2020春七年级下册期中数学试卷附答案
- 格式:doc
- 大小:189.03 KB
- 文档页数:11
(第5题图)DOCBA第二学期期中考试试卷初一数学(2+4)(时间:90分钟,满分:110分)一、选择题:(每题3分,共24分)1.下列运算正确的是………………………………………………………………………………()A.a3+a3=2a6B.a6÷a2=a3 C.(-a)3(-a5) =-a8D.(-2a3) 2=4a62.下列各式从左到右的变形,是因式分解的是…………………………………………………()A.a2-5=(a+2)(a-2)-1 B.(x+2)(x-2)=x2-4C.x2+8x+16=(x+4)2 D.a2+4=(a+2)2-4a3.下列图形中,是轴对称图形的为…………………………………………………………… ()4.等腰三角形有一个角为80°,顶角等于…………………………………………………… ()A.80°B.20°C.80°或20°D.80°或100°5. 如图,已知AB、CD交于点O,AO=CO,BO=DO,则在以下结论中:①AD=BC;②∠A=∠C;③∠ADB=∠CBD;④∠ABD=∠CDB,正确结论的个数为…………()A. 4个B. 3个C. 2个D.1个6.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是……… ()A.a>b B.a=b C.a<b D.与a、b大小无关7. 如图,在△ABC中,BC = 8 cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于…………………………………………………()A.6 cm B.8 cm C.10 cm D.12 cm8. 如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DC;③DB=DE;④∠BDE=∠BCA.其中正确结论的个数为…………………………………………………………………………()A.1 B.2 C.3 D.4二、填空:(每空2分,共16分)9. 科学家发现一种病毒的直径约为0.0000043米,用科学记数法表示为米.10.已知一个多边形的内角和等于外角和的4倍,则此多边形的边数为 .11. 如图将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,∠3=______°.12. 将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1=________°.13. 等腰三角形的两边长分别为3cm和6cm,则它的周长为______________.14.一个三角形的三边长分别为2,5,x,另一个三角形的三边长分别为y,2,6,若这两个三角形全等,则x+y=_______.15. 如图,∠ABC,∠ACB的平分线相交于点O,过O点的直线MN∥BC交AB、AC于点M、N.△AMN的周A B C D(第8题图)EAB CDADB CE(第7题图)(第11题图)(第12题图)(第15题图)长为18,则AB +AC = .16.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为2,则△DEF 的周长为 .三、认真答一答:(共70分)17.计算:(本题满分9分,每小题3分)(1) |1|2011125.0221032-++⨯-⎪⎭⎫ ⎝⎛- (2) ()()2271023422a a a a a ÷-+- (3) 先化简,再求值:()()()1122+--+a a a ,其中a = 3218. 因式分解:(本题满分9分,每小题3分)(1) y xy y x 8822+- (2) ()()2222b a b a --- (3) 16)5(8)5(222+-+-x x19.计算:(本题满分6分,每小题3分)(1) 解下列方程组 ⎩⎨⎧=+=-18223y x y x(2) 解不等式组:3112(21)51x x x x -<+⎧⎨-≤+⎩20.(本题满分6分)尺规作图:如图,已知在两条公路OA ,OB 的附近有C ,D 两个超市,现准备在两条公路的交叉路口附近安装一个监控摄像头,要求摄像头P 的位置到两个超市的距离相等,且到两条公路的距离也相等,请你用直尺和圆规找出摄像头P 的位置.21.(本题满分6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF(顶点为网格线的交点),以及过格点的直线l .①将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形△A’B’C’; ②画出△DEF 关于直线l 对称的三角形△D’E’F’; ③填空:∠C+∠E= .22.(本题满分8分)已知关于x ,y 的方程组 的解满足x <0,y >0. (1)x =________, y = (用含a 的代数式表示);(2)求a 的取值范围;(3)若2x •8y =2m,用含有a 的代数式表示m ,并求m 的取值范围.23.(本题满分8分)已知:如图, AD ∥BC ,EF 垂直平分BD ,与AD ,BC ,BD 分别交于点E ,F ,O .求证:(1)△BOF ≌△DOE ; (2)DE =DF .O A BC D(第16题图)E O A C B ⎩⎨⎧-=---=-a y x a y x 32124.(本题满分8分)某地区为绿化环境,计划购买甲、乙两种树苗共计n 棵.有关甲、乙两种树苗的信息如图所示:(1)当n =400时,如果购买甲、乙两种树苗共用27000元,那么甲、乙两种树苗各买了多少棵? (2)实际购买这两种树苗的总费用恰好为27000元,其中甲种树苗买了m 棵. ①写出m 与n 满足的关系式;②要使这批树苗的成活率不低于92%,求n 的最大值.25.(本题满分10分)如图,已知△ABC 中,AB =AC =12厘米,(即∠B =∠C ),BC =9厘米,点M 为AB 的中点, (1)如果点P 在线段BC 上以2厘米/秒的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A运动.①若点Q 的运动速度与点P 的运动速度相等,经过1.5秒后,△BPM 与△CQP 是否全等?请说明理由. ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPM 与△CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?ABC··P Q·M 1.甲种树苗每棵60元; 2.乙种树苗每棵90元;3.甲种树苗的成活率为90%; 4.乙种树苗的成活率为95%.信息初一数学(2+4)第二学期期中测试卷答案一、选择题:(每题3分,共24分)DCBC AACD二、填空:(每空2分,共16分)9.4.3×10-6 10.10 11.70 12. 1813. 15cm 14.11 15.18 16. 6三、认真答一答:(共70分)17.计算:(本题满分9分,每小题3分)(1) 5 (2)(3) 原式=4a+5 值:11 18.因式分解:(本题满分9分,每小题3分)(1)(2)(3)19.计算:(本题满分6分,每小题3分)(1)(2) -3≤x<120.(本题满分6分)略21.(本题满分6分)图见右.③填空:∠C+∠E=45°.22.(本题满分8分)(1)x=__-2a+1______, y=-a+2 (用含a的代数式表示);(2)(3)23.(本题满分8分)(1)用AAS 或ASA 证明全等(3分)(2)∵EF 垂直平分BD∴DF=BF ……………………5分∵EF ⊥BD∴∠2=∠3……………………6分∵∠1=∠2∴∠1=∠3……………………7分 ∴DE=DF ……………………8分24.(本题满分8分)(1) 甲种树苗300棵,乙种树苗100棵.…………………… 3分 (2)①60m +90(n-m )=27000,即m =3n -900……………………4分 ②90%m +95%(n-m )≥92%n ……………………5分 ∴3n -5m ≥0∴3n -5(3n -900)≥0……………………6分∴n ≤375……………………7分∴n 的最大值为375.…………………… 8分25.(本题满分10分) (1)∵t =1.5s∴BP =CQ =2×1.5=3 ∴CP =BC —BP =6∵BM = 21AB =6 ∴BM =CP又∵BP =CQ ,∠B =∠C∴△MBP ≌△PCQ …………………… 3分 (2)能……………………………… 4分 ①∵v P ≠v Q ,∴BP ≠CQ∵∠B =∠C ,∴若△BMP ≌△CQP则CQ =BM =6,CP =BP = 21BC =4.5∴此时得时间t = 2BP = 49s …………………… 6分∴v Q = t CQ == 38cm/s…………………… 7分 ②设经过x 秒后两点第一次相遇. 由题意得: 38x = 2x + 2×12解得:x =36(s).…………………………………………8分 此时点P 共运动了 2×36=72 cm∵72=2×33+6,…………………………………………9分 ∴在BC 边相遇.答:经过36s 第一次相遇,相遇点在边BC 上.………… 10分。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
2020⼈教版七年级下册数学《期中考试卷》含答案七年级下学期期中测试数学试卷⼈教版⼀.选择题(共10⼩题)1.点P (2,-3)() A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限2. 4的算术平⽅根是()B. 2C. ±2D. 3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 227 4.有下列命题:①对顶⾓相等;②若a ∥b ,b ∥c ,则a ∥c ;③在同⼀平⾯内,若a ⊥b ,b ⊥c ,则a ∥c ;④ac =bc ,则a =b .其中正确的有()A. 1个B. 2个C. 3个D. 4个 5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm ),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?7.(b ﹣3)2=0,则(a +b )2019等于()A. 1B. ﹣1C. ﹣2019D. 20198.下列说法错误的是()A. 2±B. 64的算术平⽅根是4C. 0=D. 0≥,则x =19.点P (3﹣2m ,m )不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限10.如图,把⼀张长⽅形纸⽚ABCD 沿EF 折叠后,点C 、D 分别落在C ′、D ′位置上,EC ′交AD 于点G ,已知∠EFG =56°,则∠BEG 等于()A. 112°B. 88°C. 68°D. 56°⼆.填空题(共6⼩题)11.若⼀个正数平⽅根是3a +2和2a ﹣1,则a 为_____.12.若点P (3a ﹣2,2a +7)在第⼆、四象限的⾓平分线上,则点P 的坐标是_____. 13.互为相反数,则b a =_____. 14.如图楼梯截⾯,其中AC =3m ,BC =4m ,AB =5m ,要在其表⾯铺地毯,地毯长⾄少需_____⽶.15.如图,直线l 1∥l 2,若∠1=130°,∠2=60°,则∠3=__________. 的的是16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.三.解答题(共8⼩题)(1(2;(3)|﹣|+1|+|1﹣|.18.求下列各式中的x .(1)4(3x +1)2﹣1=0;(2)(x +2)3+1=0.19.如图所⽰,直线AB ,CD 相交于点O ,P 是CD 上⼀点.(1)过点P 画AB 垂线段PE .(2)过点P 画CD 的垂线,与AB 相交于F 点.(3)说明线段PE ,PO ,FO 三者的⼤⼩关系,其依据是什么?20.△ABC 在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.21.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P和点Q都在过A(2,3)点且与x轴平⾏的直线上,PQ=3,求Q点的坐标.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.23.已知a、b满⾜b24.已知点A(1,a),将线段OA平移⾄线段BC,B(b,0),a是m+6n=3,n,且m<n,正数b满⾜(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的⾯积;(3)如图2,若∠AOB=a,点P为y轴正半轴上⼀动点,试探究∠CPO与∠BCP之间的数量关系.答案与解析⼀.选择题(共10⼩题)1.点P(2,-3)在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).2. 4的算术平⽅根是()B. 2C. ±2D.【答案】B【解析】试题分析:根据算术平⽅根的定义可得4的算术平⽅根是2,故答案选B.考点:算术平⽅根的定义.3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 22 7【答案】B【解析】【分析】根据⽆理数是⽆限不循环⼩数,逐⼀验证即可.【详解】A=2,是整数,属于有理数,故选项不符合题意;B.C.3.14属于有理数,故选项不符合题意;D.227是分数,属于有理数,故选项不符合题意.故选:B.【点睛】本题考查了⽆理数的定义,注意有理数的化简变形,理解⽆理数的定义是解题的关键.4.有下列命题:①对顶⾓相等;②若a∥b,b∥c,则a∥c;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c;④ac=bc,则a=b.