七年级下册数学试卷及答案
- 格式:doc
- 大小:422.50 KB
- 文档页数:26
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 1, 2, 3, 4C. 2, 3, 6, 9D. 4, 5, 6, 74. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 45. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)6. 若等腰三角形底边长为8,腰长为6,则该三角形的面积是()A. 24B. 28C. 32D. 367. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆8. 下列各数中,属于有理数的是()A. √2B. πC. 0.101001D. √-19. 若x + y = 5,x - y = 1,则x的值是()A. 3B. 2C. 1D. 010. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 4二、填空题(每题3分,共30分)11. 若a > b,则a - b > _______。
12. 0.25 + 0.25 + 0.25 + 0.25 = _______。
13. 在直角坐标系中,点B(-3,4)关于原点的对称点是 _______。
14. 等腰三角形底边长为10,腰长为8,则该三角形的周长是 _______。
15. 若等边三角形的边长为a,则该三角形的面积是 _______。
16. 下列各数中,绝对值最小的是 _______。
安徽省芜湖市七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.4的算术平方根是()A. −4B. 4C. −2D. 22.二元一次方程x+y=5有()个解.A. 1B. 2C. 3D. 无数3.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘4.下列各点中,在第二象限的点是()A. (−3,2)B. (−3,−2)C. (3,2)D. (3,−2)5.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A. 43%B. 50%C. 57%D. 73%6.如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长.A. POB. ROC. OQD. PQ7.若m=√40−4,则估计m的值所在的范围是()A. 1<m<2B. 2<m<3C. 3<m<4D. 4<m<58.在下列四项调查中,方式正确的是()A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式9. 如图a//b ,M 、N 分别在a 、b 上,P 为两平行线间一点,那么∠1+∠2+∠3=()A. 180∘B. 270∘C. 360∘D. 540∘10. 如图,周董从A 处出发沿北偏东60∘方向行走至B 处,又沿北偏西20∘方向行走至C 处,则∠ABC 的度数是( )A. 80∘B. 90∘C. 100∘D. 95∘11. “鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A. {x +2y =100x+y=36B. {4x +2y =100x+y=36C. {2x +4y =100x+y=36D. {2x +2y =100x+y=3612. 若满足方程组{2x −y =2m −13x+y=m+3的x 与y 互为相反数,则m 的值为( )A. 1B. −1C. 11D. −11二、填空题(本大题共6小题,共18.0分)13. 如图,当剪子口∠AOB 增大15∘时,∠COD 增大______度.14. 将方程3y −x =2变形成用含y 的代数式表示x ,则x =______. 15. 点P(m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为______. 16. 如图,两直线a ,b 被第三条直线c 所截,若∠1=50∘,∠2=130∘,则直线a ,b 的位置关系是______.17. 若不等式3x −m ≤0的正整数解是1,2,3,则m 的取值范围是______.18.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75∘.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22∘.则∠AOD的度数是______.三、计算题(本大题共1小题,共6.0分)19.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?四、解答题(本大题共4小题,共32.0分)x+3≥2x−120.解不等式组{3x−5≥121.如图,EF//AD,∠1=∠2,∠BAC=80∘.求∠AGD的度数.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED//FB.23.实验学校共有教师办公室22间,大的教师办公室每间可以安排10名教师在里面办公,小的教师办公室每间可以安排4名教师在里面办公.而实验学校一共有178名教师,这22间恰好能把实验学校的178名教师安排下,请你帮忙算一算,实验学校各有大小教师办公室多少间?答案和解析【答案】1. D2. D3. C4. A5. C6. C7. B8. D9. C10. C11. C12. C13. 1514. 3y−215. (2,0)16. 平行17. 9≤m<1218. 53∘或97∘19. 解:(1)根据题意得:46÷23%=200(人),A等级的人数为200−(46+70+64)=20(人),补全条形统计图,如图所示:(2)由题意得:a%=20,即a=10;D等级占的圆心角度数为32%×360∘=115.2∘.20020. 解:解不等式x+3≥2x−1,可得:x≤4;解不等式3x−5≥1,可得:x≥2;∴不等式组的解集是2≤x≤4.21. 解:∵EF//AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG//AB,∴∠AGD=180∘−∠BAC=180∘−80∘=100∘.22. 证明:∵∠3=∠4,∴CF//BD,∴∠5=∠FAB.∵∠5=∠6,∴∠6=∠FAB,∴AB//CD,∴∠2=∠EGA . ∵∠1=∠2, ∴∠1=∠EGA , ∴ED//FB .23. 解:设实验学校有大教师办公室x 间,小教师办公室y 间,由题意得,{10x +4y =178x+y=22, 解得:{y =7x=15.答:实验学校有大教师办公室15间,小教师办公室7间. 【解析】1. 解:∵22=4,∴4的算术平方根是2, 即√4=2. 故选:D .根据算术平方根的定义解答即可.本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2. 解:方程x +y =5有无数个解.故选:D .根据二元一次方程有无数个解即可得到结果.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .3. 解:∵∠1+∠5=180∘,∠3+∠1=180∘,∴∠3=∠5, ∴AB//CD , 故选:C .根据邻补角互补和条件∠3+∠1=180∘,可得∠3=∠5,再根据同位角相等,两直线平行可得结论.此题主要考查了平行线的判定,关键是掌握:同位角相等,两直线平行.4. 解:A 、(−3,2)在第二象限,故本选项正确;B 、(−3,−2)在第三象限,故本选项错误;C 、(3,2)在第一象限,故本选项错误;D 、(3,−2)在第四象限,故本选项错误. 故选:A .根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5. 解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,=57%.在120≤x<200范围内人数占抽查学生总人数的百分比为57100故选:C.用120≤x<200范围内人数除以总人数即可.本题考查了频数分布直方图,把图分析透彻是解题的关键.6. 解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选:C.根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7. 解:∵36<40<49,∴6<√40<7,∴2<√40−4<3.故选:B.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9. 解:过点P作PA//a,则a//b//PA,∴∠1+∠MPA=180∘,∠3+∠NPA=180∘,∴∠1+∠2+∠3=360∘.故选:C.首先过点P作PA//a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10. 解:∵向北方向线是平行的,∴∠A +∠ABF =180∘, ∴∠ABF =180∘−60∘=120∘,∴∠ABC =∠ABF −∠CBF =120∘−20∘=100∘, 故选:C .根据平行线性质求出∠ABF ,和∠CBF 相减即可得出答案.本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补.11. 解:如果设鸡为x 只,兔为y 只.根据“三十六头笼中露”,得方程x +y =36;根据“看来脚有100只”,得方程2x +4y =100.即可列出方程组{2x +4y =100x+y=36. 故选:C .首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要用常识判断出隐藏的条件.12. 