管壳式换热器
- 格式:doc
- 大小:179.50 KB
- 文档页数:10
管壳式换热器规格标准一、介绍管壳式换热器是一种非常常见的换热设备,可以广泛应用于化工、石油、制药、食品等行业的热交换过程中。
在使用管壳式换热器之前,需要先了解它的标准尺寸,以便选择合适的型号。
二、管壳式换热器标准尺寸管壳式换热器的标准尺寸通常是按照壳体内径和管道外径计算的。
一般标准尺寸的管壳式换热器有以下规格:1. DN25/25,壳体内径为219mm,管道外径为25mm;2. DN32/25,壳体内径为273mm,管道外径为25mm;3. DN40/25,壳体内径为325mm,管道外径为25mm;4. DN50/25,壳体内径为426mm,管道外径为25mm;5. DN65/25,壳体内径为529mm,管道外径为25mm;6. DN80/25,壳体内径为630mm,管道外径为25mm;7. DN100/25,壳体内径为720mm,管道外径为25mm;以上标准尺寸仅供参考,实际情况还需根据具体使用要求进行选择。
三、注意事项在选择管壳式换热器之前,还需要注意以下事项:1. 确定换热器的流量和热载荷;2. 确认换热器的使用压力和温度范围;3. 根据流体特性和腐蚀情况选择合适的材质;4. 根据使用环境选择适当的防腐形式。
以上是关于管壳式换热器标准尺寸的介绍,希望能帮助您了解相关知识并选择合适的型号。
二、管壳式换热器国家标准规格1. 壳体尺寸壳体尺寸一般以壳体直径和长度表示。
国家标准中规定的壳体直径从50mm到5000mm不等,长度也有所不同,最长可达20m。
2. 管束数量管壳式换热器管束数量的多少直接决定了热交换的效率。
国家标准中规定管壳式换热器的管束数量应在1到12根之间,具体数量可根据使用条件及要求来进行选择。
3. 温度管壳式换热器的工作温度一般受制于材质、管束数量以及流体性质等多个因素。
国家标准中对于常用的曲率半径、沸点温度、加热量及换热系数等参数进行了规定。
4. 压力管壳式换热器的工作压力也是一个重要的参数。
管壳式换热器的工作原理及结构一、管壳式换热器的基本概念管壳式换热器是一种常见的换热设备,其主要由管束和外壳两部分组成。
其中,管束是由许多平行排列的管子组成,而外壳则是将这些管子包裹在一起的结构。
通过这种结构,管壳式换热器可以实现两种介质之间的热量传递。
二、工作原理1. 热媒流动原理在管壳式换热器中,介质A和介质B分别通过内部的管子和外部的壳体进行流动。
其中,介质A通常为高温流体,而介质B则为低温流体。
当两种介质在内外两侧经过时,由于存在温度差异,会发生热量传递。
2. 热媒传递原理在介质A和介质B之间进行热量传递时,主要有三个过程:对流传热、传导传热和辐射传热。
其中,对流传热是最主要的一种方式。
3. 工作过程在工作过程中,高温流体通过内部的管子进入到换热器中,并沿着管子表面流动。
同时,低温流体从外部的壳体进入到换热器中,并沿着管子外表面流动。
在这个过程中,高温流体和低温流体之间进行了热量传递,使得高温流体的温度降低,而低温流体的温度升高。
三、结构特点1. 管束结构管束是管壳式换热器的主要组成部分之一。
在管束中,许多平行排列的管子被固定在两个端盖板上,并通过密封垫圈与外壳连接。
由于管子间距离较小,因此可以有效地增加热量传递面积。
2. 壳体结构外壳是管壳式换热器的另一个重要组成部分。
它通常由两个半球形或长方形壳体组成,并通过法兰连接。
在使用过程中,外壳起到保护内部管束不受损坏的作用。
3. 密封结构为了保证介质A和介质B之间不发生混合,在管壳式换热器中需要设置密封结构。
这种密封结构通常采用密封垫圈或波纹垫片等材料制成,可以有效地防止介质泄漏。
4. 清洗结构由于管壳式换热器在使用过程中会产生一定的污垢和腐蚀物,因此需要定期进行清洗。
为了方便清洗,管壳式换热器通常设置有进出口和排污口等结构。
四、应用领域管壳式换热器广泛应用于化工、石油、制药、食品等领域中。
在这些领域中,管壳式换热器可以实现高效的热量传递,提高生产效率,并减少能源消耗。
管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。
它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。
下面将从换热原理、设计要求和结构设计等方面进行详细介绍。
一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。
其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。
壳侧流体通过壳体流动,而管侧流体则通过管束流动。
热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。