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C根据对顶⾓定义,平⾏的“传递性”以及平⾏判定的条件,等式的性质进⾏逐⼀验证判断即可.【详解】①对顶⾓相等,是正确的;②若a∥b,b∥c,则a∥c,是正确的;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c,是正确的;④当a=1,b=2,c=0时,ac=bc,但a≠b,∴ac=bc,则a=b,是错误的;故选:C.【点睛】本题考查了平⾏线的概念和性质,等式的性质,熟练掌握相关概念内容是解题的关键.5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 【答案】B【解析】【分析】根据题意,电脑主板是⼀个多边形,由周长的定义可知,周长是求围成图形⼀周的长度之和,计算周长只需要把横着的和竖着的所有线段加起来即可.【详解】由图形可得出:该主板的周长是:24+24+16+16+4×4=96(mm ),故该主板的周长是96mm ,故选:B .【点睛】本题考查了不规则多边形周长的求解⽅法,理解周长的定义是求解的关键. 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?【答案】A【解析】【分析】求出a ,b ,得出,4=,5,根据,3的度数求出,5的度数,即可得出答案.【详解】解:∴∠4=∠5,∵∠3=108°,∴∠5=180°-108°=72°,∴∠4=72°,故选A .【点睛】本题考查了平⾏线的性质和判定的应⽤,能灵活运⽤性质和判定进⾏推理是解此题的关键.7.(b﹣3)2=0,则(a+b)2019等于()A. 1B. ﹣1C. ﹣2019D. 2019【答案】B【解析】【分析】根据⾮负数的性质,⾮负数的和为0,即每个数都为0,可求得a、b的值,代⼊所求式⼦即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了⾮负数的性质,以及-1的奇次⽅是-1,理解⾮负数的性质是解题关键.8.下列说法错误的是()A. 2± B. 64的算术平⽅根是4≥,则x=1 =0【答案】B【解析】【分析】根据平⽅根、算术平⽅根、⽴⽅根的概念对选项逐⼀判定即可.B.64的算术平⽅根是8,错误;C=,正确;D0≥,则x=1,正确;故选:B.【点睛】本题考查了平⽅根、算数平⽅根,⽴⽅根的概念,理解概念内容是解题的关键.9.点P(3﹣2m,m)不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据象限内的点坐标的特征,分点P的横坐标是正数和负数两种情况讨论求解即可.【详解】当m>1.5时,点在第⼆象限;当m=1.5时,点在y轴上;当0<m<1.5时,点在第⼀象限;当m=0时,点x轴上;当m<0时,点在第四象限;故选:C.【点睛】本题考查了点坐标在象限内时的取值范围,注意分类讨论思想的应⽤.10.如图,把⼀张长⽅形纸⽚ABCD沿EF折叠后,点C、D分别落在C′、D′的位置上,EC′交AD于点G,已知∠EFG=56°,则∠BEG等于()A. 112°B. 88°C. 68°D. 56°【答案】C【解析】【分析】根据平⾏线和折叠的性质可知,∠GEF=∠CEF=∠EFG=56°,由平⾓的定义计算即可.【详解】∵AD∥BC,∠EFG=56°,∴∠EFG=∠FEC=56°,由折叠的性质可知,∠FEC=∠FEG,∴∠GEC=∠FEC+∠FEG=112°,∴∠BEG=180°-∠GEC=68°,故选:C.【点睛】本题考查了平⾏线和折叠结合的性质,平⾓的定义,熟练掌握平⾏和折叠的关系是解题的关键,也是中考常考的重难点.⼆.填空题(共6⼩题)11.若⼀个正数的平⽅根是3a+2和2a﹣1,则a为_____.【答案】15 -.【解析】【分析】根据⼀个正数的平⽅根有两个,且互为相反数可得3a+2+2a﹣1=0,解出a即可.【详解】由题意得,3a+2+2a﹣1=0,解得:a=15 -.故答案为:15 -.【点睛】本题考查了正数的平⽅根的定义,互为相反数的两个数和为0的性质,理解平⽅根的定义是解题的关键.12.若点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,则点P的坐标是_____.【答案】(﹣5,5).【解析】【分析】根据第⼆、四象限的⾓平分线上的点,横纵坐标互为相反数,由此可列出关于a的⽅程,解出a的值即可求得点P的坐标.【详解】∵点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,∴3a﹣2+2a+7=0,解得:a=﹣1,∴P(﹣5,5).故答案为:(﹣5,5).【点睛】本题考查了点坐标在象限⾓平分上的性质和列⼀次⽅程求解的问题,熟记点坐标在象限⾓平分线上的性质是解题的关键.13.互相反数,则ba=_____.【答案】32.【解析】【分析】根据⽴⽅根的概念,结合相反数的定义,可知两个被开⽅数也互为相反数,由两数和为0可列出关于a、b的关系式,化简整理即可.∴(3a﹣1)+(1﹣2b)=0,∴3a=2b,∴ba=32.故答案为:32.【点睛】本题考查了⽴⽅根的概念,相反数的定义,由关系式求两数的⽐值,理解⽴⽅根和相反数的概念是解题的关键.14.如图是楼梯截⾯,其中AC=3m,BC=4m,AB=5m,要在其表⾯铺地毯,地毯长⾄少需_____⽶.【答案】7.【解析】【分析】根据图形可知,由三⾓形三边长可知,满⾜勾股数,△ABC是直⾓三⾓形,需要铺的地毯的长度即为AC+BC的长度,数值代⼊计算即可.【详解】根据题意结合图形可知,△ABC三边长满⾜勾股数,是直⾓三⾓形,所以要铺的地毯的长度即为AC+BC,∴4+3=7(⽶).答:地毯长⾄少需7⽶.故答案为:7.【点睛】本题考查了勾股数判定直⾓三⾓形,图形的折叠和展开图与⽔平距离和竖直距离之间的关系,理解⽴体图展开成平⾯图形的关系是解题的关键.15.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=__________.【答案】70°【解析】试题分析:,直线l1,l2,,,4=,1=130°,,,5=,4﹣,2=70°,,,5=,3=70°.,故答案为70°.考点:平⾏线的性质.16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.【答案】(15,5)【解析】由图形可知:点的个数依次是1,2,3,4,5,…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14⾏点的⾛向为向上,∴纵坐标为从第92个点向上数8个点,即为8,∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学⽣的观察图形的能⼒和理解能⼒,解此题的关键是根据图形得出规律,题⽬⽐较典型,但是是⼀道⽐较容易出错的题⽬.三.解答题(共8⼩题)17.计算:(1(2;(3)|﹣|+1|+|1﹣|.【答案】(1)5;(2)﹣1;(3【解析】【分析】(1)根据开平⽅的运算进⾏计算即可得;(2)根据开平⽅和开⽴⽅的运算进⾏化简,然后进⾏加减计算即可;(3)根据绝对值概念可知,正数的绝对值是它本⾝,负数的绝对值是它的相反数,0的绝对值是0,进⾏化简计算即可.【详解】(1=3+2=5,故答案为:5.(2=4﹣3﹣12﹣32=﹣1,故答案为:-1.(3)|﹣|+1|+|1﹣|﹣﹣1,.【点睛】本题考查了实数的混合运算法则,开平⽅,开⽴⽅的化简求值,去绝对值符号的化简,注意化简时符号的问题.18.求下列各式中的x.(1)4(3x+1)2﹣1=0;(2)(x+2)3+1=0.【答案】(1)1x=﹣16或2x=﹣12;(2)x=﹣3.【解析】【分析】(1)根据题意,把-1移项,然后直接开⽅即可求得;(2)由题⽬可知,把+1移项,根据⽴⽅根的定义,直接开⽴⽅计算可得.【详解】(1)4(3x+1)2﹣1=0,4(3x+1)2=1,(3x+1)2=14,3x+1=±12,∴1x=﹣16或2x=﹣12故答案为:1x=﹣16或2x=﹣12;(2)(x+2)3+1=0,(x+2)3=﹣1,x+2=﹣1,∴x=﹣3,故答案为:-3.【点睛】本题考查了利⽤直接开平⽅和开⽴⽅的⽅法求⽅程的解,注意开平⽅有两个根,且互为相反数.19.如图所⽰,直线AB,CD相交于点O,P是CD上⼀点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的⼤⼩关系,其依据是什么?【答案】(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”【解析】【分析】前两问尺规作图见详解,第(3)问中利⽤垂线段最短即可解题.【详解】(1)(2)如图所⽰.(3)在直⾓△FPO中,PO<FO,在直⾓△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.【点睛】本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的⽅法和步骤,垂线段的性质是解题关键.20.△ABC在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.【答案】(1)(1,3)、(2,0)、(4,1);(2)如图所⽰,△OB′C′即为所求,见解析;B′(1,﹣3)、C′(3,﹣2).(3)△OB′C′的⾯积为72.【解析】【分析】(1)根据点在平⾯直⾓坐标系的位置,可分别写出点所对应的坐标即可;(2)根据平移前后点A与对应点O坐标的位置,可以得出图形△ABC向左平移1个单位、向下平移3个单位,由此可得出平移后点B′、C′的坐标;(3)利⽤割补法,把△OB′C′补成⼀个正⽅形,减去三个直⾓三⾓形的⾯积计算即可.【详解】(1)由图形知A(1,3),B(2,0),C(4,1);故答案为:(1,3)、(2,0)、(4,1);(2)由A(1,3)及其对应点O(0,0)知,需将△ABC向左平移1个单位、向下平移3个单位,如图所⽰,△OB′C′即为所求,其中B′(1,﹣3)、C′(3,﹣2),故答案为:B′(1,﹣3)、C′(3,﹣2);(3)△OB ′C ′的⾯积为3×3﹣12×1×3﹣12×3×2﹣12×1×2=72,故答案为:72.【点睛】本题考查了平⾯直⾓坐标系内,点坐标的表⽰,平移图形的变化关系,割补法求⼀般三⾓形的⾯积,熟记平⾯直⾓坐标系的点坐标的表⽰是解题的关键.21.已知,点P (2m ﹣6,m +2).(1)若点P 在y 轴上,P 点的坐标为;(2)若点P 和点Q 都在过A (2,3)点且与x 轴平⾏直线上,PQ =3,求Q 点的坐标.【答案】(1)P (0,5);(2)Q 点坐标为(-1,3)或(-7,3)【解析】【分析】(1)根据y 轴上点的横坐标为0,得2m -6=0,求m 值即可得P 点坐标;(2)根据题意可得直线PQ 经过A 点且平⾏于x 轴,可得P 、Q 的纵坐标均为3,由此得m+2=3,确定m 值后根据PQ=3,可得Q 点的横坐标.【详解】解:(1)∵点P 在y 轴上∴2m -6=0∴m=3∴m+2=3+2=5∴P (0,5)(2)根据题意可得PQ ∥x 轴,且过A (2,3)点,∴m+2=3∴m=1的∴2m-6=-4∴P(-4,3)∵PQ=3∴Q点横坐标-4+3=-1,或-4-3=-7∴Q点坐标为(-1,3)或(-7,3)【点睛】本题考查y轴上和平⾏于x轴上点坐标的特征,根据此特征确定点的横坐标或纵坐标是解答此题的关键.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∵AB∥CD∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.【答案】AB∥EF,理由见解析;填空答案:AB∥EF,两直线平⾏,内错⾓相等;等量代换,∠E,∠DCE,CD,同旁内⾓互补,两直线平⾏;平⾏于同⼀直线的两条直线互相平⾏.【解析】【分析】根据平⾏线性质,可得∠BCD=80°,进⽽可得到∠E+∠ECD=180°,可证明EF∥CD,由。