解:由题意得:y =−x ,代入方程组得:{2x +x =2m −1 ②3x−x=m+3 ①,消去x 得:m+32=2m−13,即3m +9=4m −2,解得:m =11, 故选:C .由x 与y 互为相反数,得到y =−x ,代入方程组计算即可求出m 的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:因为∠AOB 与∠COD 是对顶角,∠AOB 与∠COD 始终相等,所以随∠AOB 变化,∠COD 也发生同样变化. 故当剪子口∠AOB 增大15∘时,∠COD 也增大15∘. 根据对顶角的定义和性质求解.互为对顶角的两个角相等,如果一个角发生变化,则另一个角也做相同的变化.14. 解:3y −x =2,解得:x =3y −2. 故答案为:3y −2将y 看做已知数求出x 即可.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .15. 解:∵点P(m +3,m +1)在直角坐标系的x 轴上,∴这点的纵坐标是0,∴m +1=0,解得,m =−1,∴横坐标m +3=2,则点P 的坐标是(2,0).根据x轴上点的坐标特点解答即可.本题主要考查了坐标轴上点的坐标的特点:x轴上点的纵坐标为0.16. 解:∵∠2+∠3=180∘,∠2=130∘,∴∠3=50∘,∵∠1=50∘,∴∠1=∠3,∴a//b(同位角相等,两直线平行).因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a,b的位置关系.本题考查了邻补角的性质以及判定两直线平行的条件.17. 解:不等式3x−m≤0的解集是x≤m,3∵正整数解是1,2,3,<4即9≤m<12.∴m的取值范围是3≤m3先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18. 解:∵AB//CF,∴∠COA=∠OAB.(两直线平行,内错角相等)∵∠OAB=75∘,∴∠COA=75∘.∵DE//CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=22∘,∴∠COD=22∘.在图1的情况下,∠AOD=∠COA−∠COD=75∘−22∘=53∘.在图2的情况下,∠AOD=∠COA+∠COD=75∘+22∘=97∘.∴∠AOD的度数为53∘或97∘.故答案为:53∘或97∘.分两种情况:如果∠AOD是锐角,∠AOD=∠COA−∠COD;如果∠AOD是钝角,∠AOD=∠COA+∠COD,由平行线的性质求出∠COA,∠COD,从而求出∠AOD的度数.本题主要考查了平行线的性质,分析入射光线OD的不同位置是做本题的关键.19. (1)由B等级的人数除以占的百分比得出调查总人数,进而求出A等级人数,补全条形统计图即可;(2)求出A等级占的百分比确定出a,由D的百分比乘以360即可得到D等级占的圆心角度数.此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.20. 首先求出每个不等式的解集,再求出这些解集的公共部分即可.此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21. 根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG//AB,然后根据两直线平行,同旁内角互补解答.本题考查了平行线的判定与性质,熟记性质与判定方法并判断出DG//AB是解题的关键.22. 因为∠3=∠4,所以CF//BD,由平行的性质证明∠6=∠FAB,则有AB//CD,再利用平行的性质证明∠1=∠EGA,从而得出ED//FB.本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养学生“执果索因”的思维方式与能力.23. 设实验学校有大教师办公室x间,小教师办公室y间,根据22间办公室共有178名教师,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
七年级下册数学测试卷及答案七年级下册数学测试卷及答案测试卷一、选择题1. 十六亿五千万的单位是:A. 兆B. 亿C. 十亿D. 万亿2. 一个三维立方体的表面积是36平方厘米,那么它的边长是:A. 2厘米B. 3厘米C. 4厘米D. 6厘米3. 以下哪个不是有理数?A. 1B. 0C. √2D. -54. 下列斜率相等的两条直线,哪条更陡?A. 2x+3y=6B. y=-2x+3C. y=5x-10D. 3x-5y=155. 已知点A(-3,4),点B(1,2),那么两点所连的距离为:A. 2.83B. 4.24C. 4.61D. 5.00二、填空题1. 10%的12比15%的多几个?2. 直接比例的比例系数是2,已知当x=4时y=8,求当x=6时y=?3. 已知两条平行直线的斜率分别为k1=2,k2=-0.5,那么它们的斜率之积为多少?4. 已知a+b=3,a-b=5,那么a的值为多少?5. 已知两个集合A={2,3,5},B={3,5,6},求它们的交集和并集。
三、解答题1. 某奥数班有60人,其中男生占40%,女生占60%,男生中优秀的占60%,女生中优秀的占40%,那么这个班级优秀学生的比例是多少?2. 原价100元的商品,享受八折优惠后的价格为多少?3. 某人从A地骑车出发,40分钟后到达B地,再骑车20分钟后到达C地,B、C地距离为6千米,已知在平地上,这个人骑车的平均速度为每小时10千米,那么A、B地间的距离为多少?4. 某条矩形的宽为2/3,它的长度比宽大18厘米,求这条矩形的周长。
5. 已知一个三角形的三个内角分别为60°、70°、50°,那么这个三角形的面积为多少?答案选择题1. B2. B3. C4. C5. B填空题1. 0.32. 123. -14. -15. A∩B={3,5}, A∪B={2,3,5,6}解答题1. 56%2. 80元3. 5千米4. 102厘米5. 2765平方分米。
七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
七年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.计算a 2•a 3=( )A.a 8B.a 6C.a 5D.a 92.一个数是0.0 000 016,这个数用科学记数法表示的是( )A.1.6×10﹣6B.1.6×10﹣7C.1.6×107D.1.6×10﹣83.下列计算结果是a 6的是( )A.a 7-aB.a 2•a 3C.(a 4)2D.a 8÷a 24.下列是负数的( )A.|﹣5|B.(﹣1)2023C.﹣(﹣3)D.(﹣1)05.下列计算正确的是( )A.a 5+a 5=a 10B.(ab 4)4=ab 8C.(a 3)3=a 9D.a 6÷a 3=a 26.下列能用平方差公式计算的是( )A.(a -b )(a -b )B.(a -b )(﹣a -b )C.(a+b )(﹣a -b )D.(﹣a+b )(a -b )7.若多项式x 2+mx+4是完全平方式,则m 的值为( )A.2B.﹣2C.±2D.±48.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )A.2B.﹣2C.4D.﹣49.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=13a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).A.5个B.4个C.3个D.2个10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A.(a-b)2+4ab=(a+b)2B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+2ab+b2D.(a-b)2=a2-2ab+b2二.填空题。
(共24分)11.计算:2x•(﹣3x)= .12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.13.已知2m=3,2n=2,则22m+n等于.14.若a=2023,b=1,则代数式a2023•b2023的值是.202315.若x-y=3,xy=10,则x2+y2的值为.16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.三.解答题。
难题集及答案1 .如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD= AB。
于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=______;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=______;(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= _____;(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.122 .如图,△ABC是等腰直角三角形,∠A=90°,CD∥AB,CD=AB=4cm,点P是边AB上一动点,从点A出发,以1cm/s的速度从点A向终点B运动,连接PD交AC于点F,过点P 作PE⊥PD,交BC于点E,连接PC,设点P运动的时间为x(s).(1)若△PBC的面积为y(cm2),写出y关于x的关系式;(2)在点P运动的过程中,何时图中会出现全等三角形?直接写出x的值以及相应全等三角形的对数.3 。