二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。
2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。
3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。
4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。
三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。
壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。
2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。
管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。
3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。
管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。
4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。
管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。
在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。
同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。
第⼗章管壳式换热器第⼗章管壳式换热器第⼀节管壳式换热器基本知识【学习⽬标】学习GB151-1999《管壳式换热器》,了解该标准适⽤范围及相关定义、规定。
了解管壳式换热器型号表⽰⽅法。
⼀、GB151《管壳式换热器》标准适⽤范围GB151-1999《管壳式换热器》标准规定了⾮直接受⽕管壳式换热器(已下简称“换热器”)的设计、制造、检验和验收的要求。
GB151-1999《管壳式换热器》1 “范围”⼆、换热器型号表⽰⽅法GB151-1999《管壳式换热器》标准第3章“总则”中,规定了换热器型号的表⽰⽅法。
1、换热器的主要组合部件(GB151图1)图10-1 AES、BES浮头式换热器1-平盖;2-平盖管箱(部件);3-接管法兰;4-管箱法兰;5-固定管板;6-壳体法兰;7-防冲板8-仪表接⼝;9-补强圈;10-壳体(部件);11-折流板;12-旁路挡板;13-拉杆;14-定距管;15-⽀持板;16-双头螺柱或螺栓;17-螺母;18-外头盖垫⽚;19-外头盖侧法兰;20-外头盖法兰;2、换热器型号的表⽰⽅法采⽤碳素钢、低合⾦钢冷拔钢管做换热管时,其管束分为Ⅰ、Ⅱ两级:Ⅰ级管束——采⽤较⾼级、⾼级冷拔钢管;Ⅱ级管束——采⽤普通级冷拔钢管。
⽰例:a )浮头式换热器平盖管箱,公称直径500mm ,管程和壳程设计压⼒均为1.6MPa ,公称换热⾯积54m 2,碳素钢较⾼级冷拨换热管外径25mm ,管长6m ,4管程,单壳程的浮头式换热器,其型号为:4256546.1500----AES Ⅰ b )固定管板式换热器封头管箱,公称直径700mm ,管程设计压⼒2.5MPa ,壳程设计压⼒1.6MPa ,公称换热⾯积200m 2,碳素钢较⾼级冷拨换热管外径25mm ,管长9m ,4管程,单壳程的固定管板式换热器,其型号为:42592006.15.2700----BEM Ⅰ c )U 形管式换热器封头管箱,公称直径500mm ,管程设计压⼒4.0MPa ,壳程设计压⼒1.6MPa ,公称换热⾯积75m 2,不锈钢冷拨换热管外径19mm ,管长6m ,2管程,单壳程的U 形管式换热器,其型号为:2196756.10.4500----BIU f )填料函式换热器平盖管箱,公称直径600mm ,管程和壳程设计压⼒均为1.0MPa ,公称换热⾯积90m 2,16Mn 较⾼级冷拨换热管外径25mm ,管长6m ,2管程,2壳程的填料函浮头式换热器,其型号为:22256900.1600----AFP Ⅰ三、换热器部分定义及规定GB 151标准许多定义和规定是与GB 150⼀致的,以下内容摘录了⼀部分不同于GB 150的规定。
第十七章管壳式换热器(shellandtubeheatexchange)本章重点讲解内容:(1)熟悉管壳式换热器的整体结构及其类型;(2)熟悉主要零部件的作用及适用场合;(3)熟悉膨胀节的功能及其设置条件。