七年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.32.的算术平方根是()A.±4 B.4 C.±2 D.23.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数5.方程2x﹣3y=7,用含x的代数式表示y为()A.y=B.y=C.x=D.x=6.下列图形中,由∠1=∠2能得到AB∥CD的是()A. B.C.D.7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2) B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55° C.60° D.65°二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式: . 12.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 .13.如果5x 3m ﹣2n ﹣2y n ﹣m +11=0是二元一次方程,则2m ﹣n= .14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是 .15.如果若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则﹣|a ﹣b|= .16.如果=1.732, =5.477,那么0.0003的平方根是 . 17.如果a+6和2a ﹣15是一个数的平方根,则这个数为 .18.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).将△OAB 进行n 次变换得到△OA n B n ,则A n ( , ),B n ( , ).三、计算:(满分6分,每小题6分) 19.计算: (1)﹣+(2).四、解方程组(满分8分) 20.解方程组 (1)(2).五、解答题(共4小题,满分32分)21.如图,四边形ABCD 各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0). (1)求这个四边形的面积.(2)如果把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,请直接写出平移后的四边形各点的坐标和新四边形的面积.22.如图,直线AB、CD相交于点O,OE⊥AB,且∠DOE=5∠COE,求∠AOD的度数.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元?24.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3【考点】对顶角、邻补角.【分析】根据对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C图中的是对顶角,其它都不是.故选:B.2.的算术平方根是()A.±4 B.4 C.±2 D.2【考点】算术平方根.【分析】首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:∵=4,∴4的算术平方根是2,∴的算术平方根是2;故选D.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【考点】实数的性质;立方根.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、都是﹣2,故B错误;C、只有符号不同的两个数互为相反数,故C错误;D、都是2,故D错误;故选:A.4.下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数、负实数【考点】无理数;实数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、无限循环小数是有理数,故A错误;B、是有理数,故B错误;C、无理数是无限不循环小数,故C正确;D、实数包括正实数、零、负实数,故D错误;故选:C.5.方程2x﹣3y=7,用含x的代数式表示y为()A.y= B.y= C.x= D.x=【考点】解二元一次方程.【分析】本题是将二元一次方程变形,先移项、再系数化为1即可.【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.故选:B.6.下列图形中,由∠1=∠2能得到AB∥CD的是()A.B. C. D.【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B7.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A.(3,2) B.(2,3)C.(﹣3,﹣2)D.(3,﹣2)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的坐标,即可得解.【解答】解:∵点P到x轴距离为3,到y轴的距离为2,∴点P的横坐标为±2,纵坐标为±3,∴点P的坐标为(2,3)或(2,﹣3)或(﹣2,3)或(﹣2,﹣3).故选B.8.一个两位数,十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,求这个两位数列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】先表示出颠倒前后的两位数,然后根据十位上的数字x比个位上的数字y大1,若颠倒个位与十位数字的位置,得到新数比原数小9,列方程组即可.【解答】解:由题意得,.故选D.9.如图,DH∥EG∥BC,DC∥EF,那么与∠EFB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据平行线的性质由EG∥BC得∠BFE=∠1,∠2=∠3,由DC∥EF得∠BFE=∠2,则∠BFE=∠1=∠2=∠3,再利用DH∥EG得∠4=∠5,∠3=∠4,所以∠BFE=∠1=∠2=∠3=∠4=∠5.【解答】解:∵EG∥BC,∴∠BFE=∠1,∠2=∠3,∵DC∥EF,∴∠BFE=∠2,∴∠BFE=∠1=∠2=∠3,∵DH∥EG,∴∠4=∠5,∠3=∠4,∴∠BFE=∠1=∠2=∠3=∠4=∠5.故选D.10.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50°B.55° C.60° D.65°【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等可得∠1=∠EFB,再根据翻折变换的性质可得∠2=∠1,然后根据平角等于180°列式计算即可得解.【解答】解:如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选C.二、填空题(本题有8个小题,每小题3分,满分24分)11.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.【考点】命题与定理.【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常常可以写为“如果…那么…”的形式,如果后面接题设,而那么后面接结论.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.12.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.13.如果5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,则2m﹣n= 2 .【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断求出m与n的值,即可求出原式的值.【解答】解:∵5x3m﹣2n﹣2y n﹣m+11=0是二元一次方程,∴,①+②得:2m﹣n=2,故答案为:2.14.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是36°.【考点】平行线的性质;三角形内角和定理;直角三角形的性质.【分析】过C作CE∥QT∥SH,根据平行线性质求出∠FCE=∠α=54°,∠β=∠NCE,根据∠FCN=90°,即可求出答案.【解答】解:过C作CE∥QT∥SH,∴∠FCE=∠α=54°,∴∠β=∠NCE=90°﹣54°=36°.故答案为:36°.15.如果若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则﹣|a﹣b|= ﹣a .【考点】实数与数轴.【分析】根据题意判断出a与b的正负,以及a﹣b的正负,利用绝对值及二次根式的性质化简,计算即可得到结果.【解答】解:根据题意得:a>0,b<0,即a﹣b>0,则原式=|b|﹣|a﹣b|=﹣b﹣a+b=﹣a.故答案为:﹣a.16.如果=1.732, =5.477,那么0.0003的平方根是 =±0.01732 . 【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根. 【解答】解:∵0.0003=, ∴±=±=±=±0.01732.17.如果a+6和2a ﹣15是一个数的平方根,则这个数为 81 . 【考点】平方根.【分析】利用平方根定义判断求出a 的值,即可确定出这个数. 【解答】解:根据题意得:a+6+2a ﹣15=0, 移项合并得:3a=9,即a=3, 则这个数为(3+6)2=81; 故答案为:8118.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).将△OAB 进行n 次变换得到△OA n B n ,则A n ( 2n , 3 ),B n ( 2n+1 , 0 ).【考点】坐标与图形性质.【分析】观察不难发现,点A 系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B 系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可. 【解答】解:∵A (1,3),A 1(2,3),A 2(4,3),A 3(8,3), 2=21、4=22、8=23, ∴A n (2n ,3), ∵B (2,0),B 1(4,0),B 2(8,0),B 3(16,0), 2=21、4=22、8=23,16=24, ∴B n (2n+1,0).故答案为:2n,3;2n+1,0.三、计算:(满分6分,每小题6分) 19.计算: (1)﹣+ (2).【考点】实数的运算. 【分析】(1)计算算术平方根、立方根,再加减可得;(2)化简二次根式、去绝对值符号、去括号,再合并即可. 【解答】解:(1)原式=5﹣3+=2; (2)原式=2+﹣1﹣﹣1=0.四、解方程组(满分8分) 20.解方程组 (1) (2).【考点】解二元一次方程组. 【分析】(1)方程组利用加减消元法求出解即可; (2)方程组整理后,利用加减消元法求出解即可. 【解答】解:(1), ②×2﹣①得:y=﹣1, 把y=﹣1代入②得:x=, 则方程组的解为;(2)方程组整理得:,①+②得:4x=8,即x=2, 把x=2代入①得:y=﹣, 则方程组的解为.五、解答题(共4小题,满分32分)21.如图,四边形ABCD 各个顶点的坐标分别为(﹣2,8),(﹣11,6),(﹣14,0),(0,0). (1)求这个四边形的面积.(2)如果把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,请直接写出平移后的四边形各点的坐标和新四边形的面积.【考点】坐标与图形性质;坐标与图形变化-平移. 【分析】(1)根据S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF 计算即可.(2)把四边形ABCD 的各个顶点向下平移3个单位长度,再向左平移2个单位长度即可,写出平移后各个顶点的坐标即可,新四边形面积和原来四边形面积相等,由此即可解决问题. 【解答】解:(1)如图,作AE ⊥CD 于E ,BF ⊥CD 于F , ∵A (﹣2,8),B (﹣11,6),C (﹣14,0),D (0,0), ∴S 四边形ABCD =S △AED +S 梯形AEFB +S △BCF , =•2•8+(6+8)•9+•3•6 =80. (2)把原来的四边形ABCD 向下平移3个单位长度,再向左平移2个单位长度后得到新的四边形A 1B 2C 3D 4,图象如图所示:A 1(﹣4,5)、B 2(﹣13,3)、C 3(﹣16,﹣3)、D 4(﹣2,﹣3), ∵四边形A 1B 2C 3D 4是由四边形ABCD 平移所得, ∴新四边形面积等于原来四边形面积=80.22.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,且∠DOE=5∠COE ,求∠AOD 的度数.【考点】垂线;对顶角、邻补角.【分析】由OE ⊥AB 可得∠EOB=90°,设∠COE=x ,则∠DOE=5x ,而∠COE+∠EOD=180°,即x+5x=180°,得到x=30°,则∠BOC=30°+90°=120°,利用对顶角相等即可得到∠AOD 的度数. 【解答】解:∵OE ⊥AB , ∴∠EOB=90°,设∠COE=x ,则∠DOE=5x , ∵∠COE+∠EOD=180°, ∴x+5x=180°, ∴x=30°,∴∠BOC=∠COE+∠BOE=30°+90°=120°, ∴∠AOD=∠BOC=120°.23.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%.求去年的收入与支出各是多少万元? 【考点】二元一次方程组的应用. 【分析】本题的等量关系是:去年的收入﹣去年的支出=500万元.今年的收入﹣今年的支出=960万元.然后根据这两个等量关系来列方程组,求出未知数的解. 【解答】解:设去年收入是x 万元,支出是y 万元. 根据题意有: 解得:答:去年收入2040万元,支出1540万元.24.如图1,MN ∥EF ,C 为两直线之间一点.(1)如图1,若∠MAC 与∠EBC 的平分线相交于点D ,若∠ACB=100°,求∠ADB 的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:∠ADB=90°﹣ACB .【考点】平行线的性质.【分析】(1)如图1,根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,即可得到结论;(2)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据角平分线的定义得到∠1=ACG,∠2=,根据平角的定义即可得到结论;(3)根据平行线的性质得到∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,根据平行线的定义得到∠1=MAC,∠2=∠CBF,根据四边形的内角和和角的和差即可得到结论.【解答】解:(1)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=(∠ACG+∠BCG)=∠ACB;∵∠ACB=100°,∴∠ADB=50°;(2)如图1,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠EBC的平分线相交于点D,∴∠1=ACG,∠2=,∴∠ADB=∠1+∠2=(∠MAC+∠EBC)==,∴∠ADB=180°﹣∠ACB;(3)如图3,过C作CG∥MN,DH∥MN,∵MN∥EF,∴MN∥CG∥DH∥EF,∴∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∵∠MAC与∠FBC的平分线相交于点D,∴∠1=MAC,∠2=∠CBF,∵∠ADB=360°﹣∠1﹣﹣∠ACB=360°﹣∠MAC﹣﹣∠ACB=360°﹣﹣=90°﹣∠ACB.∴∠ADB=90°﹣ACB.故答案为:∠ADB=90°﹣ACB.2016年8月11日。