已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;(2)在(1)的条件下,AM+AN=_________AC;(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM 的面积.4 .如图①,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向移动.(1)若|m+2n-5|+|2m—n|=0,试分别求出1秒后,A、B两点的坐标;(2)如图②,设∠4的邻补角和∠3的邻补角的平分线相交于点P.试问:在点A、B运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.5 .如图,已知∠AOB=25°,把∠AOB绕顶点O按逆时针旋转55°到∠MON,点C、D分别是OB、OM上的点,分别作C点关于OA、ON的对称点E、F,连接DE、DF.(1)求∠ECF的度数;(2)说明DE=DF的理由.6 。
人教版七年级下册数学测试题及答案七年级数学下册第五章测试题姓名:________ 成绩:_______一、单项选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、1 2.C、1 2.D、1 22、如图AB∥CD可以得到()A、4.B、3.C、2.D、C3、直线AB、CD、EF相交于O,则∠1+∠2+∠3()。
A、90°。
B、120°。
C、180°。
D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6②∠2=∠8③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b的条件的序号是()A、6 7 2 3 5 1.B、3 2 4 15、某人在广场上练驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°。
B、第一次右拐50°,第二次左拐130°。
C、第一次右拐50°,第二次右拐130°。
D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()A、ABCD。
B、DCBA。
C、AEDF。
D、FEAB7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A、3:4.B、5:8.C、9:16.D、1:28、下列现象属于平移的是()A、③。
B、②③。
C、①②④。
D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行。
B、垂直于同一条直线的两条直线互相垂直。
C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
二、填空题(本大题共6小题,每小题3分,共18分)11、直线AB、CD相交于点O,若∠AOC=100°,则∠AOD=8012、若AB∥CD,AB∥EF,则CDEF,其理由是同一条直线上的两个点到另一条直线的距离相等13、如图,在正方体中,与线段AB平行的线段有CD和EF。
人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
七年级下册数学期末试卷及答案人教版一、选择题(每题2分,共40分)1. 下列谁是数学家?()A. 马化腾B. 郭守敬C. 李连杰D. 阿里巴巴答案:B2. 下列哪个不属于数学中的基本运算?()A. 加法B. 除法C. 乘法D. 减法答案:B3. 一个矩形的长是3cm,宽是2cm,它的周长是()A. 8cmB. 10cmC. 6cmD. 4cm答案:10cm4. 下列哪个是质数?()A. 6B. 9C. 11D. 15答案:C5. 下列哪个不是等式?()A. 3 + 5 = 8B. 6 ÷ 2 = 2C. 7 × 1 = 7D. 9 + 3 ≠ 12答案:D6. 下列哪个数是奇数?()A. 58B. 29C. 102D. 36答案:B7. 一个三角形的三个角分别是60度、80度和()度。
A. 40B. 20C. 100D. 80答案:408. 下列哪个是正比例函数?()A. y = 2x + 1B. y = 2xC. y = x²D. y = 1/x答案:B9. 下列哪个不是平行四边形?()A. 正方形B. 长方形C. 菱形D. 梯形答案:D10. 下列哪个是数轴上的点?()A. 0.5B. 0.5cmC. 1/2D. 1:2答案:A11. 8.5 ÷ 0.5 = ()A. 17B. 1.7C. 85D. 0.85答案:1712. 下列哪个不是正整数的代表?()A. 0B. 1C. 2D. 3答案:A13. 下列哪个图形面积最大?()A. 长方形B. 正方形C. 三角形D. 圆形答案:D14. 用字母表示未知数,下列哪个是方程?()A. 3 + x = 7B. 3 > xC. 2xD. x + 3答案:A15. 下列哪个是钝角三角形?()A. 30度-60度-90度三角形B. 等腰直角三角形C. 直角三角形D. 锐角三角形答案:D二、填空题(每空2分,共40分)16. 计算$3\times(-4)=$()答案:-1217. 下列哪个角是顶角?∠ABC,∠ACD,∠BCD中,顶角是______。
人教版七年级下册数学期末考试试题及答案七年级下册数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下列各点中,位于第二象限的是()A、(2,3)B、(2,-3)C、(-2,3)D、(-2,-3)2、对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A、条形统计图能清楚地反映事物的变化情况B、折线统计图能清楚地表示出每个项目的具体数目C、扇形统计图能清楚地表示出各部分在总体中所占的百分比D、三种统计图可以互相转换3、下列方程组是二元一次方程组的是()A、x y5z x 5B、x y3xy 2C、x y32x y 4D、x y11x y 44、下列判断不正确的是()A、若a b,则4a4bB、若2a3b,则a bC、若a b,则ac bcD、若ac bc,则a b5、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)6、下列调查适合作抽样调查的是()A、了解XXX“天天向上”栏目的收视率B、了解初三年级全体学生的体育达标情况C、了解某班每个学生家庭电脑的数量D、“辽宁号”航母下海前对重要零部件的检查7、已知点A(m,n)在第三象限,则点B(m,-n)在()A、第一象限B、第二象限C、第三象限D、第四象限8、关于x,y的方程组y2x mx2y 5x2y5m的解满足x y6,则m的值为()A、1B、2C、3D、49、为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法正确的有()A、这6000名学生的数学会考成绩的全体是总体;B、每个考生的数学会考成绩是个体;C、抽取的200名考生的数学会考成绩是总体的一个样本;D、样本容量是200.10、已知:正方形ABCD的面积为64,被分成四个相同的长方形和一个面积为4的小正方形,则a,b的长分别是()A、a=5,b=3B、a=3,b=5C、a=6.5,b=1.5D、a=1.5,b=6.5一、改错题1.今天我们研究了一道非常有意思的数学题目,它是这样的:有一只猴子摘了若干个桃子,第一天它吃了其中的一半,然后再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃,请问这只猴子摘了多少个桃子?改为:今天我们研究了一道非常有趣的数学题目:一只猴子摘了一些桃子,第一天它吃了其中的一半,再多吃了一个;第二天它又吃了其中的一半,再多吃了一个;以后每天都是这样吃。
七年级下册数学期末试卷试卷(word 版含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.把“笑脸”进行平移,能得到的图形是( )A .B .C .D .3.平面直角坐标系中,点()2,3P -所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.4的算术平方根是_____.10.点()4,3P 关于x 轴的对称点Q 的坐标是__________.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a +b 的值为____.15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2020的坐标是______.三、解答题17.(133181254(2)3|12427+(32(22)3(21)-18.已知m +n =2,mn =-15,求下列各式的值. (1)223m mn n ++; (2)2()m n -.19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD =180°,(_______) ∴AB ∥_______,(___________) ∴∠BAP =________,(__________) 又∵∠1=∠2,(已知) ∠3=________-∠1, ∠4=_______-∠2,∴∠3=________,(等式的性质) ∴AE ∥PF ,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.21212请解答下列问题:(110的整数部分是,小数部分是.(25a13b,求a+b5(3)已知103x+y,其中x是整数,且0<y<1,求x-y的相反数.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF . (1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.24.