初二数学经典讲义 平行四边形(基础)知识讲解
- 格式:doc
- 大小:241.15 KB
- 文档页数:5
(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
八下平行四边形基础讲解《八下平行四边形基础讲解篇一》嘿,同学们!今天咱们就来唠唠八下平行四边形的那些基础知识。
平行四边形啊,就像是数学世界里的一个大家族,成员还不少呢。
咱先从平行四边形的定义说起。
啥叫平行四边形呢?简单来说,就是两组对边分别平行的四边形呗。
你可以想象啊,就像两条铁轨,它们平行着向前延伸,然后又有另外两条平行的铁轨和它们交叉,这样围起来的四边形就是平行四边形啦。
比如说咱们教室的窗户框,很多都是平行四边形的形状,也许你之前都没太注意呢。
那平行四边形有啥性质呢?这可就多了去了。
它的对边那是相等的,就好像双胞胎似的,两边的长度一模一样。
还有啊,它的对角也是相等的。
这时候可能有人会问了:“为啥呀?”哎,这就是平行四边形的奇妙之处啦。
你可以这么想,把平行四边形看作是一个被压变形的长方形,长方形的对边和对角相等,平行四边形也继承了这个“优良传统”呢。
平行四边形的对角线也有特点。
它们是互相平分的,就像两个好朋友,平分着彼此的东西。
我给你们讲个我自己的事儿啊。
我刚开始学平行四边形的时候,老是把对角线的性质给搞混,总觉得是相等的。
结果做题的时候就错得一塌糊涂,那叫一个惨啊。
我当时就想,这平行四边形怎么就这么难搞呢?不过后来我就想了个笨办法,我自己画了好多不同形状的平行四边形,然后把它们的对角线都量一量,比划比划,慢慢地就记住这个性质了。
咱再说说平行四边形的判定。
怎么才能知道一个四边形是平行四边形呢?这就像是一个小谜题。
首先,如果两组对边分别相等,那这个四边形就是平行四边形。
这就好比两个人,两边的手臂一样长,那他们站在那的形状就像平行四边形啦。
还有啊,如果一组对边平行且相等,这也行。
就像一个人向前走的步伐,一步一步,平行而且距离相等,这样也能构成平行四边形。
另外,如果对角线互相平分,那这个四边形也是平行四边形。
平行四边形在生活中的应用也不少呢。
像那种可伸缩的晾衣架,它在伸缩的过程中,很多部分就构成了平行四边形。
平行四边形专题讲义一、学习目标 复习平行四边形、特殊平行四边形性质与判定,能利用它们进行计算或证明. 二、学习重难点 重点:性质与判定的运用;难点:证明过程的书写。
三、本章知识结构图1.平行四边形是特殊的 ;特殊的平行四边形包括 、 、 。
2.梯形 (是否)特殊平行四边形, (是否)特殊四边形。
3.特殊的梯形包括 梯形和 梯形。
4、本章学过的四边形中,属于轴对称图形的有 ;属于中心对称图形的有 。
四、复习过程 (一)知识要点1:平行四边形的性质与判定1.平行四边形的性质:(1)从边看:对边 ,对边 ; (2)从角看:对角 ,邻角 ; (3)从对角线看:对角线互相 ; (4)从对称性看:平行四边形是 图形。
2、平行四边形的判定:(1)判定1:两组对边分别 的四边形是平行四边形。
(定义)(2)判定2:两组对边分别 的四边形是平行四边形。
(3)判定3:一组对边 且 的四边形是平行四边形。
(4)判定4:两组对角分别 的四边形是平行四边形。
(5)判定5:对角线互相 的四边形是平行四边形。
【基础练习】1.已知□ABCD 中,∠B =70°,则∠A =____,∠C =____,∠D =____.2.已知O 是ABCD 的对角线的交点,AC =38 mm ,BD =24 mm,AD =14 mm ,那么△BOC 的周长等于__ __.3.如图1,ABCD 中,对角线AC 和BD 交于点O ,若AC =8,BD =6,则边AB 长的取值范围是( ). A.1<AB <7 B.2<AB <14 C.6<AB <8 D.3<AB <44.不能判定四边形ABCD 为平行四边形的题设是( ) A.AB=CD,AD=BC B.ABCD C.AB=CD,AD ∥BC D.AB ∥CD,AD ∥BC5.在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,AE=4,AF=6,ABCD 的周长为40,则ABCD 的面积是 ( ) A 、36 B 、48 C 、 40 D 、24【典型例题】例1、若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长. F DA OA B CDOA DDC AB E F M NBE F C AD例2、 如图,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G 。
