回溯算法
- 格式:ppt
- 大小:1.86 MB
- 文档页数:48
回溯算法详解
回溯算法是一种经典问题求解方法,通常被应用于在候选解的搜索空间中,通过深度优先搜索的方式找到所有可行解的问题。
回溯算法的本质是对一棵树的深度优先遍历,因此也被称为树形搜索算法。
回溯算法的基本思想是逐步构建候选解,并试图将其扩展为一个完整的解。
当无法继续扩展解时,则回溯到上一步并尝试其他的扩展,直到找到所有可行的解为止。
在回溯算法中,通常会维护一个状态向量,用于记录当前已经构建的解的情况。
通常情况下,状态向量的长度等于问题的规模。
在搜索过程中,我们尝试在状态向量中改变一个或多个元素,并检查修改后的状态是否合法。
如果合法,则继续搜索;如果不合法,则放弃当前修改并回溯到上一步。
在实际应用中,回溯算法通常用来解决以下类型的问题:
1. 组合问题:从n个元素中选取k个元素的所有组合;
2. 排列问题:从n个元素中选择k个元素,并按照一定顺序排列的所有可能;
3. 子集问题:从n个元素中选择所有可能的子集;
4. 棋盘问题:在一个给定的n x n棋盘上放置n个皇后,并满足彼此之间不会互相攻击的要求。
回溯算法的时间复杂度取决于候选解的规模以及搜索空间中的剪枝效果。
在最坏情况下,回溯算法的时间复杂度与候选解的数量成指数级增长,因此通常会使用剪枝算法来尽可能减少搜索空间的规模,从而提高算法的效率。
总之,回溯算法是一种非常有用的问题求解方法,在实际应用中被广泛使用。
同时,由于其时间复杂度较高,对于大规模的问题,需要慎重考虑是否使用回溯算法以及如何优化算法。
回溯算法原理和几个常用的算法实例回溯算法是一种基于深度优先的算法,用于解决在一组可能的解中找到满足特定条件的解的问题。
其核心思想是按照特定的顺序逐步构造解空间,并通过剪枝策略来避免不必要的。
回溯算法的实现通常通过递归函数来进行,每次递归都尝试一种可能的选择,并在达到目标条件或无法继续时进行回溯。
下面介绍几个常用的回溯算法实例:1.八皇后问题:八皇后问题是一个经典的回溯问题,要求在一个8×8的棋盘上放置8个皇后,使得每个皇后都不能相互攻击。
即每行、每列和对角线上都不能有两个皇后。
通过在每一列中逐行选择合适的位置,并进行剪枝,可以找到所有满足条件的解。
2.0-1背包问题:0-1背包问题是一个经典的组合优化问题,要求在一组物品中选择一些物品放入背包,使得其总重量不超过背包容量,同时价值最大化。
该问题可以通过回溯算法进行求解,每次选择放入或不放入当前物品,并根据剩余物品和背包容量进行递归。
3.数独问题:数独问题是一个经典的逻辑推理问题,要求在一个9×9的网格中填入数字1-9,使得每行、每列和每个3×3的子网格中都没有重复数字。
该问题可以通过回溯算法进行求解,每次选择一个空格,并依次尝试1-9的数字,然后递归地进行。
4.字符串的全排列:给定一个字符串,要求输出其所有可能的排列。
例如,对于字符串"abc",其所有可能的排列为"abc"、"acb"、"bac"、"bca"、"cab"和"cba"。
可以通过回溯算法进行求解,每次选择一个字符,并递归地求解剩余字符的全排列。
回溯算法的时间复杂度通常比较高,因为其需要遍历所有可能的解空间。
但是通过合理的剪枝策略,可以减少的次数,提高算法效率。
在实际应用中,可以根据具体问题的特点来设计合适的剪枝策略,从而降低算法的时间复杂度。
五大常用算法回溯算法一、回溯算法的概述回溯算法是一种常用的解决问题的算法,通常用于解决组合优化问题,如排列、组合、子集等问题。
回溯算法通过不断地尝试可能的解,直到找到问题的解或者确定不存在解为止。
它的核心思想是通过递归实现穷举,然后进行剪枝,以提高效率。
回溯算法主要包含以下五个步骤:1.选择:在每一步中,可以根据条件选择一个或多个可能的路径。
2.约束:根据问题的约束条件,限制可选择的路径。
3.:以递归的方式进行,尝试所有可能的解。
4.判断:在的过程中,判断当前路径是否符合问题的要求,如果符合则接受,否则进行回溯。
5.取消选择:在判断出当前路径不符合要求时,撤销当前选择,回到上一步继续尝试其他可能的选择。