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改解析:D 【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】解:观察图形可知图形进行平移,能得到图形D . 故选:D . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.D 【分析】根据点在各象限的坐标特点即可得答案. 【详解】∵点的横坐标2>0,纵坐标-3<0, ∴点()2,3P -所在的象限是第四象限, 故选:D . 【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意; 故选:B . 【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.C 【分析】由平行线的性质可得∠ADC =∠BAD =35°,再由垂线的定义可得△ACD 是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD 的度数. 【详解】∵AB ∥CD ,∠BAD=35°, ∴∠ADC =∠BAD =35°, ∵AD ⊥AC ,∴∠ADC+∠ACD =90°, ∴∠ACD =90°﹣35°=55°, 故选:C . 【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 6.D 【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案. 【详解】解:∵3a =-,b =()22c ==--=, ∴c b a >>, 故选:D . 【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 7.B 【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解. 【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒, 180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B . 【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.A 【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A 【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果. 【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-, 567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-, 20211011x =,12320211x x x x ∴+++⋯+=,故选:A . 【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题 9.【详解】试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根.解析:【详解】试题分析:∵224=,∴4算术平方根为2.故答案为2. 考点:算术平方根.10.【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点关于轴的对称点的坐标是, 故答案为:. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不 解析:(4,3)-【分析】关于x 轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】点()4,3P 关于x 轴的对称点Q 的坐标是(4,3)-, 故答案为:(4,3)-. 【点睛】本题考查了关于x 轴对称的点的坐标,关于x 轴对称的两个点,横坐标不变,纵坐标互为相反数.11.①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠B解析:①②③. 【分析】由EG ∥BC ,且CG ⊥EG 于G ,可得∠GEC =∠BCA ,由CD 平分∠BCA ,可得∠GEC =∠BCA =2∠DCB ,可判定①;由CD ,BE 平分∠BCA ,∠ABC ,根据外角性质可得∠BFD =∠BCF +∠CBF =45°,可判定②;根据同角的余角性质可得∠GCE =∠ABC ,由角的和差∠GCD =∠ABC +∠ACD =∠ADC ,可判定③;由∠GCE +∠ACB =90°,可得∠GCE 与∠ACB 互余,可得CA 平分∠BCG 不正确,可判定④. 【详解】解:∵EG ∥BC ,且CG ⊥EG 于G , ∴∠BCG +∠G =180°, ∵∠G =90°,∴∠BCG =180°﹣∠G =90°, ∵GE ∥BC , ∴∠GEC =∠BCA , ∵CD 平分∠BCA , ∴∠GEC =∠BCA =2∠DCB , ∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴∠ACB=∠1,∵∠3=120°,∴∠AOC =60°∵∠2=∠ACO +∠AOC =∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n ﹣1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,即2n﹣1=11,n=6.∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.故答案为:139.【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键. 15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1)172;(22;(3)1-【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式1112577222=++=+=(2)原式1232=+-=(3)原式231=+=-【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n - =2()4m n mn +-=()22415-⨯-=464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE ∥PF .(内错角相等两直线平行),∴∠E =∠F .(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;(2)设P (0,m解析:(1)作图见解析,A ′(1,5),B ′(0,2),C ′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可解决问题;(2)设P (0,m ),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解解析:(1)3103;(2)1;(3312【分析】(1)根据题意即可求解;(25a13b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解】(1)3104<<,103103;(2)253<<,5252,52a∴=,3134<<,3,3b ∴=,231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE +∠DCE =∠BEC =90°,∴∠ABE =90°﹣β,∴∠GBE =∠ABE ﹣∠ABF ﹣∠FBG =90°﹣β﹣2γ﹣2γ,∵BE 平分∠ABC ,∴∠CBE =∠ABE =90°﹣β,∴∠CBG =∠CBE +∠GBE ,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.24.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
七年级下册数学试卷及答案知识有重量,但成就有光泽。
有⼈感觉到知识的⼒量,但更多的⼈只看到成就的光泽。
下⾯给⼤家分享⼀些关于七年级下册数学试卷及答案,希望对⼤家有所帮助。
⼀、选择题(本题共10⼩题,每⼩题3分,共30分)1.(3分)下列各数:、、0.101001…(中间0依次递增)、﹣π、是⽆理数的有( )A. 1个B. 2个C. 3个D. 4个考点:⽆理数.分析:根据⽆理数的定义(⽆理数是指⽆限不循环⼩数)判断即可.解答:解:⽆理数有,0.101001…(中间0依次递增),﹣π,共3个,故选C.点评:考查了⽆理数的应⽤,注意:⽆理数是指⽆限不循环⼩数,⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数.2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平⾏线的性质;⾓平分线的定义.专题:计算题.分析:本题主要利⽤两直线平⾏,同旁内⾓互补,再根据⾓平分线的概念进⾏做题.解答:解:∵AB∥CD,根据两直线平⾏,同旁内⾓互补.得:∴∠ACD=180°﹣∠A=70°.再根据⾓平分线的定义,得:∠ECD= ∠ACD=35°.故选D.点评:考查了平⾏线的性质以及⾓平分线的概念.3.(3分)下列调查中,适宜采⽤全⾯调查⽅式的是( )A. 了解我市的空⽓污染情况B. 了解电视节⽬《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某⼯⼚⽣产的⼀批⼿表的防⽔性能考点:全⾯调查与抽样调查.分析:由普查得到的调查结果⽐较准确,但所费⼈⼒、物⼒和时间较多,⽽抽样调查得到的调查结果⽐较近似.解答:解:A、不能全⾯调查,只能抽查;B、电视台对正在播出的某电视节⽬收视率的调查因为普查⼯作量⼤,适合抽样调查;C、⼈数不多,容易调查,适合全⾯调查;D、数量较⼤,适合抽查.