2020-2021学年春季七年级数学下学期期中试题(含答案)专题2.3平面直角坐标系学习质量检测(B卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在下列所给出坐标的点中,在第四象限的是()A.(4,1)B.(4,﹣1)C.(﹣4,1)D.(﹣4,﹣1)【分析】根据第四象限内,点的横坐标大于零,纵坐标小于零,可得答案.【解析】A.(4,1)在第一象限,故本选项不合题意;B.(4,﹣1)在第四象限,故本选项符合题意;C.(﹣4,1)在第二象限,故本选项不合题意;D.(﹣4,﹣1)在第三象限,故本选项不合题意;故选:B.2.已知第二象限的点P(﹣4,1),那么点P到x轴的距离为()A.1B.4C.﹣3D.3【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【解析】点P到x轴的距离为1.故选:A.3.第24届冬季奥林匹克运动会将于2022年在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是()A.离北京市200千米B.在河北省C.在宁德市北方D.东经114.8°,北纬40.8°【分析】根据点的坐标的定义,确定一个位置需要两个数据解答即可.【解析】能够准确表示张家口市这个地点位置的是:东经114.8°,北纬40.8°.故选:D.4.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限【分析】根据xy>0,可得x>0,y>0或x<0,y<0,再根据各象限内点的坐标的符号特征判断即可.【解析】∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.5.如图,昌平十三陵中的部分皇陵在地图上的位置,若庆陵的位置坐标(﹣1,4),长陵的位置坐标(2,0),则定陵的位置坐标为()A.(5,2)B.(﹣5,2)C.(2,5)D.(﹣5,﹣2)【分析】根据庆陵的位置坐标(﹣1,4),长陵的位置坐标(2,0),建立直角坐标系,然后直接写出定陵的位置坐标.【解析】根据庆陵的位置坐标(﹣1,4),长陵的位置坐标(2,0),建立直角坐标系,如图所以定陵的位置坐标为(﹣5,﹣2),故选:D.6.已知AB∥y轴,点A的坐标为(3,2),且AB=4,则点B的坐标为()A.(3,6)B.(3.﹣2)C.(3,6)或(3,﹣2)D.不能确定【分析】把A点向上(或向下)平移4个单位得到B点.【解析】∵AB∥y轴,∴点B的横坐标与A点的横坐标相同,∵AB=4,∴把A点向上(或向下)平移4个单位得到B点,而点A的坐标为(3,2),∴B点坐标为(3,﹣2)或(3,6).故选:C.7.下列语句正确的是()A.平行于x轴的直线上所有点的横坐标都相同B.(﹣3,5)与(5,﹣3)表示两个不同的点C.若点P(a,b)在y轴上,则b=0D.若点P(﹣3,4),则P到x轴的距离为3【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【解析】A.平行于x轴的直线上所有点的纵坐标都相同,此选项错误;B.(﹣3,5)与(5,﹣3)表示两个不同的点,此选项正确;C.若点P(a,b)在y轴上,则a=0,此选项错误;D.若点P(﹣3,4),则P到x轴的距离为4,此选项错误;故选:B.8.如图,在平面直角坐标系xOy中,已知点A(2,1),点B(3,﹣1).平移线段AB,使点A落在点A1(﹣2,2)处,则点B的对应点B1的坐标为()A.(﹣1,﹣1)B.(﹣1,0)C.(1,0)D.(3,0)【分析】利用平移变换的性质画出图形解决问题即可.【解析】如图,B 1(﹣1,0),故选:B .9. P 1(x 1,y 1),P 2(x 2,y 2)是平面直角坐标系中的任意两点,我们把|x 1﹣x 2|+|y 1﹣y 2|叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2).已知动点P (x ,y ),定点Q (2,1)满足d (P ,Q )=2,且x 、y 均为整数,则满足条件的点P 有( )个A .4B .6C .8D .10【分析】由条件可得到|x ﹣2|+|y ﹣1|=2,分四种情况:①x ﹣2=±2,y ﹣1=0,②x ﹣2=±1,y ﹣1=±1,③x ﹣2=0,y ﹣1=±2,进行讨论即可求解.【解析】依题意有,|x ﹣2|+|y ﹣1|=2,①x ﹣2=±2,y ﹣1=0,解得{x =0y =1,{x =4y =1; ②x ﹣2=±1,y ﹣1=±1,解得{x =1y =2,{x =1y =0,{x =3y =2,{x =3y =0; ③x ﹣2=0,y ﹣1=±2,解得{x =2y =3,{x =2y =−1. 故满足条件的点P 有8个.故选:C .10.如图,点A 1(1,1),点A 1向上平移1个单位,再向右平移2个单位,得到点A 2;点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;点A 3向上平移4个单位,再向右平移8个单位,得到点A 4,…,按这个规律平移得到点A 2020,则点A 2020的横坐标为( )A.22019B.22020﹣1C.22020D.22020+1【分析】先求出点A1,A2,A3,A4的横坐标,再从特殊到一般探究出规律,然后利用规律即可解决问题.【解析】点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,…按这个规律平移得到点A n的横坐标为为2n﹣1,∴点A2020的横坐标为22020﹣1,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.)点P(2a﹣1,a+2)在x轴上,则点P的坐标为(﹣5,0).【分析】根据x轴上点的纵坐标等于零,可得答案.【解析】由题意,得a+2=0,解得a=﹣2,2a﹣1=﹣5,点P的坐标为(﹣5,0),故答案为:(﹣5,0).12.已知点M(a,b)的坐标满足ab>0,且a+b<0,则点N(1﹣a,b﹣1)在第四象限.【分析】由于ab>0则a、b同号,而a+b<0,于是a<0,b<0,判断出1﹣a和b﹣1的符号,然后根据各象限点的坐标特点进行判断.【解析】∵ab>0,∴a、b同号,∵a+b<0,∴a<0,b<0,∴1﹣a>0,b﹣1<0,∴点N(1﹣a,b﹣1)在第四象限.故答案为:四.13.已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为(﹣3,2).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解析】∵点P在第二象限,且到x轴的距离为2,到y轴的距离为3,∴点P的横坐标是﹣3,纵坐标是2,∴点P的坐标为(﹣3,2).故答案为:(﹣3,2).14.已知,点P坐标为(﹣2,3),点Q坐标为Q(m,3),且PQ=6,则m=4或﹣8.【分析】根据点的纵坐标相等,两点间的距离等于横坐标的差的绝对值列方程求解即可.【解析】∵点P坐标为(﹣2,3),点Q坐标为Q(m,3),∴点P、Q的纵坐标相等,PQ∥x轴,∵PQ=6,∴|﹣2﹣m|=6,∴﹣2﹣m=6或﹣2﹣m=﹣6,解得m=﹣8或m=4.故答案为:4或﹣8.15.已知点A(m+1,﹣2)和点B(3,n﹣1),若AB∥x轴,且AB=4,则m+n的值为5或﹣3.【分析】由于AB∥x轴,我们根据平行线之间距离处处相等,可以得到A,B两点的纵坐标相等,确定n 的值;由AB=4,分B在A点的左侧或者右侧求得两种情况下m的值,再进行计算即可.【解析】∵点A(m+1,﹣2)和点B(3,n﹣1)且AB∥x轴,∴n﹣1=﹣2,解得n=﹣1,又∵AB=4,∴m+1=7或m+1=﹣1,解得m=6或m=﹣2,当m=6时,m+n=6﹣1=5;当m=﹣2时,m+n=﹣2﹣1=﹣3;综上,m+n的值为5或﹣3,故答案为:5或﹣3.16.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为(2,1).【分析】根据A和A1的坐标得出四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,则B的平移方法与A点相同,即可得到答案.【解析】由A(﹣3,5),A1(3,3)可知四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形A1B1C1D1,∵B(﹣4,3),∴B1的坐标为(2,1),故答案为:(2,1).17.在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a2﹣2b的值为﹣1.【分析】根据点A、B的坐标以及对应点的坐标确定出平移方法,从而求出a、b的值,再代入代数式进行计算即可得解.【解析】∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2﹣2b=12﹣2×1=1﹣2=﹣1.故答案为﹣1.18.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3…组成一条平滑的曲线,点P从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2020秒时,点P 的坐标是 (2020,0) .【分析】计算点P 走一个半圆的时间,确定第2020秒点P 的位置.【解析】点P 运动一个半圆用时为ππ2=2秒,∵2020=1010×2,∴2020秒时,P 在第1010个的半圆的最末尾处,∴点P 坐标为(2020,0),故答案为:(2020,0).三、解答题(本大题共8小题,共66分,解答时应写出文字说明、证明过程或演算步骤)19.在平面直角坐标系中,完成以下问题:(1)请在坐标系中标出点A (3,2)、B (﹣2,3);(2)若直线l 经过点B 且l ∥y 轴,点C 是直线l 上的一个动点,请画出当线段AC 最短时的简单图形,此时点C 的坐标为 (﹣2,2) ;(3)线段AC 最短时的依据为 垂线段最短 .【分析】(1)依题意在平面直角坐标系中画出点A 和点B 的坐标即可;(2)依题意在平面直角坐标系中画出直线l 及线段AC ,并直接写出点C 的坐标即可;(3)依据是垂线段最短.【解析】(1)点A(3,2)、B(﹣2,3)的坐标如图所示:(2)依题意画出图形如下:此时点C的坐标为:(﹣2,2).故答案为:(﹣2,2).(3)线段AC最短时的依据为垂线段最短.故答案为:垂线段最短.20.已知点P(2m+4,m﹣1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.【分析】(1)根据y轴上点的横坐标为0列方程求出m的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m的值,再求解即可;(3)根据点P到x轴的距离列出绝对值方程求解m的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.【解析】(1)∵点P(2m+4,m﹣1)在y轴上,∴2m+4=0,解得m=﹣2,所以,m﹣1=﹣2﹣1=﹣3,所以,点P的坐标为(0,﹣3);(2)∵点P的纵坐标比横坐标大3,∴(m﹣1)﹣(2m+4)=3,解得m=﹣8,m﹣1=﹣8﹣1=﹣9,2m+4=2×(﹣8)+4=﹣12,所以,点P的坐标为(﹣12,﹣9);(3)∵点P到x轴的距离为2,∴|m﹣1|=2,解得m=﹣1或m=3,当m=﹣1时,2m+4=2×(﹣1)+4=2,m﹣1=﹣1﹣1=﹣2,此时,点P(2,﹣2),当m=3时,2m+4=2×3+4=10,m﹣1=3﹣1=2,此时,点P(10,2),∵点P在第四象限,∴点P的坐标为(2,﹣2).21.如图,在直角坐标系中,已知A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别是点A1、B1、C1.(1)画出△A1B1C1;(2)直接写出点A1、B1、C1的坐标;(3)直接写出△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置;(2)利用(1)中图形得出对应点坐标;(3)利用三角形面积求法得出答案.【解析】(1)如图所示:△A1B1C1,即为所求;(2)A1(2,2),B1(1,﹣1),C1(﹣1,﹣1);(3)△A1B1C1的面积为:12×2×3=3.22.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)点M在x轴上,求M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求M的坐标;(3)点M到y轴的距离为2,求M的坐标.【分析】(1)根据x轴上的点的纵坐标为0可求出m的值,由此即可得;(2)根据MN∥x轴得出点M与点N的纵坐标相等,建立等式可求出m的值,由此即可得;(3)根据“点M到y轴的距离为2”可得|m﹣1|=2,求出m的值,由此即可得.【解析】(1)由题意得:2m+3=0,解得:m=−3 2,则m−1=−32−1=−52,故点M的坐标为M(−52,0);(2)∵MN∥x轴,N(5,﹣1),∴点M与点N的纵坐标相等,即为﹣1,则2m+3=﹣1,解得m=﹣2m﹣1=﹣2﹣1=﹣3,故点M的坐标为M(﹣3,﹣1);(3)∵点P到y轴的距离为2,∴|m﹣1|=2,解得m=3或m=﹣1,当m=3时,m﹣1=3﹣1=2,2m+3=2×3+3=9,当m=﹣1时,m﹣1=﹣1﹣1=﹣2,2m+3=2×(﹣1)+3=1,故点M的坐标为M(2,9)或M(﹣2,1).23.如图,在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为A(﹣2,﹣2),B(3,1),C(0,2).点P(a,b)是三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A′B′C′,点P的对应点为P′(a﹣2,b+3).(1)写出点A′的坐标:点A′(﹣4,1).