内存地址映射的认识
- 格式:doc
- 大小:35.00 KB
- 文档页数:4
内存映射原理
内存映射是一种将磁盘文件映射到内存的操作。
在内存中建立一个虚拟地址空间,该空间与磁盘文件相对应,使得我们可以像访问内存一样访问磁盘文件的内容。
内存映射的原理是通过将磁盘文件的内容映射到内存的一段连续地址空间中。
在内存中指定一个缓冲区,当对这个缓冲区进行读写操作时,实际上是在对磁盘文件进行读写操作。
读取该内存区域的数据时,由于数据已经在内存中,所以读取速度非常快。
内存映射的过程主要包括以下几个步骤:
1. 打开文件:使用文件操作相关的API函数打开需要映射到内存的文件。
2. 创建映射区域:使用内存映射相关的API函数,创建一个映射区域。
将文件的某个区域映射到内存。
3. 访问映射区域:获得映射到内存中的虚拟地址,可以直接对其进行读写操作,就像操作内存一样。
4. 保存修改:如果对映射区域进行了修改,需要使用相关的API函数将修改的内容保存回磁盘文件。
通过内存映射,可以实现大文件的快速读写,提高文件的访问速度。
此外,多个进程可以通过映射同一个文件,实现共享内
存的功能,简化进程间通信的实现。
但需要注意的是,对于大文件的内存映射可能会消耗大量的系统内存,需要进行适当的调优和管理。
存储管理课程设计一、教学目标本节课的教学目标是让学生掌握存储管理的基本概念、原理和操作方法。
具体包括:1.知识目标:–了解存储管理的定义、作用和重要性;–掌握存储管理的基本原理,如地址映射、内存分配、存储保护等;–熟悉常见的存储管理技术,如分页、分段、虚拟存储等。
2.技能目标:–能够运用存储管理原理分析和解决实际问题;–能够使用相关工具和软件进行存储管理的操作和优化。
3.情感态度价值观目标:–培养学生的创新意识和团队协作精神,提高问题解决能力;–使学生认识到存储管理在计算机系统中的重要性,增强学习的兴趣和动力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.存储管理的基本概念:介绍存储管理的定义、作用和重要性,让学生了解存储管理在计算机系统中的地位。
2.存储管理的基本原理:讲解地址映射、内存分配、存储保护等基本原理,让学生掌握存储管理的核心知识。
3.存储管理技术:介绍常见的存储管理技术,如分页、分段、虚拟存储等,让学生了解各种技术的特点和应用。
4.存储管理工具和软件:讲解如何使用相关工具和软件进行存储管理的操作和优化,提高学生的实际操作能力。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用以下教学方法:1.讲授法:教师讲解存储管理的基本概念、原理和操作方法,让学生掌握基本知识。
2.案例分析法:分析实际案例,让学生了解存储管理在计算机系统中的应用和重要性。
3.实验法:引导学生动手实践,使用相关工具和软件进行存储管理的操作和优化。
4.讨论法:学生进行小组讨论,分享学习心得和经验,提高团队协作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的教材,如《计算机操作系统》、《计算机组成原理》等。
2.参考书:提供相关的参考书籍,如《存储管理技术手册》、《虚拟存储技术》等。
3.多媒体资料:制作精美的PPT、教学视频、动画等,帮助学生形象地理解存储管理的原理和操作。
内存映射文件的作用功能介绍内存映射文件的主要用途:1.操作大文件 2.进程间大量数据共享,下面分别介绍如下:VC++中使用内存映射文件处理大文件引言文件操作是应用程序最为基本的功能之一,Win32 API和MFC均提供有支持文件处理的函数和类,常用的有Win32 API的CreateFile()、WriteFile()、ReadFile()和MFC提供的CFile类等。
一般来说,以上这些函数可以满足大多数场合的要求,但是对于某些特殊应用领域所需要的动辄几十GB、几百GB、乃至几TB的海量存储,再以通常的文件处理方法进行处理显然是行不通的。
目前,对于上述这种大文件的操作一般是以内存映射文件的方式来加以处理的,本文下面将针对这种Windows核心编程技术展开讨论。
内存映射文件内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对该文件进行操作之前必须首先对文件进行映射,就如同将整个文件从磁盘加载到内存。
由此可以看出,使用内存映射文件处理存储于磁盘上的文件时,将不必再对文件执行I/O操作,这意味着在对文件进行处理时将不必再为文件申请并分配缓存,所有的文件缓存操作均由系统直接管理,由于取消了将文件数据加载到内存、数据从内存到文件的回写以及释放内存块等步骤,使得内存映射文件在处理大数据量的文件时能起到相当重要的作用。
另外,实际工程中的系统往往需要在多个进程之间共享数据,如果数据量小,处理方法是灵活多变的,如果共享数据容量巨大,那么就需要借助于内存映射文件来进行。
实际上,内存映射文件正是解决本地多个进程间数据共享的最有效方法。
内存映射文件并不是简单的文件I/O操作,实际用到了Windows的核心编程技术--内存管理。