故选C.点评:本题考查了抽样调查和全⾯调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选⽤,⼀般来说,对于具有破坏性的调查、⽆法进⾏普查、普查的意义或价值不⼤时,应选择抽样调查,对于精确度要求⾼的调查,事关重⼤的调查往往选⽤普查.4.(3分)⼀元⼀次不等式组的解集在数轴上表⽰为( )A. B. C. D.考点:在数轴上表⽰不等式的解集;解⼀元⼀次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表⽰出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,在数轴上表⽰为:故选B.点评:本题考查的是在数轴上表⽰不等式组的解集,熟知“同⼤取⼤;同⼩取⼩;⼤⼩⼩⼤中间找;⼤⼤⼩⼩找不到”的原则是解答此题的关键.5.(3分)⼆元⼀次⽅程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解⼆元⼀次⽅程.专题:计算题.分析:将x=1,2,3,…,代⼊⽅程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;则⽅程的正整数解有3个.故选B点评:此题考查了解⼆元⼀次⽅程,注意x与y都为正整数.6.(3分)若点P(x,y)满⾜xy<0,x<0,则P点在( )A. 第⼆象限B. 第三象限C. 第四象限D. 第⼆、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第⼆象限内点的坐标特征进⾏判断.解答:解:∵xy<0,x<0,∴y>0,∴点P在第⼆象限.故选A.点评:本题考查了点的坐标平⾯内的点与有序实数对是⼀⼀对应的关系.坐标:直⾓坐标系把平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平⾏线的性质.分析:过E作EF∥AB,根据平⾏线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.故选B.点评:本题考查了平⾏线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平⾏线的性质:两直线平⾏,同旁内⾓互补.8.(3分)已知是⽅程组的解,则是下列哪个⽅程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:⼆元⼀次⽅程组的解;⼆元⼀次⽅程的解.专题:计算题.分析:将x=2,y=1代⼊⽅程组中,求出a与b的值,即可做出判断.解答:解:将⽅程组得:a=2,b=3,将x=2,y=3代⼊2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,∴是⽅程2x﹣y=1的解,故选A.点评:此题考查了⼆元⼀次⽅程组的解,⽅程组的解即为能使⽅程组中两⽅程成⽴的未知数的值.9.(3分)下列各式不⼀定成⽴的是( )A. B. C. D.考点:⽴⽅根;算术平⽅根.分析:根据⽴⽅根,平⽅根的定义判断即可.解答:解:A、a为任何数时,等式都成⽴,正确,故本选项错误;B、a为任何数时,等式都成⽴,正确,故本选项错误;C、原式中隐含条件a≥0,等式成⽴,正确,故本选项错误;D、当a<0时,等式不成⽴,错误,故本选项正确;故选D.点评:本题考查了⽴⽅根和平⽅根的应⽤,注意:当a≥0时, =a,任何数都有⽴⽅根10.(3分)若不等式组的整数解共有三个,则a的取值范围是( )A. 5<a<6 p="" 5≤a≤6<="" d.="" 5≤a<6="" c.="" 5考点:⼀元⼀次不等式组的整数解.分析:⾸先确定不等式组的解集,利⽤含a的式⼦表⽰,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从⽽求出a的范围.解答:解:解不等式组得:2<x≤a,< p="">∵不等式组的整数解共有3个,∴这3个是3,4,5,因⽽5≤a<6.故选C.点评:本题考查了⼀元⼀次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同⼤取较⼤,同⼩取较⼩,⼩⼤⼤⼩中间找,⼤⼤⼩⼩解不了.⼆、填空题(本题共8⼩题,每⼩题3分,共24分)11.(3分)(2009?恩施州)9的算术平⽅根是 3 .考点:算术平⽅根.分析:如果⼀个⾮负数x的平⽅等于a,那么x是a的算术平⽅根,根据此定义即可求出结果.解答:解:∵32=9,∴9算术平⽅根为3.故答案为:3.点评:此题主要考查了算术平⽅根的等于,其中算术平⽅根的概念易与平⽅根的概念混淆⽽导致错误.12.(3分)把命题“在同⼀平⾯内,垂直于同⼀条直线的两条直线互相平⾏”写出“如果…,那么…”的形式是:在同⼀平⾯内,如果 两条直线都垂直于同⼀条直线 ,那么 这两条直线互相平⾏ .考点:命题与定理.分析:根据命题题设为:在同⼀平⾯内,两条直线都垂直于同⼀条直线;结论为这两条直线互相平⾏得出即可.解答:解:“在同⼀平⾯内,垂直于同⼀条直线的两条直线互相平⾏”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同⼀平⾯内,如果两条直线都垂直于同⼀条直线,那么这两条直线互相平⾏”.故答案为:两条直线都垂直于同⼀条直线,这两条直线互相平⾏.点评:本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.13.(3分)将⽅程2x+y=25写成⽤含x的代数式表⽰y的形式,则y= 25﹣2x .考点:解⼆元⼀次⽅程.分析:把⽅程2x+y=25写成⽤含x的式⼦表⽰y的形式,需要把含有y的项移到⽅程的左边,其它的项移到另⼀边即可.解答:解:移项,得y=25﹣2x.点评:本题考查的是⽅程的基本运算技能,表⽰谁就该把谁放到⽅程的左边,其它的项移到另⼀边.此题直接移项即可.14.(3分)不等式x+4>0的最⼩整数解是 ﹣3 .考点:⼀元⼀次不等式的整数解.分析:⾸先利⽤不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:x+4>0,x>﹣4,则不等式的解集是x>﹣4,故不等式x+4>0的最⼩整数解是﹣3.故答案为﹣3.点评:本题考查了⼀元⼀次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15.(3分)某校在“数学⼩论⽂”评⽐活动中,共征集到论⽂60篇,并对其进⾏了评⽐、整理,分成组画出频数分布直⽅图(如图),已知从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3,那么在这次评⽐中被评为优秀的论⽂有(分数⼤于或等于80分为优秀且分数为整数) 27 篇.考点:频数(率)分布直⽅图.分析:根据从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3和总篇数,分别求出各个⽅格的篇数,再根据分数⼤于或等于80分为优秀且分数为整数,即可得出答案.解答:解:∵从左到右5个⼩长⽅形的⾼的⽐为1:3:7:6:3,共征集到论⽂60篇,∴第⼀个⽅格的篇数是: ×60=3(篇);第⼆个⽅格的篇数是: ×60=9(篇);第三个⽅格的篇数是: ×60=21(篇);第四个⽅格的篇数是: ×60=18(篇);第五个⽅格的篇数是: ×60=9(篇);∴这次评⽐中被评为优秀的论⽂有:9+18=27(篇);故答案为:27.点评:本题考查读频数分布直⽅图的能⼒和利⽤统计图获取信息的能⼒;利⽤统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出⽅程组 .考点:由实际问题抽象出⼆元⼀次⽅程组.分析:利⽤“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出⼆元⼀次⽅程组求解即可.解答:解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:,故答案为::,点评:本题考查了由实际问题抽象出⼆元⼀次⽅程组的知识,解题的关键是从题⽬中找到两个等量关系,这是列⽅程组的依据.17.(3分)在平⾯直⾓坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .考点:坐标与图形性质.分析:根据线段AB∥x轴,则A,B两点纵坐标相等,再利⽤点B可能在A点右侧或左侧即可得出答案.解答:解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,∴点B可能在A点右侧或左侧,则端点B的坐标是:(﹣5,4)或(3,4).故答案为:(﹣5,4)或(3,4).点评:此题主要考查了坐标与图形的性质,利⽤分类讨论得出是解题关键.18.(3分)若点P(x,y)的坐标满⾜x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满⾜2+2=2×2.请另写出⼀个“和谐点”的坐标 (3, ) .考点:点的坐标.专题:新定义.分析:令x=3,利⽤x+y=xy可计算出对应的y的值,即可得到⼀个“和谐点”的坐标.解答:解:根据题意得点(3, )满⾜3+ =3× .故答案为(3, ).点评:本题考查了点的坐标平⾯内的点与有序实数对是⼀⼀对应的关系.坐标:直⾓坐标系把平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.三、解答题(本⼤题共46分)19.(6分)解⽅程组 .考点:解⼆元⼀次⽅程组.分析:先根据加减消元法求出y的值,再根据代⼊消元法求出x的值即可.解答:解:,①×5+②得,2y=6,解得y=3,把y=3代⼊①得,x=6,故此⽅程组的解为 .点评:本题考查的是解⼆元⼀次⽅程组,熟知解⼆元⼀次⽅程组的加减消元法和代⼊消元法是解答此题的关键.20.(6分)解不等式:,并判断是否为此不等式的解.