(2)在图中画出平移后的三角形A′B′C′;(3)三角形ABC的面积为7.【分析】(1)直接利用P点平移变化规律得出答案;(2)直接利用得出各对应点位置进而得出答案;(3)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案.【解析】(1)由题意可得:A′(﹣4,1);故答案为:(﹣4,1);(2)如图所示,三角形A′B′C′即为所求;(3)三角形ABC的面积为:4×5−12×1×3−12×2×4−12×3×5=7.故答案为:7.24.在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.【分析】(1)利用与x轴平行的直线上点的坐标特征得到a+2=4,求出a得到A、B点的坐标,然后计算它们的横坐标之差得到A、B两点间的距离;(2)利用与x轴垂直的直线上点的坐标特征得|b|=3,解得b=3或b=﹣3,从而得到C点坐标.【解析】(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是(4,﹣2).”王磊说:“丛林飞龙的坐标是(﹣2,﹣1).”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述西游传说和华夏五千年的位置.【分析】(1)魔幻城堡或丛林飞龙的坐标建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【解析】(1)如图所示:(2)西游传说(3,3),华夏五千年(﹣1,﹣4).26.如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.【分析】(1)利用三角形的外角的性质解决问题即可.(2)分三种情形:当点P在线段OC上时,当点P在线段OC的延长线上时,当点P在CO的延长线上时,分别求解即可.【解析】(1)如图一中,结论:∠CPB=90°+∠PBA.理由:∠CPB+∠APB=180°,∠APB+∠P AB+∠PBA=180°∴∠CPB=∠POB+∠PBA,∠POB=90°,∴∠CPB=90°+∠PBA.(2)①如图二中,当点P在线段OC上时,结论:∠DPB=∠CDP+∠PBA.理由:作PE∥CD.∵AB∥CD,PE∥CD,∴PE∥AB,∴∠CDP=∠DPE,∠PBA=∠EPB,∴∠DPB=∠DPE+∠BPE=∠CDP+∠PBA.②如图二①中,当点P在线段OC的延长线上时,结论:∠PBA=∠PDC+∠DPB.理由:设BP交CD于T.∵CD∥OB,∴∠PTC=∠PBA,∵∠PTC=∠PDC+∠DPB,∴∠PBA=∠PDC+∠DPB.③如图二②中,当点P在CO的延长线上时,结论:∠PDC=∠PBA+∠DPB.理由:设PD交AB于T.∵CD∥OB,∴∠PDC=∠PTA,∵∠PTA=∠PDC+∠DPB,∴∠PDC=∠PBA+∠DPB.综上所述,∠DPB=∠CDP+∠PBA或∠PBA=∠PDC+∠DPB或∠PDC=∠PBA+∠DPB.。
七年级(下)期中数学试卷一、选择题:每题3分,共45分。
在每小题的四个选项中,只有一项是符合题目要求的。
请把正确的选项填涂在答题卡上。
1.下列代数运算正确的是()A.x•x6=x6B.(x2)3=x6C.(x+2)2=x2+4D.(2x)3=2x32.已知a=()﹣2,b=(﹣2)3,c=(x﹣2)0(x≠2),则a,b,c的大小关系为()A.b<a<c B.b<c<a C.c<b<a D.a<c<b3.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2B.2C.0D.14.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.235.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.06.下列说法正确的是()A.相等的角是对顶角B.一个角的补角必是钝角C.同位角相等D.一个角的补角比它的余角大90°7.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1078.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个长方形形(不重叠无缝隙),则该长方形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm29.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°10.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A.60°B.80°C.100°D.120°11.如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°12.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min其中正确的个数为是()A.4个B.3个C.2个D.1个14.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s15.如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是()A.2αB.90°+2αC.180°﹣2αD.180°﹣3α二.填空题:每题3分,共18分,将答案填在各题的横线上.16.肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为.17.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.18.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.19.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD 绕点O按逆时针方向至少旋转度.20.如图是婴儿车的平面示意图,其中AB∥CD,∠1=130°,∠3=40°,那么∠2的度数°.21.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.三、解答题:共7小题,满分57分,解答应写出文字说明,说理过程或演算步骤。
2020年春七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.下列运算正确的是()A.B.(﹣3)3=27 C.=2 D.=32.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.53.若式子在实数范围内有意义,则x的取值范围是()A.x>5 B.x≥5C.x≠5D.x≥04.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180°D.∠3=∠55.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°6.下面生活中的物体的运动情况可以看成平移的是()A.摆动的钟摆B.在笔直的公路上行驶的汽车C.随风摆动的旗帜D.汽车玻璃上雨刷的运动7.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)8.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(﹣2,1)的对应点为A′(3,1),点B的对应点为B′(4,0),则点B的坐标为()A.(9,0)B.(﹣1,0)C.(3,﹣1)D.(﹣3,﹣1)9.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)10.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.的平方根为 .12.把命题“对顶角相等”改写成“如果…那么…”的形式: . 13.若某数的平方根为a+3和2a ﹣15,则a= .14.10、把点A (-4,2)向右平移3个单位长度得A 1的坐标是 ; 把点A (-4,2)向下平移3个单位长度得A 2的坐标是 ;15.如图,若∠1=∠2,则互相平行的线段是__ ___________;16..若A(a,b)在第二、四象限的角平分线上,a 与b 的关系是_ ________.17.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上.若∠EFG=55°,则∠1= ,∠2= .18.规定用符号[m ]表示一个实数m 的整数部分,例如:=0,[3.14]=3.按此规定[+2]的值为 .三、解答题(共66分) 19、(12分)计算(1)、327-+2)3(--31- (2)、33364631125.041027-++---20、(8分)如图,AD ∥BC ,AD 平分∠EAC ,∠EAD=50°,求∠B 和∠C 的度数。
七年级〔下〕期中数学试卷一、选择题〔每题4分,共48分〕1.49的平方根是〔〕A.7 B.﹣7C.±7D.2.以下列图的车标,能够看作由“根本图案〞经过平移获得的是〔〕A.B.C.D.3.在以下各数:,﹣π,,、、中无理数的个数是〔〕A.2 B.3 C.4 D.54.下边四个图形中,∠1=∠2必定建立的是〔〕A.B.C.D.5.在平面直角坐标系中,点M〔﹣2,3〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限6.在同一平面内,以下说法正确的选项是〔〕A.两直线的地点关系是平行、垂直和订交B.不平行的两条直线必定相互垂直C.不垂直的两条直线必定相互平行D.不订交的两条直线必定相互平行7.〔4分〕以下运算正确的选项是〔〕A.B.〔﹣3〕3=27C.=2D.=38.〔4分〕以下命题中正确的有〔〕①相等的角是对顶角;②在同一平面内,假定a∥b,b∥c,那么a∥c;③同旁内角互补;④互为邻补角的两角的角均分线相互垂直.A.0个B.1个C.2个D.3个9.〔4分〕点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A.〔1,﹣8〕B.〔1,﹣2〕C.〔﹣7,﹣1〕D.〔0,﹣1〕10.〔4分〕假定一个正数的平方根是2a﹣1和﹣a+2,那么这个正数是〔〕A.1B.3C.4D.911.〔4分〕假定平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,那么点M的坐标为〔〕A.〔2,1〕B.〔﹣2,1〕C.〔2,﹣1〕D.〔1,﹣2〕12.〔4分〕如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的地点,假定∠EFB=65°,那么∠AED′等于〔〕A.50°B.55°C.60°D.65°1二、填空〔每小4分,共32分〕13.〔4分〕的平方根.14.〔4分〕把命“角相等〞改写成“假如⋯那么⋯〞的形式:.15.〔4分〕中A、B两点的坐分〔3,3〕、〔3,3〕,C的坐.16.〔4分〕如所示,用直尺和三角尺作直AB,CD,从中可知,直 AB与直CD的地点关系.17.〔4分〕如,a∥b,∠1=70°,∠2=40°,∠3=度.18.〔4分〕x、y数,且+〔y+2〕2=0,y x=.19.〔4分〕平方根等于它自己的数是.20.〔4分〕在平面直角坐系中,于平面内任一点〔m,n〕,定以下两种:1〕f〔m,n〕=〔m,n〕,如f〔2,1〕=〔2,1〕;2〕g〔m,n〕=〔m,n〕,如g〔2,1〕=〔2,1〕依照以上有:f[g〔3,4〕]=f〔3,4〕=〔3,4〕,那么g[f〔3,2〕]=.三、解答〔每8分,共16分〕21.〔8分〕算〔1〕+;〔2〕||〔〕|2|.22.〔8分〕解以下方程1〕4x216=0;2〕〔x1〕3=125.四、解答〔23-25每10分,26-27每12分,共54分〕23.〔10分〕推理填空:如:①假定∠1=∠2,∥〔内角相等,两直平行〕;假定∠DAB+∠ABC=180°,∥〔同旁内角互,两直平行〕;②当∥,2∠C+∠ABC=180°〔两直线平行,同旁内角互补〕;③当∥时,∠3=∠C〔两直线平行,同位角相等〕.24.〔10分〕如图,△ABC在直角坐标系中,1〕请写出△ABC各点的坐标.2〕假定把△ABC向上平移2个单位,再向左平移1个单位获得△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.3〕求出三角形ABC的面积.25.〔10分〕+1的整数局部为a,﹣1的小数局部为b,求2a+3b的值.26.〔12分〕:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.(27.〔12分〕研究题:1〕如图1,假定AB∥CD,那么∠B+∠D=∠E,你能说明原因吗?2〕反之,假定∠B+∠D=∠E,直线AB与直线CD有什么地点关系?简要说明原因.3〕假定将点E移至图2的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.4〕假定将点E移至图3的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5〕在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.3七年级〔下〕期中数学试卷参照答案与试题分析一、选择题〔每题4分,共48分〕1.49的平方根是〔〕A.7B.﹣7C.±7D.【剖析】依据一个正数有两个平方根,它们互为相反数解答即可.2∴±=±7,应选:C.【评论】本题考察了平方根的观点,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的重点.2.以下列图的车标,能够看作由“根本图案〞经过平移获得的是〔〕A.B.C.D.【剖析】依据平移的观点:在平面内,把一个图形整体沿某一的方向挪动,这类图形的平行挪动,叫做平移变换,简称平移,即可选出答案.