所以,如果想对内存映射文件有更深刻的认识,必须对Windows操作系统的内存管理机制有清楚的认识,内存管理的相关知识非常复杂,超出了本文的讨论范畴,在此就不再赘述,感兴趣的读者可以参阅其他相关书籍。
Linux内存地址映射 目 录1概述 (3)2IA-32体系结构内存地址映射 (4)2.1CPU相关寄存器 (4)2.1.1系统寄存器 (5)2.1.2内存管理寄存器 (5)2.2保护模式的内存管理 (7)2.332位时页面机制地址映射 (9)2.3.1逻辑地址到线性地址的映射 (9)2.3.2线性地址到物理地址的映射 (11)2.4PAE页面机制地址映射过程 (12)2.4.1PDPTE寄存器 (12)2.4.2逻辑地址到线性地址的映射 (13)2.4.3线性地址到物理地址的映射 (13)3Linux内核的地址映射过程 (15)3.1段式映射过程 (15)3.2页式映射过程 (17)4Linux地址映射实验 (19)4.1gdtr和cr3寄存器值的获取 (20)4.2读取物理内存上的数据 (21)4.3地址映射过程实验 (21)4.3.1段式映射过程 (23)4.3.2页式映射过程 (24)4.4PAE机制下地址映射过程实验 (26)4.4.1段式映射过程 (26)4.4.2页式映射过程 (27)5常见问题及解答 (28)1 概述在分析Linux内存地址映射前,先来看一段简单的C程序代码在32位和64位系统上运行结果:#include <stdio.h>int main(){unsigned long tmp;tmp = 0x12345678;printf("tmp variable address:0x%08lX\n", &tmp);return 0;}[root@RHEL6 C]# ./addrtmp variable address:0xBFF42DEC[root@RHEL6 C]#[root@RHEL6-x64-1 C]# ./addrtmp variable address:0x7FFF138E0888上面的程序功能非常简单,就是打印出临时变量tmp的地址。
计算机考研常见操作系统名词解释计算机考研常见操作系统名词翻译【进程控制块(pcb)】系统为了管理进程设置的一个专门的数据结构,用它来记录进程的外部特征,描述进程的运动变化过程。
系统利用pcb来控制和管理进程,所以pcb是系统感知进程存在的唯一标志。
进程与pcb是一一对应的。
【文件控制块(fcb)】文件控制块是操作系统为管理文件而设置的数据结构,存放了为管理文件所需的所有有关信息。
文件控制块是文件存在的标志。
【作业步】一般情况下,一个作业可划分成若干个部分,每个部分称为一个作业步。
在作业运行期间,各作业步之间存在着相互联系,往往上一个作业步的结果作为下一个作业步的输入。
【字符流文件】构成文件的基本单位是字符,文件是有逻辑意义的、无结构的一串字符的集合。
【死锁】一组进程中,每个进程都无限等待被该组进程中另一进程所占有的资源,因而永远无法得到的资源,这种现象称为进程死锁,这一组进程就称为死锁进程。
【当前目录】为了提高文件检索速度,文件系统向用户提供了一个当前正在使用的目录,称为当前目录。
【快表】介于内存与寄存器之间的存储机制,它又叫快表。
【作业调度】根据一定的原则,从输入井的后备作业队列中选择适当的作业,为它分配内存等资源,并将其调入内存投入运行。
又称高级调度,远程调度。
【地址映射】为了保证cpu执行指令时可正确访问存储单元,需将用户程序中的逻辑地址转换为运行时由机器直接寻址的物理地址,这一过程称为地址映射。
【死锁避免】在系统运行过程中,对进程发出的每一个系统能够满足的资源申请进行动态检查,并根据检查结果决定是否分配资源,若分配后系统可能发生死锁,则不予分配,否则予以分配。
【作业控制块】os向用户提供一组作业控制语言,用户用这种语言书写作业说明书,然后将程序、数据和作业说明书一齐交给系统操作员。
【虚存】把内存与外存有机的结合起来使用,从而得到一个容量很大的“内存”,这就是虚存。
【中断】cpu对系统发生的某个事件作出的一种反应:cpu暂停正在执行的程序,保留现场后自动转去执行相应事件的处理程序,处理完成后返回断点,继续执行被打断的程序。
计算机四级操作系统-7-IO设备管理第7章I/O设备管理设备管理是操作系统的主要功能之⼀,它负责管理所有输⼈输出设备以完成期望的数据传设备管理可能是操作系统设计中最凌乱的部分,这主要是由于计算机系统中存在着⼤量的输⼊/输出设备,其性能和应⽤特点可能完全不同。
所以要建⽴⼀个通⽤的、⼀致的设备访问接⼝,使⽤户和应⽤程序开发⼈员能够⽅便地使⽤输⼊/输出设备,⽽⽆须关⼼每种设备各⾃的特性,这正是设备管理的主要⽬的。
本章⾸先讲述设备管理的基本概念,然后讨论I/O硬件组成、I/O软件结构、设备管理的相关技术,最后阐述I/O性能问题及解决⽅案。
7.1设备与设备分类输⼊/输出设备(I/O设备)也称为外部设备(Peripheral Device),有时简称为设备或外设,包括计算机系统中除CPU和内存储器以外的所有的设备和装置,还包括所有外部存储设备。
在不同的上下⽂中,I/O设备⼀词有⼴义和狭义两种含义,⼴义的I/O设备即上述定义,狭义的I/O设备不包括外存设备。