考点:解⼀元⼀次不等式;估算⽆理数的⼤⼩.分析:⾸先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进⾏判断即可.解答:解:去分母,得:4(2x+1)>12﹣3(x﹣1)去括号,得:8x+4>12﹣3x+3,移项,得,8x+3x>12+3﹣4,合并同类项,得:11x>11,系数化成1,得:x>1,∵ >1,∴是不等式的解.点评:本题考查了解简单不等式的能⼒,解答这类题学⽣往往在解题时不注意移项要改变符号这⼀点⽽出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同⼀个数或整式不等号的⽅向不变;在不等式的两边同时乘以或除以同⼀个正数不等号的⽅向不变;在不等式的两边同时乘以或除以同⼀个负数不等号的⽅向改变.21.(6分)学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,( 垂直定义 )∴AD∥EG,( 同位⾓相等,两直线平⾏ )∴∠1=∠2,( 两直线平⾏,内错⾓相等 )∠E=∠3,(两直线平⾏,同位⾓相等)⼜∵∠E=∠1(已知)∴ ∠2 = ∠3 (等量代换)∴AD平分∠BAC( ⾓平分线定义 )考点:平⾏线的判定与性质.专题:推理填空题.分析:根据垂直的定义及平⾏线的性质与判定定理即可证明本题.解答:解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直定义)∴AD∥EG,(同位⾓相等,两直线平⾏)∴∠1=∠2,(两直线平⾏,内错⾓相等)∠E=∠3,(两直线平⾏,同位⾓相等)⼜∵∠E=∠1(已知)∴∠2=∠3(等量代换)∴AD平分∠BAC(⾓平分线定义 ).点评:本题考查了平⾏线的判定与性质,属于基础题,关键是注意平⾏线的性质和判定定理的综合运⽤.22.(8分)在如图所⽰的正⽅形⽹格中,每个⼩正⽅形的边长为1,格点三⾓形(顶点是⽹格线的交点的三⾓形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所⽰的⽹格平⾯内作出平⾯直⾓坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的⾯积.考点:作图-平移变换.分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;(2)利⽤点的坐标平移性质得出A,′B′,C′坐标即可得出答案;(3)利⽤矩形⾯积减去周围三⾓形⾯积得出即可.解答:解:(1)∵点A的坐标为(﹣4,5),∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所⽰:△A′B′C′即为所求;(3)△ABC 的⾯积为:3×4﹣ ×3×2﹣ ×1×2﹣ ×2×4=4.点评:此题主要考查了平移变换以及三⾓形⾯积求法和坐标轴确定⽅法,正确平移顶点是解题关键.23.(10分)我市中考体育测试中,1分钟跳绳为⾃选项⽬.某中学九年级共有若⼲名⼥同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进⾏统计后分为A、B、C、D四等,并绘制成下⾯的频数分布表(注:5~10的意义为⼤于等于5分且⼩于10分,其余类似)和扇形统计图(如图).等级分值跳绳(次/1分钟) 频数A 12.5~15 135~160 mB 10~12.5 110~135 30C 5~10 60~110 nD 0~5 0~60 1(1)m的值是 14 ,n的值是 30 ;(2)C等级⼈数的百分⽐是 10% ;(3)在抽取的这个样本中,请说明哪个分数段的学⽣最多?(4)请你帮助⽼师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).考点:扇形统计图;频数(率)分布表.分析: (1)⾸先根据B等级的⼈数除以其所占的百分⽐即可求得总⼈数,然后乘以28%即可求得m的值,总⼈数减去其他三个⼩组的频数即可求得n的值;(2)⽤n值除以总⼈数即可求得其所占的百分⽐;(3)从统计表的数据就可以直接求出结论;(4)先计算10分以上的⼈数,再除以50乘以100%就可以求出结论.解答:解:(1)观察统计图和统计表知B等级的有30⼈,占60%,∴总⼈数为:30÷60%=50⼈,∴m=50×28%=14⼈,n=50﹣14﹣30﹣1=5;(2)C等级所占的百分⽐为: ×100%=10%;(3)B等级的⼈数最多;(4)及格率为:×100%=88%.点评:本题考查了频数分布表的运⽤,扇形统计图的运⽤,在解答时看懂统计表与统计图得关系式关键.24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某⼩区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好⽤去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出⼀种费⽤最省的⽅案,并求出该⽅案所需费⽤.考点:⼀元⼀次不等式的应⽤;⼀元⼀次⽅程的应⽤.专题:压轴题.分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利⽤购进A、B两种树苗刚好⽤去1220元,结合单价,得出等式⽅程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出⽅案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x<x,< p="">解得:x> ,购进A、B两种树苗所需费⽤为80x+60(17﹣x)=20x+1020,则费⽤最省需x取最⼩整数9,此时17﹣x=8,这时所需费⽤为20×9+1020=1200(元).答:费⽤最省⽅案为:购进A种树苗9棵,B种树苗8棵.这时所需费⽤为1200元.点评:此题主要考查了⼀元⼀次不等式组的应⽤以及⼀元⼀次⽅程应⽤,根据⼀次函数的增减性得出费⽤最省⽅案是解决问题的关键.。
新人教版七年级数学(下册)期末试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)4.一5的绝对值是( )A .5B .15C .15-D .-55.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .86.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.分解因式:32x 2x x -+=_________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min .小东骑自行车以300m/min 的速度直接回家,两人离家的路程y (m )与各自离开出发地的时间x (min )之间的函数图象如图所示(1)家与图书馆之间的路程为多少m ,小玲步行的速度为多少m/min ;(2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、A5、A6、C7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、40°3、()2 x x1-.4、205、16、5三、解答题(本大题共6小题,共72分)1、3x=.2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、(1)略;(2)略.5、(1)40;(2)72;(3)280.6、(1) 60x y--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
2024年最新人教版七年级数学(下册)期末考卷及答案(各版本)一、选择题:每题1分,共5分1. 一个等差数列的前三项分别是2,5,8,那么第10项是______。
A. 29B. 30C. 31D. 322. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是______。
A. 6B. 7C. 17D. 233. 下列哪一个数是有理数______?A. √2B. √3C. √5D. √94. 下列哪一个比例是正确的______?A. 3 : 4 = 6 : 8B. 4 : 5 = 8 : 9C. 5 : 6 = 10 : 12D.6 :7 = 12 : 145. 下列哪一个图形是平行四边形______?A. 矩形B. 正方形C. 梯形D.菱形二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 任何两个有理数相乘都是无理数。
()3. 一个等边三角形的三个角都是60度。
()4. 两个锐角之和一定大于90度。
()5. 任何两个等腰三角形的底角相等。
()三、填空题:每题1分,共5分1. 一个等差数列的第5项是15,第10项是______。
2. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是______。
3. 下列哪一个数是无理数______。
4. 如果一个比例是3 : 4 = 6 : 8,那么比例的外项是______。
5. 下列哪一个图形是矩形______。
四、简答题:每题2分,共10分1. 简述等差数列的定义和通项公式。
2. 简述勾股定理及其应用。
3. 简述有理数的定义和性质。
4. 简述平行四边形的性质和判定。
5. 简述等边三角形的性质和判定。
五、应用题:每题2分,共10分1. 一个等差数列的前三项分别是2,5,8,求第10项。
2. 如果一个三角形的两边分别是8和15,那么第三边的长度可能是多少?3. 下列哪一个数是有理数?4. 下列哪一个比例是正确的?5. 下列哪一个图形是平行四边形?六、分析题:每题5分,共10分1. 分析并证明等差数列的前n项和公式。