初二数学平行四边形的判定知识精讲人教义务几何【学习目标】1.掌握并会证明平行四边形的四个判定定理.2.能灵活运用平行四边形的五种判定方法进行有关的计算和证明.【主体知识归纳】平行四边形的判定:1.两组对边分别平行的四边形叫做平行四边形.2.判定定理1:两组对角分别相等的四边形是平行四边形.3.判定定理2:两组对边分别相等的四边形是平行四边形.4.判定定理3:对角线互相平分的四边形是平行四边形.5.判定定理4:一组对边平行且相等的四边形是平行四边形.【基础知识精讲】1.平行四边形的判定定理,是相应性质定理的逆定理,学习时将它们进行对照,有利于记忆.2.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.平行四边形的知识运用包括:(1)直接运用平行四边形的性质去解决某些问题,例如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍、分等;(2)判定一个四边形是平行四边形,从而判定直线平行等;(3)先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.【例题精讲】[例1]在四边形ABCD中,AC和BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法:(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”,那么四边形ABCD一定是平行四边形;(4)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法有()A.3个 B.4个 C.5个 D.6个剖析:本题是一道给出结论和部分条件,让学生探索附加条件的各种可能性的开放性题目,解答这类选择题,一定要严格按照平行四边形的定义及判定定理,认真考查六种说法.说法(1)符合平行四边形的定义;说法(2)符合平行四边形的判定定理4;说法(3)由AB ∥CD和∠DAB=∠DCB,可推断出AB=CD或AD∥BC,也正确;说法(4)可举出反例;说法(5)能证出BO=DO,符合平行四边形的判定定理3;说法(6)不符合平行四边形的判定定理.答案:B[例2]如图4-23,在ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).图4—23(1)连结_____.(2)猜想:_____=_____.(3)证明:剖析:容易猜想连结BF,证明BF=DE.如图4-24,可连结DF、DB,利用“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而证明猜想的结论.又可猜想连结DF,证明DF=BE,证明方法可同上面猜想结论的证明方法.图4—24解法一:(1)BF(2)BFDE(3)证明:连结DB、DF,设DB、AC交于点O,∵四边形ABCD是平行四边形,∴AO=OC,DO=OB,∵AE=FC,∴AO-AE=OC-F C.∴EO=FO.∴四边形EBFD为平行四边形.∴BF=DE.解法二:(1)DF(2)DFBE(3)证明:(略)说明:(1)本例解法一中又可通过△BCF≌△DAE等证明BF=DE.(2)本例是结论猜想型的题目,此类题型是中考中常见题型.[例3]如图4-25,已知AD为△ABC的中线,E为AC上一点,连结BE交AD于F,且AE=FE.求证:BF=A C.图4—25剖析:延长AD到N,使DN=AD,构造出平行四边形ABN C.证明:延长AD到N,使DN=AD,连结BN、,则四边形ABNC为平行四边形.∴BN=AC,BN∥AC,∴∠1=∠4.∵AE=FE,∴∠1=∠2.∵∠2=∠3,∠1=∠4,∴∠3=∠4.∴BN=BF,∴BF=A C.说明:当题目中有三角形中线时,常利用加倍中线构造平行四边形,然后再应用平行四边形的知识证题,用这种方法比利用加倍中线构造全等三角形要方便、简捷.【同步达纲练习】1.填空题(1)一个四边形的边长依次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_____.(2)用两个全等三角形按不同方法拼成四边形,在这些四边形中,平行四边形的个数是_____.(3)四边形ABCD中,已知AB∥CD,若再增加条件______,可知四边形ABCD为平行四边形.(4)如图4-26,在ABCD中,E、F分别是对角线BD上两点,且BE=DF,要证明四边形AECF是平行四边形,最简捷的方法是根据_____来证明.图4—26(5)如图4-27,在ABCD中,E、F分别是AB、CD边上的点,且BE=DF,要证明四边形AECF是平行四边形,可证明_____ _____.图4—27(6)在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题______.2.选择题(1)下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.一组对边平行,一组对角相等的四边形是平行四边形C.两条平行线间的垂线段就是这两条平行线的距离D.平行四边形的一条对角线平分一组对角(2)如图4-28,四边形ABCD是平行四边形,按下列条件得到的四边形BEDF,不一定是平行四边形的是()图4—28A.DE⊥AC于E,BF⊥AC于F(图①)B.BE平分∠ABC,DF平分∠ADC(图②)C.E是AB的中点,F是CD的中点(图③)D.E是AB上一点,EF⊥AB(图④)(3)把两个全等的不等腰三角形拼成平行四边形,可拼成的不同的平行四边形的个数为()A.1 B.2 C.3 D.4(4)如图4-29,在ABCD中,EF∥BC,GH∥AB,GH、EF的交点P在BD上,图中面积相等的平行四边形有()图4—29A.0对 B.1对 C.2对 D.3对3.如图4-30,在ABCD中,AC、BD交于点O,EF过点O分别交AB、CD于E、F,AO、CO的中点分别为G、H.求证:四边形G E H F是平行四边形.图4—304.