可见,计算机系统中外部设备⾮常多,并且这些设备在功能、速度和控制⽅式等⽅⾯都有较⼤的差异,本节将讨论这些问题。
7.1.1设备管理的重要性为了理解操作系统中设备管理的重要性,⾸先要了解I/O设备在计算机系统中所起的作⽤。
如果说处理器和内存是计算机系统的⼤脑部分的话,那么I/O设备就是计算机系统的五官和四肢。
各种需要处理的信息和操作⼈员对计算机系统的操作命令,都要通过输⼊设备进⼊计算机系统,处理后的信息和结果也要通过输出设备从计算机系统输出。
计算机系统中的I/O设备种类繁多,从简单的键盘到⿏标、打印机、图形显⽰终端、磁盘驱动器以⾄于⽹络设备,变化万千,造就计算机应⽤的多样性和普及性。
可以说没有I/O设备,就没有计算机的应⽤。
然⽽,正如⼈们已经认识到的,操作系统复杂和庞⼤的主要原因是它所管理的资源的庞杂和并发技术的采⽤,⽽I/o设备的庞杂正是操作系统所管理的资源庞杂的主要原因,I/O设备的速度远低于处理器的速度正是导致并发技术产⽣的直接原因。
考点一内存管理概念一、单项选择题在下面关于存储功能的论述中正确的是()A.即使在多道程序管理下用户也可以编制用物理地址直接访问内存的程序。
B.内存分配的基本任务是为每道程序分配内存空间,其追求的目的则是提高内存的利用率。
C.为提高内存保护的灵活性,内存保护通常由软件完成。
D.地址映射是指将程序物理地址转变为内存的逻辑地址二、综合应用题1.请列举出逻辑地址和物理地址的两个不同之处。
2.一个进程被换出内存,它就失去了使用CPU的机会。
除了换出内存这种情形,请列举出其它一种情形,进程虽然失去了使用CPU的机会,但它并没有被换出内存。
3.存储管理的主要研究内容是什么?4.什么是动态链接?用何种内存分配方法可以实现这种链接技术?5.某系统把任一程序都分成代码和数据两部分。
CPU知道什么时候要指令(如取指令周期),什么时候要数据(如取数据周期或存数据周期)。
所以,需要两种寄存器(基地址寄存器、界限寄存器),一组用于指令,一组用于数据。
用于指令的是只读的,以便于用户的共享。
请分析这种策略的优缺点。
6.什么是地址的重定位?有哪几种常用的地址重定位的方法?7.在现代计算机系统中,存储器是十分重要的资源,能否合理有效的使用存储器,在很大程度上反映了操作系统的性能,并直接影响到计算机系统作用的发挥。
请问:(1)主存利用率不高主要体现为哪几种形式?(2)可以通过哪些途径来提高主存利用率8.内存保护是否可以完全由软件来实现?为什么?考点二交换与覆盖一、单项选择题1.存储管理方案中,()可采用覆盖技术。
A.单一连续存储管理B.可变分区存储管理C.段式存储管理D.段页式存储管理2.在存储系统管理中,采用覆盖技术与交换技术的目的是( )。
A.节省主存空间B.物理上扩充主存容量C.提高CPU利用率D.实现主存共存二、综合应用题1.在存储管理中,覆盖和对换技术所以解决的是什么问题?各有什么特点?2请写出你对交换过程和覆盖过程的认识,它们的主要区别有哪些?考点三连续分配管理方式一、单项选择题1.在可变式分区分配方案中,某一作业完成后,系统收回其主存空间并与相邻空闲区合并,为此需要修改空闲区表,造成空闲区域减1的情况是()。
计算机的映射名词解释计算机科学领域中有许多与映射有关的名词,这些名词往往涉及到数据的转化、关联和处理。
在这篇文章中,我们将解释一些与计算机的映射相关的名词,通过深入探讨这些概念,我们可以更好地理解它们在计算机领域中的应用和重要性。
1. 数据映射数据映射是将一个数据集合或数据点转换为另一个数据集合或数据点的过程。
这种转换可以根据特定的规则和算法进行,常见的数据映射方法包括线性映射、非线性映射和点云映射等。
数据映射在数据分析、图像处理和模式识别等领域中起着重要作用,它可以帮助我们从不同的角度和维度观察和理解数据。
2. 地理信息系统中的映射在地理信息系统(GIS)中,映射是将地理空间信息转换为可视化的地图或图像的过程。
通过将地理数据(如地形、道路、建筑物等)与特定的地理坐标相关联,GIS可以帮助我们了解和分析地理现象。
地理信息系统中的映射技术涉及到地理数据的匹配、变换和可视化等方面,它在城市规划、资源管理和环境保护等领域中具有广泛的应用和意义。
3. 内存映射内存映射是一种将外部数据源映射到计算机内存的技术。
通过内存映射,我们可以将磁盘文件或其他设备上的数据直接映射到内存地址空间中,使得它们可以像内存一样被访问和操作。
内存映射通常用于处理大型文件、数据库和图像等场景,它可以提高数据的读取和写入效率,并减少了数据在磁盘和内存之间的复制操作。
4. 哈希映射哈希映射是一种基于哈希函数的数据结构,它用于存储和查找键值对。
在哈希映射中,通过将键映射到特定的哈希值,并将该哈希值作为索引存储数据,我们可以在常数时间内进行插入、查找和删除操作。
哈希映射在数据库、缓存和字典等场景中广泛应用,它提供了快速的数据索引和高效的数据存取。
5. 网络地址映射在计算机网络中,网络地址映射是将一个网络地址转换为另一个网络地址的过程。
这种映射通常涉及到网络地址转换(Network Address Translation,NAT)技术,它可以帮助将多个计算机共享同一个公共网络地址。
在进入正题前先来谈谈操作系统内存管理机制的发展历程,了解这些有利于我们更好的理解目前操作系统的内存管理机制。