七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P (-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
北京市朝阳区七年级(下)期末数学试卷一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A. B.C. D.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b3.下列各数中,无理数是()A.B.3.14 C.D.5π4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)二、填空题:(本大题共18分,每小题3分)11.化简:=.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:,结论:.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为.15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对.三、解答题(本大题共40分,每小题4分)17.计算:.18.解方程组:.19.解不等式:.并把解集在数轴上表示出来.20.求不等式组:的整数解.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC 作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1,C1;(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠=180°(),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(),∴∠BOD=(等量代换)23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.24.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量,“A等级”对应扇形的圆心角度数为;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠().∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 5 4000火车货运站100 1.3 5 6600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?28.夏季来临,某饮品店老板大白计划下个月(2015年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2014年8月该冰淇淋日销售量频数分布表2014年8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800800≤x<900由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.北京市朝阳区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的,请将正确选项前的字母填在题后的括号内.1.的算术平方根是()A. B.C. D.【考点】算术平方根.【专题】计算题.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:根据题意得:的算术平方根为.故答案为:.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.如果a<b,那么下列不等式成立的是()A.a﹣b>0 B.a﹣3>b﹣3 C.a> b D.﹣3a>﹣3b【考点】不等式的性质.【分析】根据不等式的基本性质对每个选项进行判断.【解答】解:a<bA、a﹣b<0,故A选项错误;B、a﹣3<b﹣3,故B选项错误;C、a<b,故C选项错误;D、﹣3a>﹣3b,故D选项正确.故选:D.【点评】此题考查的知识点是不等式的性质,关键不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.下列各数中,无理数是()A.B.3.14 C.D.5π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是有理数,故A错误;B.3.14是有理数,故B错误;C、=﹣3是有理数,故C错误;D、5π是无理数,故C正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,2x<5﹣3,合并同类项得,2x<2,系数化为1得.x<1.在数轴上表示为:.故选A.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.5.若是方程kx+3y=1的解,则k等于()A. B.﹣4 C.D.【考点】二元一次方程的解.【专题】计算题.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:3k+6=1,解得:k=﹣,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【解答】解:A、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,是真命题;B、两条平行线被第三条直线所截,同旁内角才互补,故错误,是假命题;C、两直线平行,内错角相等,正确,是真命题;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°﹣65°=25°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况【考点】全面调查与抽样调查.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、对旅客上飞机前的安检,必须准确,故必须普查;B、了解全班同学每周体育锻炼的时间,适合全面调查;C、企业招聘,对应聘人员的面试,因而采用普查合适;D、了解某批次灯泡的使用寿命情况,适合抽样调查.故选:D.【点评】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL【考点】平移的性质.【分析】根据平移的性质:新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等可得答案.【解答】解:∵将△ABC进行平移得到△MNL,其中点A的对应点是点M,∴AM∥BN∥CL,AM=BN=CL,BC=NL,∴A、B、D都正确,C错误,故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)【考点】坐标与图形性质.【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.【点评】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题:(本大题共18分,每小题3分)11.化简:=3.【考点】二次根式的性质与化简.【专题】计算题.【分析】先算出(﹣3)2的值,再根据算术平方根的定义直接进行计算即可.【解答】解:==3,故答案为:3.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.12.如果2x﹣7y=5,那么用含y的代数式表示x,则x=.【考点】解二元一次方程.【专题】计算题.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣7y=5,解得:x=,故答案为:【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设:在同一平面内两条直线垂直于同一条直线,,结论:这两条直线平行.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:∵可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行.∴题设是在同一平面内两条直线垂直于同一条直线,结论是:这两条直线平行,故答案为:在同一平面内两条直线垂直于同一条直线,这两条直线平行;【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.点A(2m+1,m+2)在第二象限内,且点A的横坐标、纵坐标均为整数,则点A的坐标为(﹣1,1).【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由A(2m+1,m+2)在第二象限内,得,解得﹣2<m<﹣,点A的横坐标、纵坐标均为整数,得m=﹣1.2m+1=﹣1,m+2=1,则点A的坐标为(﹣1,1),故答案为:(﹣1,1).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠CEF的度数是70°.【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.【解答】解:∵AB∥CD,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABF=2∠ABC=70°,∵AB∥CD,∴∠CEF=∠ABF=70°.故答案为70°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.16.将自然数按以下规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对(m,n),例如数2在第2行第1列,记它的位置为有序数对(2,1)).