第一节总体结构管壳式换热器又称列管式换热器,是一种通用的标准换热设备。
它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。
管内的通道及与其相贯通的管箱称为管程(tube-side);管外的通道及与其相贯通的部分称为壳程(shell-side)。
一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。
以下结合不同类型的管壳式换热器介绍其相应的总体结构。
1、固定管板换热器其由壳体、管束、封头、管板、折流挡板、接管等部件组成。
结构特点为:两块管板分别焊于壳体的两端,管束两端固定在管板上。
换热管束可做成单程、双程或多程。
它适用于壳体与管子温差小的场合。
图1固定管板换热器结构示意图优点:结构简单、紧凑。
在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。
缺点:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50°C)时产生温差应力,需在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高。
固定管板式换热器适用于壳方流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的场合。
2、浮头式换热器浮头式换热器适用于壳体和管束壁温差较大或壳程介质易结垢的场合。
结构特点是两端管板之一不与壳体固定连接,可在壳体内沿轴向自由伸缩,称为浮头。
图2浮头式换热器结构示意图优点:当换热管与壳体有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力;管束可从壳体内抽出,便于管内和管间的清洗。
四种管壳式换热器的结构特点管壳式换热器是一种常见的换热设备,广泛应用于工业生产和能源领域。
根据不同的结构特点,可以将管壳式换热器分为四种类型:固定管板式、浮动管板式、固定管束式和浮动管束式。
固定管板式换热器是最常见的一种结构类型。
它由一个壳体和多个平行排列的管板组成。
管板上开有管孔,通过这些管孔将管子固定在板上。
流体通过管子流动,进行换热。
固定管板式换热器的主要优点是结构简单、制造成本较低,适用于一般的换热任务。
然而,由于管子固定在板上,清洗和维修时比较困难。
浮动管板式换热器是在固定管板式换热器的基础上改进而来的。
它的管板不再固定,而是可以上下浮动。
这样,在清洗和维修时,可以通过松开法兰螺栓,将管板抬起,方便清理管道内部。
浮动管板式换热器的结构稍复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
固定管束式换热器是将管子固定在壳体内部的一个管束上的换热器。
管束通常由多个平行排列的管子组成,管束两端通过管板与壳体连接。
流体在管束内流动,进行换热。
固定管束式换热器的优点是结构紧凑,热效率高,适用于对换热效果要求较高的场合。
然而,由于管束固定在壳体内部,清洗和维修时比较困难。
浮动管束式换热器是在固定管束式换热器的基础上改进而来的。
它的管束可以上下浮动,方便清洗和维修。
浮动管束式换热器的结构复杂,但具有清洗方便、维修简单的优点,特别适用于容易结垢、结焦的工况。
四种管壳式换热器的结构特点分别是:固定管板式换热器结构简单、制造成本低;浮动管板式换热器清洗和维修方便;固定管束式换热器热效率高;浮动管束式换热器清洗和维修方便。
每种结构类型都有其适用的场合,选择合适的换热器结构可以提高换热效率,降低维护成本,确保设备的正常运行。
管壳式换热器原理与设计管壳式换热器是一种常见的换热设备,广泛应用于化工、炼油、石油化工、动力、核能等多个工业领域。
其工作原理和设计要点如下:工作原理:基本构造:管壳式换热器主要由壳体、管束、管板、折流板、管箱等部件组成。
壳体通常为圆筒形,内部装有平行排列的管束,管束两端固定在管板上。
流体通过管内(管程)和管外(壳程)进行热交换。
热量传递:冷热两种流体分别在管程和壳程中流动,热量通过管壁从高温流体传递给低温流体。
一种流体在管内流动(管程流体),另一种流体在管外,即壳体内流动(壳程流体)。
热量传递遵循热力学第二定律,从高温区自发流向低温区。
强化传热:为了提高传热效率,壳程内常设置折流板,迫使壳程流体多次改变方向,增加流体湍流程度,从而提高传热系数。
管束的排列(如等边三角形或正方形)也会影响传热效率和清洁维护的便利性。
设计要点:流体选择:根据工艺要求决定哪种流体走管程,哪种走壳程。
一般而言,易结垢或腐蚀性的流体走管程便于清洗和更换管束。