【解答】解:依据平移的观点,察看图形可知图案B经过平移后能够获得.应选:B.【评论】本题主要考察了图形的平移,在平面内,把一个图形整体沿某一的方向挪动,学生混杂图形的平移与旋转或翻转,而误选.3.在以下各数:,﹣π,,、、中无理数的个数是〔〕A.2 B.3C.4D.5【剖析】依据无理数的三种形式:①开方开不尽的数,②无穷不循环小数,③含有π的数,找出无理数.【解答】解:无理数有﹣π,,共3个.应选B.【评论】本题考察了无理数的定义:无穷不循环小数叫无理数,常有形式有:①开方开不尽的数,如等;②无穷不循环小数,如⋯等;③字母,如π等.4.下边四个图形中,∠1=∠2必定建立的是〔〕A.B.C.D.【剖析】依据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,依据其定义;故本选项正确;C、依据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、依据三角形的外角必定大于与它不相邻的内角;故本选项错误.应选B.4【评论】本题考察了对顶角、邻补角、平行线的性质及三角形的外角性质,本题考察的知识点许多,熟记其定义,是解答的根基.5.在平面直角坐标系中,点M〔﹣2,3〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限【剖析】横坐标小于0,纵坐标大于0,那么这点在第二象限.【解答】解:∵﹣2<0,3>0,∴〔﹣2,3〕在第二象限,应选B.【评论】本题考察了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是根基知识要娴熟掌握.6.在同一平面内,以下说法正确的选项是〔〕A.两直线的地点关系是平行、垂直和订交B.不平行的两条直线必定相互垂直C.不垂直的两条直线必定相互平行D.不订交的两条直线必定相互平行【剖析】在同一平面内,两直线的地点关系有2种:平行、订交,依据以上结论判断即可.【解答】解:A、∵在同一平面内,两直线的地点关系是平行、订交,2种,∴在同一平面内,两直线的地点关系是平行、订交〔订交不必定垂直〕,故本选项错误;B、在同一平面内,不平行的两条直线必定订交,故本选项错误;C、在同一平面内,不垂直的两直线可能平行,可能订交,故本选项错误;D、在同一平面内,不订交的两条直线必定平行,故本选项正确;应选D.【评论】本题考察了对平行线的理解和运用,注意:①在同一平面内,两直线的地点关系有种:平行、订交,②订交不必定垂直.7.以下运算正确的选项是〔〕A.B.〔﹣3〕3=27C.=2 D.=3【剖析】依据算术平方根、立方根计算即可.【解答】解:A、,错误;3C、,正确;D、,错误;应选C【评论】本题考察算术平方根、立方根,重点是依据算术平方根、立方根的定义计算.8.以下命题中正确的有〔〕①相等的角是对顶角;②在同一平面内,假定a∥b,b∥c,那么a∥c;③同旁内角互补;④互为邻补角的两角的角均分线相互垂直.A.0个B.1个C.2个D.3个【剖析】依据对顶角的性质、平行公义、平行线的判断定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不必定是对顶角,①错误;在同一平面内,假定a∥b,b∥c,那么a∥c,②正确;同旁内角不必定互补,③错误;5互为邻补角的两角的角均分线相互垂直,④正确,应选:C.【评论】本题考察的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假重点是要熟习课本中的性质定理.9.点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A.〔1,﹣8〕B.〔1,﹣2〕C.〔﹣7,﹣1〕D.〔0,﹣1〕【剖析】依据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:依据题意,∵点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为〔0,﹣1〕.应选D.【评论】本题考察了点的坐标平移,依据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的重点.10.假定一个正数的平方根是2a﹣1和﹣a+2,那么这个正数是〔〕A.1 B.3C.4D.9【剖析】依照平方根的性质列方出求解即可.【解答】解:∵一个正数的平方根是2a﹣1和﹣a+2,2a﹣1﹣a+2=0.解得:a=﹣1.2a﹣1=﹣3.∴这个正数是9.应选:D.【评论】本题主要考察的是平方根的定义和性质,依照平方根的性质列出对于a的方程是解题的重点.11.假定平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,那么点M的坐标为〔〕A.〔2,1〕B.〔﹣2,1〕C.〔2,﹣1〕D.〔1,﹣2〕【剖析】可先依据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,从而判断出点的符号,获得详细坐标即可.【解答】解:∵M到x轴的距离为1,到y轴的距离为2,M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,M坐标为〔2,﹣1〕.应选C.【评论】考察点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的地点,假定∠EFB=65°,那么∠AED′等于〔〕6A.50°B.55°C.60°D.65°【剖析】第一依据AD∥BC,求出∠FED的度数,而后依据称的性,折叠前后形的形状和大小不,地点化,和角相等,可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性知,∠FED=∠FED′=65°,∴∠AED′=180°2∠FED=50°.故∠AED′等于50°.故:A.【点】本考了:1、折叠的性;2、矩形的性,平行的性,平角的观点求解.二、填空〔每小4分,共32分〕13.的平方根±3.【剖析】依据平方根的定即可得出答案.【解答】解:8l的平方根±3.故答案:±3.【点】此考了平方根的知,属于基,掌握定是关.14.把命“角相等〞改写成“假如⋯那么⋯〞的形式:假如两个角是角,那么它相等.【剖析】命中的条件是两个角相等,放在“假如〞的后边,是两个角的角相等,放在“那么〞的后边.【解答】解::角,:相等,故写成“假如⋯那么⋯〞的形式是:假如两个角是角,那么它相等,故答案:假如两个角是角,那么它相等.【点】本主要考了将原命写成条件与的形式,“假如〞后边是命的条件,“那么〞后边是条件的,解决本的关是找到相的条件和,比.15.中A、B两点的坐分〔3,3〕、〔3,3〕,C的坐〔1,5〕.【剖析】第一依据A、B两点的坐确立坐系,而后确立出C的坐即可.7【解答】解:如图,,∵A,B两点的坐标分别为〔﹣3,3〕,〔3,3〕,∴线段AB的中垂线为y轴,且向上为正方向,最下边的水平线为x轴,且向右为正方向,C点的坐标为〔﹣1,5〕.故答案为:〔﹣1,5〕.【评论】本题主要考察了坐标确立地点,解题的重点是确立坐标原点和x,y轴的地点及方向.16.以下列图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的地点关系为平行.【剖析】依据同位角相等,两直线平行判断.【解答】解:依据题意,∠1与∠2是三角尺的同一个角,因此∠1=∠2,因此,AB∥CD〔同位角相等,两直线平行〕.故答案为:平行.【评论】本题考察了平行线的判断娴熟掌握同位角相等,两直线平行,并正确识图是解题的重点.17.如图,a∥b,∠1=70°,∠2=40°,那么∠3= 70度.【剖析】把∠2,∠3转变为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,8∴∠3=∠ABC=70°.故答案为:70.【评论】本题考察了平行线与三角形的有关知识.18.x、y为实数,且+〔y+2〕2=0,那么y x=﹣8.【剖析】依据非负数的性质列式求出x、y的值,而后辈入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,x3因此,y=〔﹣2〕=﹣8.【评论】本题考察了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.平方根等于它自己的数是0.【剖析】依据平方根的定义即可求出平方根等于它自己的数.20的平方根是0.∴平方根等于它自己的数是0.故填0.【评论】本题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.在平面直角坐标系中,对于平面内任一点〔m,n〕,规定以下两种变换:1〕f〔m,n〕=〔m,﹣n〕,如f〔2,1〕=〔2,﹣1〕;2〕g〔m,n〕=〔﹣m,﹣n〕,如g〔2,1〕=〔﹣2,﹣1〕依照以上变换有:f[g〔3,4〕]=f〔﹣3,﹣4〕=〔﹣3,4〕,那么g[f〔﹣3,2〕]=〔3,2〕.【剖析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算次序及坐标的符号变化.【解答】解:∵f〔﹣3,2〕=〔﹣3,﹣2〕,g[f〔﹣3,2〕]=g〔﹣3,﹣2〕=〔3,2〕,故答案为:〔3,2〕.【评论】本题考察了一种新式的运算法那么,考察了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,重点是理解两种运算改变了哪个坐标的符号.三、解答题〔每题8分,共16分〕21.计算〔1〕﹣+﹣;〔2〕|﹣ |﹣〔﹣〕﹣|﹣2|.【剖析】〔1〕原式利用平方根、立方根定义计算即可获得结果;2〕原式利用绝对值的代数意义化简,计算即可获得结果.【解答】解:〔1〕原式=2﹣﹣+1=1;〔2〕原式=﹣+﹣2+=2﹣2.【评论】本题考察了实数的运算,娴熟掌握运算法那么是解本题的重点.22.〔8分〕解以下方程91〕4x2﹣16=0;2〕〔x﹣1〕3=﹣125.【剖析】〔1〕依据平方根的定义计算即可;〔2〕依据立方根的定义计算即可.【解答】解:〔1〕4x2=16,2x=4,2〕x﹣1=﹣5,x=﹣4.【评论】本题考察了平方根和立方根,掌握它们的定义是解题的重点.四、解答题〔23-25题每题10分,26-27题每题12分,共54分〕23.推理填空:如图:①假定∠1=∠2,那么AD∥CB〔内错角相等,两直线平行〕;假定∠DAB+∠ABC=180°,那么AD∥BC〔同旁内角互补,两直线平行〕;②当AB∥CD时,∠C+∠ABC=180°〔两直线平行,同旁内角互补〕;③当AD∥BC时,∠3=∠C〔两直线平行,同位角相等〕.【剖析】依据平行线的性质和平行线的判断直接达成填空.两条直线平行,那么同位角相等,内错角相等,同旁内角互补;反之亦建立.【解答】解:①假定∠1=∠2,那么AD∥CB〔内错角相等,两条直线平行〕;假定∠DAB+∠ABC=180°,那么AD∥BC〔同旁内角互补,两条直线平行〕;②当AB∥CD时,∠C+∠ABC=180°〔两条直线平行,同旁内角互补〕;③当AD∥BC时,∠3=∠C〔两条直线平行,同位角相等〕.【评论】在做此类题的时候,必定要仔细察看,看两个角究竟是哪两条直线被第三条直线所截而形成的角.(24.〔10分〕如图,△ABC在直角坐标系中,1〕请写出△ABC各点的坐标.2〕假定把△ABC向上平移2个单位,再向左平移1个单位获得△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.3〕求出三角形ABC的面积.10【剖析】〔1〕依据平面直角坐标系写出各点的坐标即可;2〕依据网格构造找出点A、B、C平移后的对应点A′、B′、C′的地点,而后按序连结即可,再依据平面直角坐标系写出点A′、B′、C′的坐标;3〕利用△ABC所在的矩形的面积减去周围三个直角三角形的面积,列式计算即可得解.【解答】解:〔1〕A〔﹣2,﹣2〕,B〔3,1〕,C〔0,2〕;2〕△A′B′C′以下列图,A′〔﹣3,0〕、B′〔2,3〕,C′〔﹣1,4〕;〔3〕△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣﹣,=20﹣13,=7.【评论】本题考察了利用平移变换作图,娴熟掌握网格构造正确找出对应点的地点是解题的重点.25.〔10分〕+1的整数局部为a,﹣1的小数局部为b,求2a+3b的值.【剖析】求出2<<3,依据的范围求出+1和﹣1的范围,求出a、b的值,代入求出即可.【解答】解:∵2<3∴3+1<4,1﹣1<2,a=3,b=﹣2,2a+3b=2×3+3×〔﹣2〕=3.【评论】本题考察了估量无理数的性质和二次根式的加减的应用,解本题的重点是求出a、b的值.1126.〔12分〕:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.【剖析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,DG∥AB,∴∠DGC=∠BAC.【评论】本题考察了平行线的性质和判断的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.27.研究题:1〕如图1,假定AB∥CD,那么∠B+∠D=∠E,你能说明原因吗?2〕反之,假定∠B+∠D=∠E,直线AB与直线CD有什么地点关系?