性常微分方程:-线性方程的定义和性质:线性方程是指非齐次线性方程,具有叠加和齐次性质。
-齐次线性方程的通解:通过特征方程求解齐次线性方程,得到通解。
-非齐次线性方程的通解:通过齐次线性方程的通解和非齐次线性方程的一个特解求得非齐次线性方程的通解。
4.齐次线性微分方程:-齐次线性方程的定义和性质:齐次线性方程是指非齐次线性方程中f(x)为零的情况。
-齐次线性方程的解法:通过特征方程求解齐次线性方程,得到通解。
5.非齐次线性微分方程:-非齐次线性方程的定义和性质:非齐次线性方程是指非齐次线性方程中f(x)不为零的情况。
-非齐次线性方程的解法:通过待定系数法求解非齐次线性方程。
6.可降次的非齐次线性微分方程:-可降次的非齐次线性方程的定义和性质:可降次的非齐次线性方程是指非齐次线性方程中f(x)可以表示为x的多项式乘以y(x)的幂函数的形式。