回溯算法的优缺点:优点:1.简单直观:回溯算法的思路清晰,易于理解和实现。
2.灵活性高:回溯算法适用于各种问题,没有固定的限制条件,可以根据具体问题进行调整。
3.扩展性好:回溯算法可以通过剪枝策略提高效率,并且可以和其他算法结合使用。
缺点:1.效率低:回溯算法通常需要穷举所有的可能解,因此在处理大规模问题时效率较低。
2.可能的重复计算:由于回溯算法会尝试所有可能的解,所以有可能会产生重复计算的问题。
二、回溯算法的应用回溯算法在许多实际问题中都有应用,包括但不限于以下几个领域:1.组合求解:回溯算法可以用来求解排列、组合、子集等问题。
例如,在给定一组数字的情况下,找到所有可能的组合,使其和等于给定的目标值。
2.图的:回溯算法可以用来解决图的遍历问题,如深度优先、广度优先等。
例如,在给定一张无向图的情况下,找到从起点到终点的路径。
3.数独游戏:回溯算法可以用来解决数独游戏。
数独是一种逻辑类的游戏,在一个9×9的网格中填入1-9的数字,要求每行、每列、每个3×3的子网格都包含1-9的数字,且不能重复。
4.八皇后问题:回溯算法可以用来解决八皇后问题。
八皇后问题是在一个8×8的棋盘上放置八个皇后,要求每行、每列、每个对角线上都不能有两个皇后。
引言寻找问题的解的一种可靠的方法是首先列出所有候选解,然后依次检查每一个,在检查完所有或部分候选解后,即可找到所需要的解。
理论上,当候选解数量有限并且通过检查所有或部分候选解能够得到所需解时,上述方法是可行的。
不过,在实际应用中,很少使用这种方法,因为候选解的数量通常都非常大(比如指数级,甚至是大数阶乘),即便采用最快的计算机也只能解决规模很小的问题。
对候选解进行系统检查的方法有多种,其中回溯和分枝定界法是比较常用的两种方法。
按照这两种方法对候选解进行系统检查通常会使问题的求解时间大大减少(无论对于最坏情形还是对于一般情形)。
事实上,这些方法可以使我们避免对很大的候选解集合进行检查,同时能够保证算法运行结束时可以找到所需要的解。
因此,这些方法通常能够用来求解规模很大的问题。
算法思想回溯(backtracking)是一种系统地搜索问题解答的方法。
为了实现回溯,首先需要为问题定义一个解空间(solution space),这个空间必须至少包含问题的一个解(可能是最优的)。
下一步是组织解空间以便它能被容易地搜索。
典型的组织方法是图(迷宫问题)或树(N皇后问题)。
一旦定义了解空间的组织方法,这个空间即可按深度优先的方法从开始节点进行搜索。
回溯方法的步骤如下:1) 定义一个解空间,它包含问题的解。
2) 用适于搜索的方式组织该空间。
3) 用深度优先法搜索该空间,利用限界函数避免移动到不可能产生解的子空间。
回溯算法的一个有趣的特性是在搜索执行的同时产生解空间。
在搜索期间的任何时刻,仅保留从开始节点到当前节点的路径。
因此,回溯算法的空间需求为O(从开始节点起最长路径的长度)。
这个特性非常重要,因为解空间的大小通常是最长路径长度的指数或阶乘。
所以如果要存储全部解空间的话,再多的空间也不够用。
算法应用回溯算法的求解过程实质上是一个先序遍历一棵"状态树"的过程,只是这棵树不是遍历前预先建立的,而是隐含在遍历过程中<<数据结构>>(严蔚敏).(1) 幂集问题(组合问题) (参见《数据结构》(严蔚敏))求含N个元素的集合的幂集。
回溯算法详解
回溯算法是一种常用的解决问题的方法,它的目的是在一个大的问题空间中寻找到一个解决方案。
回溯算法的基本思想是穷举所有可能的解决方案,直到找到符合条件的解决方案为止。
回溯算法的实现通常包括两个部分:状态表示和状态转移。
状态表示是指将问题的解答空间表示为一个状态树,每个节点表示一个状态,状态转移是指从一个节点转移到另一个节点的过程。
回溯算法的实现过程通常包括三个步骤:选择、回溯和剪枝。
选择是指从当前状态节点选择一个扩展节点作为下一步的状态,回溯是指从一个状态节点返回到它的父节点,剪枝是指在搜索过程中对一些不可能达到目标的状态进行剪枝。