简要说明原因.3〕假定将点E移至图2的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.4〕假定将点E移至图3的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5〕在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【剖析】〔1〕第一作EF∥AB,依据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.2〕第一作EF∥AB,即可判断出∠B=∠1;而后依据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再依据EF∥AB,可得AB∥CD,据此判断即可.3〕第一过E作EF∥AB,即可判断出∠BEF+∠B=180°,而后依据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.4〕第一依据AB∥CD,可得∠B=∠BFD;而后依据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.5〕第一作EM∥AB,FN∥AB,GP∥AB,依据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,因此∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;而后依据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.12【解答】解:〔1〕如图1,作EF∥AB,,AB∥CD,∴∠B=∠1,AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.〔2〕如图2,作EF∥AB,,EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,EF∥CD,又∵EF∥AB,AB∥CD.〔3〕如图3,过E作EF∥AB,,EF∥AB,∴∠BEF+∠B=180°,EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.〔4〕如图4,,13AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.〔5〕如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【评论】本题主要考察了平行线的性质和应用,要娴熟掌握,解答本题的重点是要明确:〔1〕定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.〔2〕定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.〔3〕定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14。
2020年春学期初一期中考试数学试卷 2020.5注意事项:1. 考试时间为100分钟,试卷满分为110分.2. 所有答案必须填涂到答卷纸上相应位置,答案写在试卷其他部分无效.一、选择题(本大题共10小题,每小题3分,共30分.)1.把图形(1)进行平移,能得到的图形是 ( ▲ )2.下列等式从左到右的变形,属于因式分解的是 ( ▲ )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=- 3.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( ▲ )A .2B .9C .10D . 114.下列计算正确的是 ( ▲ )A . 1266a a a =+B .22414mm =- C .877222=+ D .93339)3(y x xy = 5.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( ▲ )A.110°B.125°C.135°D.140°6.若()()A b a b a +-=+223535,则A 等于 ( ▲ ) A .ab 12 B .ab 15 C .ab 30 D .ab 607.下列说法中,正确的个数有( ▲ )①同位角相等; ②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;⑤两个角的两边分别平行,则这两个角相等。
第9题A.0个B.1个C.2个D.3个8.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 ( ▲ )A. c d a b <<<B.c d b a <<<C. d c a b <<<D.c a d b <<<9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB,则∠M0N 的度数为( ▲ )A.60°B.45°C. 65.5°D.52.5°10.如图,若平行四边形AFPE 、BGPF 、EPHD 的面积分别为15、6、25,则阴影部分的面积是( ▲ )A.20B. 15.5C.23D.25二、填空题(本大题共8小题,每小题2分,共16分.)11.2019年末,新型冠状病毒引发的肺炎在我国爆发,被命名为2019-nCoV 的新型冠状病毒直径最小约0.00000006厘米,用科学计数法表示为 ▲ 厘米.12.若92-2++x m x )(是一个完全平方式,则m = ▲ .13. 若3424==y x ,,则=-y x 24 ▲ .14.计算)8)(4(22+++-mx x n x x 的结果不含3x 的项,那么m= ▲ .15.将长方形ABCD 折叠,折痕为EF ,BC 的对应边为''C B 与CD 交于点M ,若∠MD B '=50°,则∠BEF 的度数为 ▲ °.16.计算:()()870.1258⨯-= ▲ . 17.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = ▲ ° .18.无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°.B 灯先转第17题 第18题第15题第10题动2秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 ▲ 秒.三、解答题(本大题共8小题,共64分.)19.计算:(每小题3分,共12分.)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2)23)3)(()2(x x x ---(3))2)(3()7(+--+x x x x (4))21)(12()12(2a a a +-+-+20.因式分解:(每小题3分,共9分.)(1)b a b a ab 322375303+- (2))(16)(2x y y x a -+- (3)()222224y x y x -+ 21.(6分)先化简,再求值:)3)(3()23)(12(62-++-+-x x x x x ,其中21=x22.( 8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△'''C B A ,点C 的对应点是直线上的格点'C .(1)画出△'''C B A .(2)若连接'AA 、'BB ,则这两条线段之间的关系是 .(3)试在直线l 上画出所有符合题意的格点P ,使得由点'A 、'B 、'C 、P 四点围成的四边形的面积为9.23.(6分)如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C+∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.24.(6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,求E ∠的度数.25. (8分)完全平方公式:(a ±b )2=a 2±2ab+b 2适当的变形,可以解决很多的数学问题. 例如:若a+b =3,ab =1,求a 2 +b 2 的值.解:因为a+b =3,ab =1所以(a+b )2=9,2ab =2所以a 2+b 2+2ab =9,2ab =2得a 2+b 2=7根据上面的解题思路与方法,解决下列问题:(1)若(7﹣x )(x ﹣4)=1,求(7﹣x )2+(x ﹣4)2的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+S 2=17,求图中阴影部分面积.26.(9分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)EC B A D图② 图① 备用图(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若︒=∠-∠10B C ,∠BAD =x ° .①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2020年春学期初一期中考试数学参考答案和评分标准2020.5一、选择题(每题3分,共30分)1. C 2 .D 3 . B 4 . C 5 . B 6. D 7. B 8. A 9. D 10. B二、填空题(每空2分,共16分)11. 8106-⨯ ; 12. 84或- ; 13.92 ; 14. 4 ;15. 70 ; 16 . 81- ; 17. 66 ; 18. 2171或 三、解答题(共64分)19. 计算(每题3分,共12分)(1)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+--;=-1+4-1------------------------2分(化错1个扣一分)= 2 ----------------------3分(2)23)3)(()2(x x x ---.= 3398x x +- ------------2分(每个化简1分)= 3x --------------------3分(3) )2)(3()7(+--+x x x x= )6(722---+x x x x ------------2分 = 68+x --------------------3分(4) )21)(12()12(2a a a +-+-+ =)14(14422--++a a a ------------2分 =24+a ------------3分20.把下列各式分解因式:(每题3分,共9分)(1) b a b a ab 322375303+-=)2510(322a ab b ab +-------------1分 =2)5(3a b ab -------------3分(2) )(16)(2x y y x a -+-=)16)((2--a y x -----------------------------------1分 =)4)(4)((-+-a a y x -------------------------------3分(3) ()222224y x y x -+ = )2)(2(2222xy y x xy y x -+++--------1分 = 22)()(y x y x -+ ------------3分21.(6分)解:原式= 9)26(6222-+---x x x x ------------------2分 = 72-+x x --------------------4分当21=x ,原式=7-2141+=416- -----------------------6分22. (8分)(1)画图--------------2分 (2)平行且相等--------------4分(3)8分23. (6分)(1)证明:∵AD ⊥BC∴∠1+∠C=90°………………1′∵∠C+∠ADE =90°∴∠1=∠ADE ………………2′∴DE ∥AC ………………3’(2) EF ⊥BC ………………4′∵∠1=∠2,∠1=∠ADE∴∠2=∠ADE∴EF ∥AD ………………5′∴∠EFD =∠ADC=90°∴EF ⊥BC ………………6′(其他方法酌情给分)24. (6分)解:(1)∠E AC =∠B ………………1′理由:∵AD 平分∠BAC∴∠1=∠2………………2′∵∠ADE=∠B+∠1,∠EAD=∠2+∠EAC ,且∠EAD=∠EDA∴∠B=∠EAC ………………3’(2)∵:13CAD E =∠∠:∴设∠CAD (即∠2)=x °,则∠E=x 3°∵∠B=50°∴∠EAD=∠EDA=(50+x )° (4)∴180325050=+++x x∴16=x ………………5′∴∠E=48° ………………6′(其他方法酌情给分)25. (8分)解:(1)设4,7-=-=x b x a则由题意可得:1,3==+ab b a∴7291232)(2222=-=⨯-=-+=+ab b a b a 即7)4()7(22=-+-x x ………………4′ (2)………………8′26. (9分)(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC ………………3′(2)①∵∠B+∠C=90°,︒=∠-∠10B C∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=5O °∵∠DFE=BAF B ∠+∠∴50402=+x 5=x ………………3′②由题意可得,∠ADC=x +40, ∠ABD=x -140 ,∠EDF=x x x 2100)40(140-=+--∠DFE=x 240+(ⅰ)若∠EDF=∠DFE x x 2402-100+= 15=x (ⅱ)若∠EDF=∠E 402-100=x 30=x(ⅲ)若∠DFE =∠E 40240=+x 0=x (舍去)综上可得3015或=x . ………………3′。
2020年初一下册数学期中试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. 2B. 3√2C. 0.333...D. √9答案:B2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26答案:C3. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:D4. 某数的平方根是3,则这个数是:A. 9B. 8C. 7D. 6答案:A5. 下列哪个数是正数:A. -2B. -1C. 0D. 1答案:D6. 下列哪个数是负数:A. 2B. -2C. 0D. 1答案:B7. 下列哪个数的立方根是3:A. 27B. 64C. 125D. 243答案:A8. 已知a=2,b=3,则a²+b²的值是:A. 13B. 11C. 9D. 7答案:A9. 下列哪个数是无理数:A. √9B. √16C. √25D. √36答案:B10. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:C二、填空题(每题4分,共40分)1. 2的平方是______。