如图4-31,已知O是ABCD对角线AC的中点,过点O的直线EF分别交AB、CD 于E、F两点.(1)求证:四边形AECF是平行四边形;(2)填空:不增加辅助线的原图中,全等三角形共有_____对.图4—315.如图4-32,在△ABC中,E、G在BC边上,且BE=GC,AB∥EF∥GH.求证:AB=EF+GH.图4—326.已知:平行四边形ABCD,试用两种方法,将平行四边形ABCD分成面积相等的四个部分.(要求用文字简述你所设计的两种方法,并正确画出图形).【思路拓展题】想一想图4—33如图4-33,田村有一呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树,田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写作法)参考答案【同步达纲练习】1.(1)平行四边形(2)3 (3)AB=CD(或AD∥BC,或∠A=∠C等)(4)对角线互相平分的四边形是平行四边形(5)AECF(6)如果AB∥CD,∠A=∠C,那么AD=B C.2.(1)B (2)D (3)C (4)D3.提示:先证△AOE≌△COF,得OE=OF,再证OG=OH.4.(1)提示:证△AOE≌△COF,得OE=OF(2)25.提示:过E作ED∥AC交AB于D,先证△BED≌△GCH,得BD=GH,再证AD=EF.6.略.【思路拓展题】想一想如图所示。
平行四边形1、平行四边形的性质考点一、平行四边形的概念(1)定义:两组对边分别平行的四边形叫做平行四边形.(2) "表示,平行四边形ABCD ABCD”,读作“平行四边形ABCD”。
平行四边形一定按顺时针或逆时针依次注明各顶点。
(3)平行四边形定义的作用:平行四边形的定义既是判定,又是性质.①由定义知平行四边形两组对边分别平行;②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形就是平行四边形。
(4)平行四边形的基本元素:边、角、对角线。
例1中,EF∥AB,GH∥BC,EF、GH相交于点P,写出图中的平行四边形.A E DG P HB F C考点二、平行四边形的性质(1)边的性质:平行四边形的对边平行且相等。
(2)角的性质:平行四边形的邻角互补,对角相等。
(3)对角线性质:平行四边形的对角线互相平分。
例2中,∠A+∠C=160°,求∠A、∠B、∠C、∠D的度数.A BC D 考点三、平行四边形的对角线的性质(1)平行四边形的对角线互相平分.例3中,对角线AC 、BD 相交于O 点,若AC=14,BD=8,AB=10,则△OAB 的周长为_______。
练习题 一、感受理解1.已知 ABCD 的对角线交点,AC=10cm ,BD=18cm ,AD=•12cm ,•则△BOC•的周长是_______.2的对角线AC,BD 交于点O,△AOB 的面积为2,那么平行四边形ABCD 的面积为_____.3.已知平行四边形的两邻边之比为2:3,周长为20cm ,•则这个平行四边形的两条邻边长分别为___________.4.平行四边形的周长为30,两邻边的差为5,则其较长边是________. 5.平行四边形具有,而一般四边形不具有的性质是( ) A .外角和等于360° B .对角线互相平分 C .内角和等于360° D .有两条对角线6.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1。
八年级数学知识点分类讲解第十二讲平行四边形平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分.除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.例1 如图2-32所示.在ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:EF与MN互相平分.分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.证因为ABCD是平行四边形,所以AD BC,AB CD,∠B=∠D.又AE⊥BC,CF⊥AD,所以AECF是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC 且交AC于F.求证:AE=CF.分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC 于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.证作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.说明本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.例3 如图2-34所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.分析由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.证延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM.例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.