回溯算法常常用于求解组合、排列、子集、划分等问题。
由于回溯算法的时间复杂度很高,因此在实际应用中往往需要结合其他优化算法来提高效率。
总的来说,回溯算法是一种通用的算法,它可以解决许多不同类型的问题。
只要能够将问题的解答空间表示为一个状态树,并且能够找到一种回溯的方法来搜索这个状态树,就可以使用回溯算法来求解问题。
- 1 -。
回溯算法总结对回溯法的理解:回溯法本质就是深搜,对所有可能的结果进⾏搜索匹配,由于很多情况下结果很多,就需要进⾏适当的剪枝和分界限制来加快得到解。
回溯法⽤的最多的就是递归,其实也可⽤递推,但是递归⽐较符合⼈类逻辑。
回溯法的解题通常是有模板的:Void backtrack(){If(到达边界){输出答案/记录答案}Else{ 记录这个点,现存结果更新,递归,现存结果还原,取消该点记录}}回溯法的有三种情况:1):找所有可能解:通过⼀个结果数组记录搜索得到的解,然后再到达边界时输出2):寻找其中过⼀个的解:同上;2):寻找最优(选和不选)在边界点记录/更新最优值 + 在else中除了要对选取这个点的结果进⾏搜索还要对忽略这个点的结果进⾏搜索回溯法的常⽤剪枝:1) :判断该点在之后的所有点组合起来能不能到达最优或者超过当前最优。
不能就剪枝2)当前点是不是访问过,访问过忽略2) 加上当前点是不是会越过限制条件,是的话剪枝3) 如果只要求输出⼀个解,设⽴⼀个flag,有了⼀个答案之后设置flag为1,当flag为1时,全部return⼦集和问题的解空间结构和约束函数:假设给定集合 C = { x1,x2,x3 ……… xn}; 给定正整数P解空间结构 C’ ={ xi,..xk} (1<=i<k<=n)约束函数:1:假设当前的搜索点为 Xi ((1<=i<n)),如果 {Xi+1 ,Xi+2,Xi+3………Xn}的和⼩于P,说明这个这个点取了也没⽤,剪枝;如果⼤于说明接下来的有可能得到P,那就继续搜索2:如果当前点⼤于P,该点不取3: 如果当前点加上当前总和结果⼤于P,不取本章学习遇到的问题:主要是剪枝不充分,导致算法超时问题.结对编程中问题:主要是背包问题的剪枝,要按照严格限界,不然会超时。
这个限界也是之前没有⽤过限界函数.下⾯总结⼀下这个限界函数:⾸先先要把数组进⾏降序排序,预测当前背包剩余容量最⼤可以装下多少价值的物品如果剩余容量能够能够承载的最⼤价值 + 当前的背包价值⼤于当前的最优值,说明这个点可以继续搜索下去。
回溯算法-算法介绍回溯法1、有许多问题,当需要找出它的解集或者要求回答什么解是满⾜某些约束条件的最佳解时,往往要使⽤回溯法。
2、回溯法的基本做法是搜索,或是⼀种组织得井井有条的,能避免不必要搜索的穷举式搜索法。
这种⽅法适⽤于解⼀些组合数相当⼤的问题。
3、回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任意⼀点时,先判断该结点是否包含问题的解。
如果肯定不包含(剪枝过程),则跳过对该结点为根的⼦树的搜索,逐层向其祖先结点回溯;否则,进⼊该⼦树,继续按深度优先策略搜索。
问题的解空间问题的解向量:回溯法希望⼀个问题的解能够表⽰成⼀个n元式(x1,x2,…,xn)的形式。
显约束:对分量xi的取值限定。
隐约束:为满⾜问题的解⽽对不同分量之间施加的约束。
解空间:对于问题的⼀个实例,解向量满⾜显式约束条件的所有多元组,构成了该实例的⼀个解空间。
注意:同⼀个问题可以有多种表⽰,有些表⽰⽅法更简单,所需表⽰的状态空间更⼩(存储量少,搜索⽅法简单)。
下⾯是n=3时的0-1背包问题⽤完全⼆叉树表⽰的解空间:⽣成问题状态的基本⽅法扩展结点:⼀个正在产⽣⼉⼦的结点称为扩展结点活结点:⼀个⾃⾝已⽣成但其⼉⼦还没有全部⽣成的节点称做活结点死结点:⼀个所有⼉⼦已经产⽣的结点称做死结点深度优先的问题状态⽣成法:如果对⼀个扩展结点R,⼀旦产⽣了它的⼀个⼉⼦C,就把C当做新的扩展结点。