答案:42. 3的立方是______。
答案:273. 5的平方根是______。
答案:√54. 16的平方根是______。
答案:±45. 0.333...的值是______。
答案:1/36. -2的立方是______。
答案:-87. 81的平方根是______。
答案:98. 125的立方根是______。
答案:59. 7²的值是______。
答案:4910. (-3)²的值是______。
答案:9三、解答题(共20分)1. 计算下列各数的平方根:(1) 64(2) 121(3) 256答案:(1) ±8(2) 11(3) ±162. 已知a=5,b=3,求a²+b²的值。
七年级(下)期中数学试卷一、选择题:本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.无理数﹣的相反数是()A.﹣B.C.D.﹣2.在平面直角坐标系中,下面的点在第三象限的是()A.(1,2) B.(2,﹣1)C.(﹣2,4)D.(﹣3,﹣3)3.如图所示,因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点能作一条垂线D.垂线段最短4.估计的结果在两个整数()A.3与4之间B.4和5之间C.5和6之间D.30和32之间5.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上D.以上都有可能6.下列等式正确的是()A.﹣=﹣5 B. =﹣3 C. =±4 D.﹣=﹣27.如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是()A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°8.将点P(2m+3,m﹣2)向上平移1个单位得到P′,且P′在x轴上,那么点P的坐标是()A.(9,1) B.(5,﹣1)C.(7,0)D.(1,﹣3)9.如图,直线AB∥CD,EF⊥CE,垂足为E,EF交CD于点F,∠1=48°,则∠2的度数是()A.42°B.48° C.52° D.58°10.点P(x,y)的坐标满足xy>0,且x+y>0,则点P在()A.第一象限B.第二象限 C.第三象限 D.第四象限11.如图所示,已知直线BF、CD相交于点O,∠D=40°,下面判定两条直线平行正确的是()A.当∠C=40°时,AB∥CD B.当∠A=40°时,AC∥DEC.当∠E=120°时,CD∥EF D.当∠BOC=140°时,BF∥DE12.对于同一平面内的三条直线a,b,c,给出下列5个论断:①a∥b;②b∥c;③a∥c;④a⊥b;⑤a⊥c.以其中两个论断作为题设,一个论断作为结论,组成一个你认为不正确的命题是()A.已知①②则③B.已知②⑤则④ C.已知②④则③ D.已知④⑤则②二、填空题:本大题共6小题,每小题3分,共18分)14.49的算术平方根是.15.如图,直线l1,l2被直线l3所截,则图中同位角有对.16.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为.17.如图,将三角形ABC水平向右平移得到三角形DEF,A,D两点的距离为1,CE=2,∠A=72°,则:(1)AC和DF的关系式为,.(2)∠1= (度);(3)BF= .18.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标为.19.若=1﹣x2,则x的值为.三、解答题(本大题共7小题,共58分。
解答应写出演算步骤、解题过程或证明过程)21.计算:(1)+﹣;(2)(﹣)﹣.22.如图,在平面直角坐标系中,三角形ABC的三个顶点A、B、C的坐标分别为(﹣1,1),(4,2),(2,5),将三角形ABC向左平移3个单位长度,再向下平移5个单位长度.(1)画出平移后的三角形A′B′C′,并写出平移后三个顶点A,B,C的对应点A′,B′,C′的坐标;(2)若三角形ABC中一点P的坐标为(a,b),写出平移后点P的对应点P′的坐标.23.已知x+12的算术平方根是,2x+y﹣6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.24.如图,已知AB∥CD,AC平分∠DAB,且∠DCA=28°,∠B=96°.(1)求∠DCE的度数;(2)求∠D的度数.25.如图(a),已知∠BAG+∠AGD=180°,AE、EF、EG是三条折线段.(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.26.如图,直线AB与CD相交于点O.(1)若∠AOD+∠COB=2(∠BOD+∠AOC),求∠AOD,∠BOD的度数.(2)若∠COB﹣∠BOD=m°,求∠AOD,∠BOD的度数(用含m°的式子表示)27.在直角坐标系中,已知线段AB,点A的坐标为(1,﹣2),点B的坐标为(3,0),如图1所示.(1)平移线段AB到线段CD,使点A的对应点为D,点B的对应点为C,若点C的坐标为(﹣2,4),求点D的坐标;(2)平移线段AB到线段CD,使点C在y轴的正半轴上,点D在第二象限内,连接BC,BD,如图2所示.若S△BCD =7(S△BCD表示三角形BCD的面积),求点C、D的坐标.(3)在(2)的条件下,在y轴上是否存在一点P,使=(S△PCD表示三角形PCD的面积)?若存在,求出点P的坐标;若不存在,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.无理数﹣的相反数是()A.﹣B. C. D.﹣【考点】实数的性质;无理数.【分析】根据只有符号不同的两个数互为相反数,可得答案【解答】解:﹣的相反数是,故选:B.2.在平面直角坐标系中,下面的点在第三象限的是()A.(1,2) B.(2,﹣1)C.(﹣2,4)D.(﹣3,﹣3)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(2,﹣1)在第四象限,故本选项错误;C、(﹣2,4)在第二象限,故本选项错误;D、(﹣3,﹣3)在第三象限,故本选项正确.故选D.3.如图所示,因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点能作一条垂线D.垂线段最短【考点】垂线段最短;直线的性质:两点确定一条直线;垂线.【分析】直接利用直线的性质进而分析得出答案.【解答】解:A、因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故选:B.4.估计的结果在两个整数()A.3与4之间B.4和5之间C.5和6之间D.30和32之间【考点】估算无理数的大小.【分析】根据5<<6,即可解答.【解答】解:∵5<<6,∴的结果在两个整数5和6之间,故选:C.5.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上D.以上都有可能【考点】垂线.【分析】画一条线段的垂线,是指画线段所在的直线的垂线.【解答】解:由垂线的定义可知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.6.下列等式正确的是()A.﹣=﹣5 B. =﹣3 C. =±4 D.﹣=﹣2【考点】立方根;算术平方根.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣5,正确;B、原式=|﹣3|=3,错误;C、原式=4,错误;D、原式=﹣(﹣2)=2,错误,故选A7.如图,直线AB、CD相交于点O,下列条件中,不能说明AB⊥CD的是()A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°【考点】垂线.【分析】根据垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直进行判定即可.【解答】解:A、∠AOD=90°可以判定两直线垂直,故此选项错误;B、∠AOC和∠BOC是邻补角,邻补角相等和又是180°,所以可以得到∠COB=90°,能判定垂直,故此选项错误;C、∠BOC和∠BOD是邻补角,邻补角相等和是180°,不能判定垂直,故此选项正确;D、∠AOC和∠BOD是对顶角,对顶角相等,和又是180°,所以可得到∠AOC=90°,故此选项错误.故选C.8.将点P(2m+3,m﹣2)向上平移1个单位得到P′,且P′在x轴上,那么点P的坐标是()A.(9,1) B.(5,﹣1)C.(7,0)D.(1,﹣3)【考点】坐标与图形变化-平移.【分析】先根据向上平移横坐标不变,纵坐标相加得出P′的坐标,再根据x轴上的点纵坐标为0求出m 的值,进而得到点P的坐标.【解答】解:∵将点P(2m+3,m﹣2)向上平移1个单位得到P′,∴P′的坐标为(2m+3,m﹣1),∵P′在x轴上,∴m﹣1=0,解得m=1,∴点P的坐标是(5,﹣1).故选B.9.如图,直线AB∥CD,EF⊥CE,垂足为E,EF交CD于点F,∠1=48°,则∠2的度数是()A.42°B.48° C.52° D.58°【考点】平行线的性质.【分析】由垂线的性质和直角三角形的性质求出∠C的度数,再由平行线的性质即可得出结果.【解答】解:∵EF⊥CE,∴∠CEF=90°,∴∠C=90°﹣∠1=90°﹣48°=42°,∵AB∥CD,∴∠2=∠C=42°;故选:A.10.点P(x,y)的坐标满足xy>0,且x+y>0,则点P在()A.第一象限B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据xy>0,且x+y>0,可判断xy的符号,即可确定点P所在的象限.【解答】解:∵xy>0,∴xy为同号即为同正或同负,∵x+y>0,∴x>0,y>0,∴点P(x,y)在第一象限.故选A.11.如图所示,已知直线BF、CD相交于点O,∠D=40°,下面判定两条直线平行正确的是()A.当∠C=40°时,AB∥CD B.当∠A=40°时,AC∥DEC.当∠E=120°时,CD∥EF D.当∠BOC=140°时,BF∥DE【考点】平行线的判定.【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【解答】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选D.12.对于同一平面内的三条直线a,b,c,给出下列5个论断:①a∥b;②b∥c;③a∥c;④a⊥b;⑤a⊥c.以其中两个论断作为题设,一个论断作为结论,组成一个你认为不正确的命题是()A.已知①②则③B.已知②⑤则④ C.已知②④则③ D.已知④⑤则②【考点】命题与定理.【分析】利用平行线的传递性可对A进行判定;根据平行线的性质和垂直的定义可对B、C进行判定;根据平行线的判定方法可对D进行判定.【解答】解:A、根据平行线的传递性,由①②可得到③,所以A为真命题;B、根据平行线的性质和垂直的定义,由②⑤可得④,所以B为真命题;C、根据平行线的性质和垂直的定义,由②④可得b⊥c,所以C为假命题;D、根据平行线的判定,由④⑤可得②,所以D为真命题.故选C.二、填空题:本大题共6小题,每小题3分,共18分)14.49的算术平方根是7 .【考点】算术平方根.【分析】根据算术平方根的意义可求.【解答】解:∵72=49,∴49的算术平方根是7.故答案为:7.15.如图,直线l1,l2被直线l3所截,则图中同位角有 4 对.【考点】同位角、内错角、同旁内角.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:如图所示:∠1和∠3,∠2和∠4,∠8和∠6,∠7和∠5,都是同位角,一共有4对.故答案为:4.16.在平面直角坐标系中,已知点P(﹣2,3),PA∥y轴,PA=3,则点A的坐标为(﹣2,6)或(﹣2,0).【考点】点的坐标.【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【解答】解:由点P(﹣2,3),PA∥y轴,PA=3,得在P点上方的A点坐标(﹣2,6),在P点下方的A点坐标(﹣2,0),故答案为:(﹣2,6)或(﹣2,0).17.如图,将三角形ABC水平向右平移得到三角形DEF,A,D两点的距离为1,CE=2,∠A=72°,则:(1)AC和DF的关系式为AC=DF ,AC∥DF .(2)∠1= 108 (度);(3)BF= 4 .【考点】平移的性质.【分析】(1)根据平移前后对应线段平行且相等直接回答即可;(2)平移前后对应角相等;(3)用EC的长加上两个平移的距离即可.【解答】解:(1)AC和DF的关系式为AC=DF,AC∥DF.(2)∵三角形ABC水平向右平移得到三角形DEF,∴AB∥DE,∵∠A=72°,∴∠1=108(度);(3)BF=BE+CE+CF=2+1+1=4.故答案为:AC=DF,AC∥DF;108°;4.18.已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标为(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【考点】点的坐标.【分析】根据数轴上到一点距离相等的点有两个,可得答案.【解答】解:B在x轴上时点B的坐标为(5,0)或(﹣5,0),B在y轴上时点B的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).19.若=1﹣x2,则x的值为±1或±或0 .【考点】立方根.【分析】根据立方根,即可解答.【解答】解:∵=1﹣x2,∴1﹣x2=0或1﹣x2=﹣1或1﹣x2=1,∴x=±1或x=或x=0,故答案为:±1或±或0.三、解答题(本大题共7小题,共58分。