一早期的内存分配机制在早期的计算机中,要运行一个程序,会把这些程序全都装入内存,程序都是直接运行在内存上的,也就是说程序中访问的内存地址都是实际的物理内存地址。
当计算机同时运行多个程序时,必须保证这些程序用到的内存总量要小于计算机实际物理内存的大小。
那当程序同时运行多个程序时,操作系统是如何为这些程序分配内存的呢?下面通过实例来说明当时的内存分配方法:某台计算机总的内存大小是128M,现在同时运行两个程序A和B,A需占用内存10M,B需占用内存110。
计算机在给程序分配内存时会采取这样的方法:先将内存中的前10M分配给程序A,接着再从内存中剩余的118M中划分出110M分配给程序B。
这种分配方法可以保证程序A和程序B都能运行,但是这种简单的内存分配策略问题很多。
图一早期的内存分配方法问题1:进程地址空间不隔离。
由于程序都是直接访问物理内存,所以恶意程序可以随意修改别的进程的内存数据,以达到破坏的目的。
有些非恶意的,但是有bug的程序也可能不小心修改了其它程序的内存数据,就会导致其它程序的运行出现异常。
这种情况对用户来说是无法容忍的,因为用户希望使用计算机的时候,其中一个任务失败了,至少不能影响其它的任务。
问题2:内存使用效率低。
在A和B都运行的情况下,如果用户又运行了程序C,而程序C需要20M大小的内存才能运行,而此时系统只剩下8M的空间可供使用,所以此时系统必须在已运行的程序中选择一个将该程序的数据暂时拷贝到硬盘上,释放出部分空间来供程序C使用,然后再将程序C的数据全部装入内存中运行。
可以想象得到,在这个过程中,有大量的数据在装入装出,导致效率十分低下。
问题3:程序运行的地址不确定。
当内存中的剩余空间可以满足程序C的要求后,操作系统会在剩余空间中随机分配一段连续的20M 大小的空间给程序C使用,因为是随机分配的,所以程序运行的地址是不确定的。
计算机组成原理的实验报告一、实验目的本次实验的主要目的是深入理解计算机组成原理中的关键概念和组件,通过实际操作和观察,增强对计算机硬件系统的认识和掌握能力。
具体包括:1、了解计算机内部各部件的工作原理和相互关系。
2、熟悉计算机指令的执行流程和数据的传输方式。
3、掌握计算机存储系统的组织和管理方法。
4、培养分析和解决计算机硬件相关问题的能力。
二、实验设备本次实验使用的设备包括计算机、逻辑分析仪、示波器以及相关的实验软件和工具。
三、实验内容1、运算器实验进行了简单的算术运算和逻辑运算,如加法、减法、与、或等操作。
观察运算结果在寄存器中的存储和变化情况。
2、控制器实验模拟了指令的取指、译码和执行过程。
分析不同指令对计算机状态的影响。
3、存储系统实验研究了内存的读写操作和地址映射方式。
考察了缓存的工作原理和命中率的计算。
4、总线实验观察数据在总线上的传输过程和时序。
分析总线竞争和仲裁的机制。
四、实验步骤1、运算器实验步骤连接实验设备,将运算器模块与计算机主机相连。
打开实验软件,设置运算类型和操作数。
启动运算,通过逻辑分析仪观察运算过程中的信号变化。
记录运算结果,并与预期结果进行比较。
2、控制器实验步骤连接控制器模块到计算机。
输入指令序列,使用示波器监测控制信号的产生和变化。
分析指令执行过程中各个阶段的状态转换。
3、存储系统实验步骤搭建存储系统实验电路。
进行内存读写操作,改变地址和数据,观察存储单元的内容变化。
分析缓存的替换策略和命中率的影响因素。
4、总线实验步骤连接总线模块,配置总线参数。
多个设备同时发送数据,观察总线的仲裁过程。
测量数据传输的时序和带宽。
五、实验结果与分析1、运算器实验结果加法、减法等运算结果准确,符合预期。
逻辑运算的结果也正确无误。
观察到在运算过程中,寄存器的值按照预定的规则进行更新。
分析:运算器的功能正常,能够准确执行各种运算操作,其内部的电路和逻辑设计合理。
2、控制器实验结果指令能够正确取指、译码和执行,控制信号的产生和时序符合指令的要求。
Cache与主存之间的全相联映射,直接映射和组相联映射的区别1.高速缓冲存储器的功能、结构与工作原理高速缓冲存储器是存在于主存与CPU之间的一级存储器,由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多,接近于CPU的速度。
Cache的功能是用来存放那些近期需要运行的指令与数据。
目的是提高CPU对存储器的访问速度。
为此需要解决2个技术问题:一是主存地址与缓存地址的映象及转换;二是按一定原则对Cache的内容进行替换。
Cache的结构和工作原理如图2.3.1所示。
主要由三大部分组成:Cache存储体:存放由主存调入的指令与数据块。
地址转换部件:建立目录表以实现主存地址到缓存地址的转换。
替换部件:在缓存已满时按一定策略进行数据块替换,并修改地址转换部件。
2.地址映象与转换地址映象是指某一数据在内存中的地址与在缓冲中的地址,两者之间的对应关系。
下面介绍三种地址映象的方式。
1.全相联方式地址映象规则:主存的任意一块可以映象到Cache中的任意一块(1) 主存与缓存分成相同大小的数据块。
(2) 主存的某一数据块可以装入缓存的任意一块空间中。