在完成对⼦树C(以C为根的⼦树)的穷尽搜索之后,将R重新变成扩展结点,继续⽣成R的下⼀个⼉⼦(如果存在)宽度优先的问题状态⽣成法:在⼀个扩展结点变成死结点之前,它⼀直是扩展结点回溯法:为了避免⽣成那些不可能产⽣最佳解的问题状态,要不断地利⽤限界函数(bounding function)来处死(剪枝)那些实际上不可能产⽣所需解的活结点,以减少问题的计算量。
具有限界函数的深度优先⽣成法称为回溯法。
(回溯法 = 穷举 + 剪枝)回溯法的基本思想(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先⽅式搜索解空间,并在搜索过程中⽤剪枝函数避免⽆效搜索。
回溯算法的实现回溯算法:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。
(以深度优先⽅式搜索)回溯法是⼀种选优搜索法,按选优条件向前搜索,以达到⽬标。
但当探索到某⼀步时,发现原先选择并不优或达不到⽬标,就退回⼀步重新选择。
使⽤回溯法求任⼀个解时,只要搜索到问题的⼀个解就可以结束⽤回溯法求问题的所有解时,要回溯到根,且根结点的所有可⾏的⼦树都要已被搜索遍才结束。
回溯法的实现⽅法有两种:递归和递推(也称迭代)。
⼀般来说,⼀个问题两种⽅法都可以实现,只是在算法效率和设计复杂度上有区别。
递归思路简单,设计容易,但效率低。
递推算法设计相对复杂,但效率⾼。
集合求幂集函数:public class Test{public static void main(String []args){List<String> list = new ArrayList<String>();list.add("A");list.add("B");list.add("C");List<String> li = new ArrayList<String>();print(0,list,li);}public static void print(int i, List<String> list, List<String> li){if(i > list.size()-1){System.out.println(li);}else{li.add(list.get(i)); //左⼦树的处理print(i+1,list,li); //递归遍历li.remove(list.get(i)); //右⼦树的处理print(i+1,list,li); //递归遍历}}}皇后问题:public class Test{static int max = 8; //放置⼏个皇后static int num = 0; //总共有⼏种存放⽅式static int[] array = new int[max]; //⽤数组存放皇后的摆放位置⽤来判断是否摆放正确public static void main(String[] args){check(0); //先放第⼀个皇后System.out.println(num);}public static void check(int n){if(n == max){ //如果皇后全部摆放完成,总数+1 并跳出该⽅法num++;return;}for (int i = 0; i < max; i++) { //从第⼀列开始放,到第max列为⽌array[n] = i; //默认该皇后都是从该⾏的第⼀列开始摆放if (ok(n)) { //判断该皇后的摆放位置是否正确check(n + 1); //如果正确,则递归下⼀个皇后的摆放}}}private boolean ok(int n) {for (int i = 0; i < n; i++) { //从第⼀列开始放值,然后判断是否和本⾏本列本斜线有冲突,如果OK,就进⼊下⼀⾏的逻辑//array[i] == array[n] 判断是否在同⼀斜线上//Math.abs(n - i) == Math.abs(array[n] - array[i]) 判断是否在同⼀⾏或列if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {return false;}}return true;}}。