按照这种方式,位置为数对(4,5)的数是;数位置为有序数对(9,6).【考点】规律型:数字的变化类.【分析】由数表可以看出:偶数行第一个数是所在行数,平方后依次减少1;奇数行第一个数是上行数平方加1再开方,平方后依次增加1;奇数列第一个数是所在列数,平方后依次减少1;偶数列第一个数是所在上列数平方加1再开方,平方后依次增加1;由此规律得出答案即可.【解答】解:∵偶数行第一个数是所在行数,平方后依次减少1;偶数行第一个数是所在行数,平方后依次减少1;奇数列第一个数是所在列数,平方后依次减少1;∴(4,5)第5列的第一个数是5,平方后是25减去4就是第四行的数21,开方后为;∵8<<9,∴第9行的第一个数是,65+6﹣1=70,第数位置为有序数对是(9,6).故答案为:,(9,6).【点评】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共40分,每小题4分)17.计算:.【考点】实数的运算.【专题】计算题.【分析】原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果.【解答】解:原式=2﹣+﹣2=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3+②得:5x=10,即x=2,把x=2代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.解不等式:.并把解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:去分母得,3x﹣(x+4)≤6x﹣12,去括号得,3x﹣x﹣4≤6x﹣12,移项得,3x﹣x﹣6x≤﹣12+4,合并同类项得,﹣4x≤﹣8,系数化为1得,x≥2.在数轴上表示为:.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.20.求不等式组:的整数解.【考点】一元一次不等式组的整数解.【分析】线求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<1,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1,0,1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.21.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC 作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1(5,1),C1(3,﹣4);(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是8.【考点】作图-平移变换.【分析】(1)根据点P平移后的点可得,△ABC先向右平移4个单位,然后向下平移3个单位得到△A1B1C1,根据点A、C的坐标,写出点A1,C1的坐标;(2)根据坐标系的特点,将点A、B、C先向右平移4个单位,然后向下平移3个单位,然后顺次连接;(3)用△ABC所在的矩形的面积减去三个小三角形的面积.【解答】解:(1)由图可得,A1(5,1),C1(3,﹣4);(2)所作图形如图所示:(3)S△A1B1C1=5×4﹣×2×4﹣×2×3﹣×2×5=20﹣4﹣3﹣5=8.故答案为:(5,1),(3,﹣4);8.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.补全解答过程:已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换)【考点】对顶角、邻补角;角平分线的定义.【专题】推理填空题.【分析】根据邻补角,可得方程,根据角平分线的定义,可得∠AOC的度数,根据对顶角相等,可得答案.【解答】解:由题意∠EOC:∠EOD=2:3,设∠EOC=2x°,则∠EOD=3x°.∵∠EOC+∠EOD=180°(平角的定义),∴2x+3x=180.x=36.∴∠EOC=72°.∵OA平分∠EOC(已知),∴∠AOC=∠EOC=36°.∵∠BOD=∠AOC(对顶角相等),∴∠BOD=36°(等量代换),故答案为:EOD,平角的定义,对顶角相等,36°.【点评】本题考查了对顶角、邻补角,利用邻补角得出方程是解题关键,又利用了对顶角相等.23.阅读下列材料:∵,∴,∴的整数部分为3,小数部分为.请你观察上述的规律后试解下面的问题:如果9π的整数部分为a,的小数部分为b,求a+b的值.【考点】估算无理数的大小.【专题】阅读型.【分析】由9π≈28.26,可得其整数部分a=28,由27<28<64,可得<<,可得3<4,可得的小数部分b=﹣3,可得a+b的值.【解答】解:∵9π≈28.26,∴a=28,∵27<28<64,∴<<,∴3<4,∴b=﹣3,∴a+b=28+﹣3=25,∴a+b的值为25.【点评】本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.24.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以上统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量200,“A等级”对应扇形的圆心角度数为108°;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用D等级的人数除以对应的百分比即可得本次抽样调查的样本容量,利用“A等级”对应扇形的圆心角度数=“A等级”的百分比×360°求解即可.(2)先求出B,C等级的人数即可补全条形统计图,(3)利用体育测试成绩为“D等级”的学生人数=总人数דD等级”的学生百分比求解即可.【解答】解:(1)本次抽样调查的样本容量:10÷5%=200(名),“A等级”对应扇形的圆心角度数为(1﹣50%﹣15%﹣5%)×360°=108°,故答案为:200,108°.(2)B等级的人数为200×50%=100(名),C等级的人数为:200×15%=30(名),如图,(3)体育测试成绩为“D等级”的学生人数为10000×5%=500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.证明:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠E=∠DFE(两直线平行,内错角相等).【考点】平行线的性质.【专题】推理填空题.【分析】由平行线的性质得出同位角相等,再由已知条件得出AD∥BC,即可得出结论.【解答】解:∵AB∥CD (已知),∴∠B=∠DCE(两直线平行,同位角相等).∵∠A+∠DCE=180°(已知),∴∠A+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等).故答案为:DCE;两直线平行,同位角相等.【点评】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.26.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?【考点】二元一次方程组的应用.【分析】设短跳绳单价为x元,长跳绳单价为y元,根据长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同,列方程组求解.【解答】解:设短跳绳单价为x元,长跳绳单价为y元,由题意得,,解得:,答:短跳绳单价为8元,长跳绳单价为20元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,正确找出题目中的相等关系,列方程组求解.四、解答题(本大题共12分,每小题6分)27.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 5 4000火车货运站100 1.3 5 6600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?【考点】一次函数的应用.【分析】(1)根据需要花费费用为冷藏费、运输费用和装卸费用的和,分别计算用火车和用汽车花费即可解题;(2)计算用汽车和用火车运输费用一样多时s的值,即可解题.【解答】解:(1)用汽车运输,需要花费:y1=(1.5×60)x+5××60+4000=94x+4000;用火车运输,需要花费:y2=(1.3×60)x+5××60+6600=81x+6600;(2)当y1=y2时,即94x+4000=81x+6600,解得:s=200,故当s=200km时,用火车和汽车运输花费一样,当s>200km时,用火车运输比较划算,当s<200km时,用汽车运输比较划算.【点评】本题考查了一次函数的实际应用,本题中求得用汽车和用火车运输费用一样多时x的值是解题的关键.28.夏季来临,某饮品店老板大白计划下个月(2015年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2014年8月该冰淇淋日销售量频数分布表2014年8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800 16800≤x<900 6由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据頻数分布直方图可知800≤x<900一组的频数是6,然后根据頻数之和为31,即可求得700≤x<800一组的频数;(2)利用总销量﹣总成本=利润,进而得出答案;(3)①利用8m﹣4400<1200进而得出答案;②利用当剩余的冰淇淋打八折后全部售完以及当剩余的冰淇淋打八折后仍没人购买,分别表示出利润即可.【解答】解:(1)800≤x<900一组的频数是6,则700≤x<800一组的频数是31﹣3﹣6﹣6=16(天).。