分析只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.证延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:分析作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.证如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,从而所以 Rt△ABG≌Rt△HCG(AAS),从而Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.分析准确地画图可启示我们证明∠GDH=∠GHD.证因为DE BC,所以四边形BCED为平行四边形,所以∠1=∠4.又BD=FD,所以所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.练习十二1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF 是等边三角形.3.如图2-40所示.ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分。
平行四边形(基础)
【学习目标】
1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理;
2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.
3. 能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.
4. 理解三角形的中位线的概念,掌握三角形的中位线定理.
【要点梳理】
【高清课堂平行四边形知识要点】
要点一、平行四边形的定义
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“Y ABCD”,读作“平行四边形ABCD”.
要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.
要点二、平行四边形的性质
1.边的性质:平行四边形两组对边平行且相等;
2.角的性质:平行四边形邻角互补,对角相等;
3.对角线性质:平行四边形的对角线互相平分;
4.平行四边形是中心对称图形,对角线的交点为对称中心.
要点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系
或倍半关系.
(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.
(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.
要点三、平行四边形的判定
1.两组对边分别平行的四边形是平行四边形;
2.两组对边分别相等的四边形是平行四边形;
3.一组对边平行且相等的四边形是平行四边形;
4.两组对角分别相等的四边形是平行四边形;
5.对角线互相平分的四边形是平行四边形.
要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.
(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.
要点四、三角形的中位线
1.连接三角形两边中点的线段叫做三角形的中位线.
2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.
(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个
小三角形的周长为原三角形周长的1
2
,每个小三角形的面积为原三角形
面积的1
4
.
(3)三角形的中位线不同于三角形的中线.
要点五、平行线间的距离
1.两条平行线间的距离:
(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.
(2)平行线间的距离处处相等
任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的.
2.平行四边形的面积:
平行四边形的面积=底×高;等底等高的平行四边形面积相等.
【典型例题】
类型一、平行四边形的性质
【高清课堂平行四边形例11】
1、如图所示,已知四边形ABCD是平行四边形,若AF、BE分别为∠DAB、∠CBA的平分线.求证:DF=EC.
【答案与解析】
证明:∵在Y ABCD中,CD∥AB,
∠DFA=∠FAB.
又∵ AF是∠DAB的平分线,
∴∠DAF=∠FAB,
∴∠DAF=∠DFA,
∴ AD=DF.
同理可得EC=BC.
∵在Y ABCD中,AD=BC,
∴ DF=EC.
【总结升华】利用平行四边形的性质可以得到对角相等,对边平行且相等,为证明线段相等提供了条件.
举一反三:
【高清课堂平行四边形例12】
【变式】如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE 与线段DF有怎样的关系?并对你的猜想加以证明.
【答案】
证明:猜想:BE ∥DF 且BE =DF.