全相联方式的对应关系如图2.3.2所示。
如果Cache的块数为Cb,主存的块数为Mb,则映象关系共有Cb×Mb种。
图2.3.3示出了目录表的格式及地址变换规则。
目录表存放在相关(联)存储器中,其中包括三部分:数据块在主存的块地址、存入缓存后的块地址、及有效位(也称装入位)。
由于是全相联方式,因此,目录表的容量应当与缓存的块数相同。
举例:某机主存容量为1M,Cache的容量为32KB,每块的大小为16个字(或字节)。
划出主、缓存的地址格式、目录表格式及其容量。
容量:与缓冲块数量相同即211=2048(或32K/16=2048)。
优点:命中率比较高,Cache存储空间利用率高。
缺点:访问相关存储器时,每次都要与全部内容比较,速度低,成本高,因而应用少。
2.直接相联方式地址映象规则:主存储器中一块只能映象到Cache的一个特定的块中。
stm32内存映射的原理STM32内存映射的原理是指将STM32芯片中所有的外设(如I/O端口、定时器、串口等)和存储器(如SRAM、Flash等)都映射到一个连续的地址空间内,方便访问和操作。
这个地址空间可以被认为是一个大的数组,每个元素代表一个外设或存储器单元,其中每个元素都有一个特定的物理地址。
在程序运行时,通过对这些物理地址的访问,就可以读写外设和存储器。
在STM32中,这个地址空间一般是32位的,可以表示4GB的空间。
但实际上并不是所有的地址都被用来映射外设和存储器,通常只有一部分被用来映射外设和存储器,而剩余的地址则没有任何用途。
此外,根据不同的芯片型号和具体的应用场景,内存映射的细节也可能有所不同。
在编写STM32的驱动程序时,需要使用寄存器和指针来访问内存映射中的外设和存储器。
具体来说,可以使用以下的方式来访问内存映射中的不同部分:- 对于内存中的数据,可以使用指向内存地址的指针来进行直接的读写操作。
- 对于外设的控制寄存器,通常需要先将其物理地址转换为虚拟地址并保存在指针中,然后使用指针来访问寄存器。
- 对于访问Flash存储器,需要使用特殊的指令来进行读操作,而写操作则需要先将Flash解锁,并按照特定的步骤进行操作。
- 对于存储器映射外设,可以使用类似于指针的方式来访问控制寄存器和数据寄存器。
除了这些基本的操作之外,还可以通过编写相应的驱动程序和接口,将内存映射中的不同部分整合起来,方便更高层次的应用程序进行调用。
例如,在通信领域中,可以通过将串口的控制寄存器、发送缓冲区和接收缓冲区整合在一起,实现对串口通信的封装和简化。
总的来说,STM32内存映射的原理是将芯片中的外设和存储器映射到一个连续的地址空间中,方便程序访问和操作。
在实际应用中,需要通过指针和寄存器等手段进行访问和控制,同时可以通过编写驱动程序和接口,将内存映射中的不同部分整合起来,方便更高层次的应用程序进行调用。
c#实现内存映射⽂件共享内存内存映射⽂件是利⽤虚拟内存把⽂件映射到进程的地址空间中去,在此之后进程操作⽂件,就像操作进程空间⾥的地址⼀样了,⽐如使⽤c语⾔的 memcpy等内存操作的函数。
这种⽅法能够很好的应⽤在需要频繁处理⼀个⽂件或者是⼀个⼤⽂件的场合,这种⽅式处理IO效率⽐普通IO效率要⾼共享内存是内存映射⽂件的⼀种特殊情况,内存映射的是⼀块内存,⽽⾮磁盘上的⽂件。
共享内存的主语是进程(Process),操作系统默认会给每⼀个进程分配⼀个内存空间,每⼀个进程只允许访问操作系统分配给它的哪⼀段内存,⽽不能访问其他进程的。
⽽有时候需要在不同进程之间访问同⼀段内存,怎么办呢?操作系统给出了创建访问共享内存的API,需要共享内存的进程可以通过这⼀组定义好的API来访问多个进程之间共有的内存,各个进程访问这⼀段内存就像访问⼀个硬盘上的⽂件⼀样。
⽽.Net 4.0中引⼊了System.IO. MemoryMappedFiles命名空间,这个命名空间的类对windows 共享内存相关API做了封装,使.Net程序员可以更⽅便的使⽤内存映射⽂件。
在C#中使⽤共享内存。
以下App1的代码让⽤户输⼊⼀⾏⽂本到共享内存中;App2不停的刷新控制台,输出最新的共享内存内容;App3实现的功能和App2相同,但读取⽅法不同。
00001.App1代码:using System;using System.Collections.Generic;android从资源⽂件中读取⽂件流显⽰using System.Linq;using System.Text;using System.IO;//引⽤内存映射⽂件命名空间using System.IO.MemoryMappedFiles;namespace App1{class Program{static void Main(string[] args){long capacity = 1<<10<<10;//创建或者打开共享内存using (var mmf = MemoryMappedFile.CreateOrOpen("testMmf", capacity, MemoryMappedFileAccess.ReadWrite)){//通过MemoryMappedFile的CreateViewAccssor⽅法获得共享内存的访问器var viewAccessor = mmf.CreateViewAccessor(0, capacity);//循环写⼊,使在这个进程中可以向共享内存中写⼊不同的字符串值while (true){Console.WriteLine("请输⼊⼀⾏要写⼊共享内存的⽂字:");string input = Console.ReadLine();//向共享内存开始位置写⼊字符串的长度viewAccessor.Write(0, input.Length);//向共享内存4位置写⼊字符viewAccessor.WriteArray<char>(4, input.ToArray(), 0, input.Length);}}}}}App2代码:using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threading;//引⽤使⽤内存映射⽂件需要的命名空间using System.IO.MemoryMappedFiles;namespace App2{class Program{static void Main(string[] args){long capacity = 1<<10<<10;using (var mmf = MemoryMappedFile.OpenExisting("testMmf")){MemoryMappedViewAccessor viewAccessor = mmf.CreateViewAccessor(0, capacity);//循环刷新共享内存字符串的值while (true){//读取字符长度int strLength = viewAccessor.ReadInt32(0);char[] charsInMMf = new char[strLength];//读取字符viewAccessor.ReadArray<char>(4, charsInMMf, 0, strLength);Console.Clear();Console.Write(charsInMMf);Console.Write("\r");Thread.Sleep(200);}}}}}App3代码:using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.IO.MemoryMappedFiles;using System.IO;namespace App3{class Program{static void Main(string[] args){long capacity = 1 << 10 << 10;//打开共享内存using (var mmf = MemoryMappedFile.OpenExisting("testMmf")){//使⽤CreateViewStream⽅法返回stream实例using (var mmViewStream = mmf.CreateViewStream(0, capacity)){//这⾥要制定Unicode编码否则会出问题using (BinaryReader rdr = new BinaryReader(mmViewStream,Encoding.Unicode)){while (true){mmViewStream.Seek(0, SeekOrigin.Begin);int length = rdr.ReadInt32();char[] chars = rdr.ReadChars(length);Console.Write(chars);Console.Write("\r");System.Threading.Thread.Sleep(200);Console.Clear();}}}}}}}00001.在读数据时⽤了2种⽅法。
【转载】Windows下内存映射⽂件的⼯作原理及使⽤⽅法⼀、引⾔ WIN32 API为我们提供了⼀种进⾏⽂件操作的⾼效途径,即内存映射⽂件。
内存映射⽂件允许我们在WIN32进程的虚拟地址空间中保留⼀段内存区域,把⽬标⽂件映射到这段虚拟内存之中。
我们可以⽤存取内存数据的⽅式直接操作⽂件中的数据,就好像这些数据放在内存中⼀样。
⽽实际上,我们并没有、也不需要调⽤API函数来读写⽂件,更不需要⾃⼰提供任何缓冲算法,操作系统将会为我们完成这些⼯作。
使⽤内存映射⽂件能给程序开发⼯作提供极⼤的⽅便,程序的运⾏效率也⾮常⾼。
内存映射⽂件在Windows NT和Windows95中的实现机制略有不同,下⾯主要介绍Windows95下内存映射⽂件的⼯作原理及使⽤⽅法。
⼆、Windows95如何管理WIN32进程的内存空间 内存映射⽂件的实现与Windows95的内存管理有密切的关系,因此先讨论⼀下Windows95在运⾏WIN32进程时的内存管理与划分。
在Windows3.x下,所有Windows应⽤程序共享单⼀的地址空间,任何进程都能够对这⼀空间中属于其他进程的内存进⾏读写操作,甚⾄可以存取操作系统本⾝的重要数据。
在这种环境中,编写不当的应⽤程序或者带有恶意的应⽤程序,就可能破坏其他程序的数据或代码,使得系统运⾏不正常,严重时甚⾄会导致系统崩溃。
在实现了WIN32的操作系统Windows NT和Windows95中,每个WIN32进程拥有⾃⼰的地址空间,⼀个WIN32进程不能存取另⼀个进程地址空间的私有数据,两个进程可以⽤具有相同值的指针寻址,但所读写的只是它们各⾃的数据,这样就⼤⼤减少了进程之间的相互⼲扰,增强了系统的健壮性;另⼀⽅⾯,每个WIN32进程拥有4GB的地址空间,但并不代表它真正拥有4GB的实际物理内存,⽽只是操作系统利⽤CPU的内存分页功能提供的虚拟地址空间。
在⼀般情况下,绝⼤多数虚拟地址并没有物理内存与之对应,在真正可以使⽤这些地址空间之前,还要由操作系统提供实际的物理内存。
主存和Cache的⼏种映射⽅式在⼀切开始之前,⾸先最重要的是需要去明⽩和掌握内存的块的定义:内存被分为若⼲块,这些块:1.⼤⼩相等,2.每块由若⼲字组成,3.块的长度成为块长,块的长度是指由⼏个字组成就是多长,⽐如⼀个块由x个字组成,那么块长为x.4.每个块由连续的字组成。
在Cache中这种块被某些替换原则替换进⼊Cache之后,称为Cache的⾏(有些书上也称为块,这⾥就⽤⾏表⽰,以免混淆)。
有以下⼏个特点:1.块长(⼀般是取⼀个存取周期内从主存调出的信息长度,和交互存取有关系)与⾏长相等,这点和物理页和逻辑页的页内地址的长度是⼀样的原理类似。
2.Cache中⾏的位数=⾏号+⾏内地址内存中块的位数=块号+块内地址。
3.块内地址的位数由块的长度决定(设块的长度为x,块内地址的位数其实就是⽤⼏位能表⽰x的问题),块号的位数由块的数⽬决定(⽐如块的数⽬是x,块号其实就是⽤⼏位⼆进制数能表⽰x个数的问题),⾏号的位数由⾏数决定。
块⾥的内容就是⾏的内容,⾏内地址和块内地址相同。
、标记位是什么?先记住⼀点,标记位和cache的地址没有⼀点关系。
每个⾏对应⼀个标记位。
后⾯会进⾏说明CPU与内存以及Cache之间的交互⽅式好了,明⽩了块和⾏的定义之后,我们来看看CPU与内存和Cache之间的交互:1.CPU同时(也有可能不是同时,这时事先访问cache cahce⾥⾯没有再对主存进⾏访问,如果缺失的话访存时间会长⼀点)向Cache和内存发出读请求。
把地址同时送给Cache和内存。
2.Cache控制逻辑(由硬件实现)判断此内存地址是否在Cache中,在则⽴马将此内存的字送给CPU,与此同时,终⽌访问内存。
3.若不在Cache中,⽤主存读取周期从主存中将字取出送往CPU,与此同时,把含有这个字的整个数据块通过Cache与主存的直接通路送到Cache 中。
(由这个交互过程我们可以看到,主存和Cache与CPU交互的时候传送的是字,但是Cache和主存交互传送的是块)了解了过程之后我们来看看映射关系是什么,映射关系是CPU在访存时,将主存地址变换成Cache地址的过程。
操作系统中的内存映射与文件映射技术内存映射和文件映射是操作系统中常用的技术之一。
它们允许操作系统将磁盘上的文件直接映射到内存,使得对文件的访问操作可以像对内存一样快速和方便。
本文将分别介绍内存映射和文件映射的原理、应用场景以及它们的优缺点。
一、内存映射1.内存映射的原理内存映射是操作系统中一种将磁盘上的文件映射到进程地址空间的技术。
具体而言,操作系统会为文件在虚拟内存地址空间中分配一段连续的地址,并将文件内容从磁盘读取到这段内存中。
这样,对该文件的访问操作就可以直接在内存中进行,而不需要再通过文件读写系统调用。
2.内存映射的应用场景内存映射在操作系统中有着广泛的应用场景。
其中最常见的应用场景包括:-文件访问:将文件映射到内存中可以避免频繁的磁盘读写操作,从而提高文件访问速度。
这在处理大型文件或需要频繁访问的文件时特别有用。
-共享内存:多个进程可以将同一个文件映射到各自的地址空间中,从而实现共享内存的目的。
这在并发编程和进程间通信中常用,可以提高进程间的数据交换效率。
-动态链接库加载:操作系统可以将动态链接库文件映射到进程地址空间中,实现动态库的加载和使用。
这可以提高程序的可扩展性和灵活性。
3.内存映射的优缺点内存映射技术有着以下优点:-提高访问速度:内存映射将磁盘上的文件映射到内存中,避免了频繁的磁盘读写操作,从而提高了访问速度。
-简化编程:内存映射使得对文件的访问可以像访问内存一样简单,不需要使用繁琐的文件读写系统调用。
-共享数据:多个进程可以通过映射同一文件实现共享内存,从而在进程间交换数据,并实现进程间的通信。
然而,内存映射技术也有以下缺点:-浪费内存:内存映射会为文件在进程地址空间中分配一段内存,如果映射了大型文件,会导致内存的浪费。
-安全性问题:如果多个进程都可以访问同一个文件的映射内存,那么需要注意对共享内存的保护,避免数据损坏或非法访问。
-文件大小限制:由于内存有限,操作系统对单个文件的映射大小通常存在限制,不能超过操作系统的地址空间大小。
内存地址映射的认识(memory map)
内存物理地址为A,即地址A
而物理地址A得地址代码又需要内存来存放,我们设地址A存的地址为地址B
所谓映射就是把存地址A代码的地址B由地址C来来指向地址B,也就是说通过C来间接的指向实际地址A
这就好比一个储藏库为A,地址代码为1111,我把这个地址代码放到B处(B里面放上A的地址代码1111),而B的地址为10000,我在把B的地址10000放到C中(01010),这样C就是对B的映射!