∵四边形ABCD 是平行四边形
∴CB=AD ,CB ∥AD
∴∠BCE =∠DAF
在△BCE 和△DAF
中
CB AD BCE DAF
CE AF =⎧⎪∠=∠⎨⎪=⎩
∴△BCE ≌△DAF
∴BE =DF ,∠BEC =∠DFA
∴BE ∥DF
即 BE ∥DF 且BE =DF.
类型二、平行四边形的判定
2、如图所示,E 、F 分别为四边形ABCD 的边AD 、BC 上的点,且四边形AECF 和DEBF 都是平行四边形,AF 和BE 相交于点G ,DF 和CE 相交于点H .求证:四边形EGFH 为平行四边形.
【思路点拨】欲证四边形EGFH 为平行四边形,只需证明它的两组对边分别平行,即EG ∥FH ,FG ∥HE 可用来证明四边形EGFH 为平行四边形.
【答案与解析】
证明:∵ 四边形AECF 为平行四边形,
∴ AF ∥CE .
∵ 四边形DEBF 为平行四边形,
∴ BE ∥DF .
∴ 四边形EGFH 为平行四边形.
【总结升华】平行四边形的定义既包含平行四边形的性质,又可以用来判定一个四边形是平行四边形,即平行四边形的两组对边分别平行,两组对边分别平行的四边形是平行四边形. 举一反三:
【变式】如图所示,在Y
ABCD 中,E 、F 分别为BC 、AD 上的点,且BE =DF ,
求证:∠AEC =∠AFC .
【答案】
证明:∵ 四边形ABCD 为平行四边形.
∴ AD BC(平行四边形对边平行且相等).
又∵ BE =DF ,
∴ AF CE .
∴ 四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形). ∴ ∠AEC =∠AFC(平行四边形的对角相等).
类型三、平行四边形与面积有关的计算
3、如图所示,在Y ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =60°,BE =2cm ,DF =3cm ,求AB ,BC 的长及Y
ABCD 的面积.
【思路点拨】在四边形AECF 中,由已知条件∠EAF =60°,可求出∠C =120°,进而求出∠B =60°.由于BE =2cm ,在Rt △ABE 中,可求出AB .同理,在Rt △AFD 中求出AD .要求Y ABCD 的面积,需求出AE 或AF 的长.
【答案与解析】
解:在四边形AECF 中,∵ ∠EAF =60°,AE ⊥BC ,AF ⊥CD ,
∴ ∠C =360°-∠EAF -∠AEC -∠AFC =360°-60°-90°-90°=120°. 在Y
ABCD 中,∵ AB ∥CD ,
∴ ∠B +∠C =180°.∠C +∠D =180°,
∴ ∠B =∠D =60°.
在Rt △ABE 中,∠B =60°,BE =2cm ,
∴ AB =4cm ,CD =AB =4cm .(平行四边形的对边相等)
同理,在Rt △ADF 中,AD =6cm ,∴ BC =AD =6cm , ∴ 22226333AF AD DF =-=-=(cm ).
∴ ABCD S =Y CD ·AF =433⨯=123(2cm ).
【总结升华】本题除了应用平行四边形的性质及勾股定理外,还应用了“直角三角形中,30°的锐角所对的直角边等于斜边的一半”这个直角三角形的性质.
举一反三:
【变式】如图,已知Y
ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,
求该平行四边形的面积.
【答案】
解:平移线段AM 至BE ,连EA ,则四边形BEAM 为平行四边形
∴BE =AM =9,ED =AE +AD =15,
又BD =12
222BE BD DE +=∴
∴∠EBD =90°,BE ⊥BD ,
∴△EBD面积=1
2
BE BD=
g54
又∵2AE=AD
∴△ABD面积=2
54
3
⨯=36
∴Y ABCD的面积=72.
类型四、三角形的中位线
4、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()
A.线段EF的长逐渐增大B.线段EF的长逐渐变小
C.线段EF的长不变D.无法确定
【答案】C;
【解析】连AR,由E、F分别为PA,PR的中点知EF为△PAR的中位线, 则
1
2
EF AR
=,而
AR长不变,故EF大小不变.
【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.。