地址映射为了保证CPU执行指令时可正确访问存储单元,需将用户程序中的逻辑地址转换为运行时由机器直接寻址的物理地址,这一过程称为地址映射地址映射原理及实现:
1、地址映射结构
在Tornado\target\h\vmLib.h文件中
typedef struct phys_mem_desc
{
void *virtualAddr;
void *physicalAddr;
UINT len;
UINT initialStateMask; /* mask parameter to vmStateSet */
UINT initialState; /* state parameter to vmStateSet */
} PHYS_MEM_DESC;
virtualAddr:你要映射的虚拟地址
physicalAddr:硬件设计时定义的实际物理地址
len;要进行映射的地址长度
initialStateMask:可以初始化的地址状态:
有如下状态:
#define VM_STATE_MASK_VALID 0x03
#define VM_STATE_MASK_WRITABLE 0x0c
#define VM_STATE_MASK_CACHEABLE 0x30
#define VM_STATE_MASK_MEM_COHERENCY 0x40
#define VM_STATE_MASK_GUARDED 0x80
不同的CPU芯片类型还有其特殊状态
initialState:实际初始化的地址状态:
有如下状态:
#define VM_STATE_VALID 0x01
#define VM_STATE_VALID_NOT 0x00
#define VM_STATE_WRITABLE 0x04
#define VM_STATE_WRITABLE_NOT 0x00
#define VM_STATE_CACHEABLE 0x10
#define VM_STATE_CACHEABLE_NOT 0x00
同样不同的CPU芯片类型还有其特殊状态
2、初始化结构
在 Tornado\target\config\ads860\sysLib.c 文件中:
PHYS_MEM_DESC sysPhysMemDesc [] =
{
{
(void *) LOCAL_MEM_LOCAL_ADRS,
(void *) LOCAL_MEM_LOCAL_ADRS,
LOCAL_MEM_SIZE ,
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE
},
{
(void *) BCSR0,
(void *) BCSR0,
0x00001000, /* 4 k - Board Control and Status */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_GUARDED,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT | VM_STATE_GUARDED
},
……
{
(void *) INTERNAL_MEM_MAP_ADDR,
(void *) INTERNAL_MEM_MAP_ADDR,
INTERNAL_MEM_MAP_SIZE, /* 64 k - Internal Memory Map */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_GUARDED,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT | VM_STATE_GUARDED
},
{
(void *) ROM_BASE_ADRS,
(void *) ROM_BASE_ADRS,
ROM_SIZE, /* Flach memory */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE ,
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT }
};
上面结构中是缺省地址映射。
3、地址初始化
在Tornado\target\src\config\ usrMmuInit.c 文件中
通过函数usrMmuInit使地址映射生效
4、实现映射:
如你定义flash地址为0x04000000开始的8Mbyte地址,则可以如下进行地址映射
{
(void *) 0x04000000,
(void *) 0x04000000,
0x00800000, /* 8 m - Flash window 1 */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE,
VM_STATE_VALID | VM_STATE_WRITABLE
},
5、注意
地址映射最小单位为1页,4K大小,所以len值最小为:0x00001000。
内存地址是一个专业计算机术语;通俗地讲就是指内存条中,每一组数值(8位/16位等)的存放位置;打个比方说,就像你把几本书放在书架上,A放在第一排第二格内存地址就是0102; B放在第五排第三格内存地址就是0503。
内存地址映射表示复制一份地址,然后以其他形式表现出来,就像你照镜子。
在8086的实模式下,把某一段寄存器左移4位,然后与地址ADDR相加后被直接送到内存总线上,这个相加后的地址就是内存单元的物理地址,而程序中的这个地址就叫逻辑地址(或叫虚地址)也就是内存地址吧
物理地址:
也就是内存单元的实际地址,用于芯片级内存单元寻址。
物理地址也由32位无符号整数表示。
MMU是一种硬件电路,它包含两个部件,一个是分段部件,一个是分页部件,在本书中,我们把它们分别叫做分段机制和分页机制,以利于从逻辑的角度来理解硬件的实现机制。
分段机制把一个逻辑地址转换为线性地址;接着,分页机制把一个线性地址转换为物理地址。
VA有很多意思在这里应该是指虚拟地址(virtual address)
API是应用程序接口(Application Programming Interface)
RVA是记录声音通知(Recorded Vioce Announcement)
系统 ram 中的特定位置,通常以十六进制的数字表示。
在80386的保护模式下,这个逻辑地址不是被直接送到内存总线,而是被送到内存管理单元(MMU)。
MMU由一个或一组芯片组成,其功能是把逻辑地址映射为物理地址,即进行地址转换。
当使用80386时,我们必须区分以下三种不同的地址:逻辑地址: 机器语言指令仍用这种地址指定一个操作数的地址或一条指令的地址。
这种寻址方式在Intel的分段结构中表现得尤为具体,它使得MS-DOS或Windows程序员把程序分为若干段。
每个逻辑地址都由一个段和偏移量组成。
线性地址:
线性地址是一个32位的无符号整数,可以表达高达232(4GB)的地址。
通常用16进制表示线性地址,其取值范围为0x00000000~0xffffffff。