材料选择:根据流体的性质(如温度、压力、腐蚀性)选择合适的材料,如不锈钢、碳钢、铜合金等,以确保换热器的耐用性和安全性。
热负荷计算:根据工艺条件计算所需的热负荷,确定换热面积,进而决定管束的数量、长度和直径。
压降考虑:设计时需考虑流体在管程和壳程中的压降,确保泵送能耗合理,避免因压降过大导致系统运行不稳定。
结构设计:包括管板的设计(固定管束的方式)、壳体厚度设计、支撑和悬挂结构设计等,以保证换热器的机械强度和稳定性。
清洗与维护:设计时应考虑换热器的可维护性,如管束的可拆卸性,以及便于清洗壳程内部的结构设计。
综上所述,管壳式换热器的设计是一个综合考虑热工性能、机械强度、材料选择、经济性和可维护性的复杂过程,需要精确的计算和细致的工程设计。
管壳式换热器管壳式换热机组设备工艺原理近年来,管壳式换热器作为一种高效的换热设备广泛应用于各个行业,特别是化工、石油、电力等高温高压领域。
管壳式换热器具有结构简单、换热效率高、维护方便等优点。
本文将介绍管壳式换热器管壳式换热机组设备工艺原理。
一、管壳式换热器基本结构管壳式换热器由圆筒形的壳体、管束与管板组成。
壳体内还装有泄压阀、止回阀、取样阀、排放阀等附件。
管束由管管、支撑板和管板组成。
管管分为长管和短管。
长管一般为一整根管,短管则需要用管箍粘接在一起。
管板的作用是固定管管,使其不易塌落。
管板分为固定管板和浮动管板,固定管板一般在壳体的两端,而浮动管板则在壳体内部,通过弹簧或弹性体与管管保持一定的接触面积。
二、管壳式换热器工艺原理管壳式换热器工艺原理就是通过将不同介质流在管内和管外,利用管壳之间的热传导,达到换热的目的。
常见的介质有水、各种化工原料等。
管壳式换热器的工艺原理其实是把两种介质分别流经管内和管外,实现热量的传递。
下面是管壳式换热器的具体工艺原理:1. 单相流换热单相流指流体在整个管道中的状态是相同的,存在的热传递方式有传导和对流。
当单相流在管内流动时,介质的温度将随着时间和位置而变化。
利用管内的传导传递热量极为缓慢,所以主要的热量传递方式是对流换热。
不同流速的介质,其传热效果显然也不同。
2. 多相流换热多相流换热指在换热过程中,介质不仅存在于管内,在管外也存在。
这种热传递方式可以理解为单相流换热和相变换热的共同作用,其中相变换热仅适用于液体与汽体或固体相变的情况。
多相流换热会使壳表面形成一层厚厚的膜状物体,增加了传热阻力。
三、管壳式换热器的应用管壳式换热器广泛应用于各个行业中,其中最常见的有以下几个:1. 石油、化工领域管壳式换热器在石油和化学工业中的应用非常广泛。
由于在这些行业中经常出现的气体和液体,因此需要换热器来控制温度和压力。
2. 电力领域管壳式换热器还被广泛应用于电力行业中。
管壳式换热器按照其结构特点可分为以下几类:1、固定管板换热器1.1结构:管束连接在管板上,管板与壳体相焊;1.2优点:结构简单紧凑,能承受较高压力,造价低,管程清洗方便,管子损坏时方便堵管或更换。
排管数比U形管换热器多。
1.3缺点:管束与壳体的壁温或材料的线胀系数相差较大时,壳体和管束中将产生较大热应力,为此应需要设置柔性组件(如膨胀节)。
不能抽芯无法进行机械清洗。
不能更换管束,维修成本较高。
1.4使用范围:壳程侧介质清洁、不易结垢,不能进行清洗,管程与壳程两侧温差不大或温差较大但壳侧压力不高的场合。
2、浮头换热器2.1结构:两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。
浮头由浮头管板,钩圈和浮头盖组成,是可拆连接,管束可从壳体中抽出。
管束与壳体的热形变互不约束,不会产生热应力。
2.2优点:可抽式管束,当换热管为正方形或转角正方形排列时,管束可抽出进行机械清洗,适用于易结垢及堵塞的工况。
一端可自由浮动,无需考虑温差应力,可用于大温差场合。
2.3缺点:结构复杂,造价高,设备笨重,材料消耗大。
浮头端结构复杂影响排管数。
浮头密封面在操作时易产生内漏。
2.4适用范围:适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
浮头换热器在炼油行业或乙烯行业中应用较多,由于内浮头结构限制了使用压力和温度,一般情况下Pmax≤6.4MPa,Tmax≤400℃。
3、U形管换热器3.1结构:只有一块管板,管束由多根U形管组成,管的两端固定在同一块管板上,换热管可以自由伸缩。
3.2优点:以U形管尾部的自由浮动解决了温差应力的问题。
结构简单,价格便宜,承压能力强。
3.3缺点:由于受管弯曲半径的限制,布管较少。
壳程流体易形成短路。
坏一根U形管相当于坏两根管,报废率较高。
3.4适用范围:是换热器中唯一可用于高温、高压、高温差的换热器。
适用于管壳壁温差较大或壳程介质结垢需要清洗,又不适宜采用浮头式和固定管板的场合。
管壳式换热器引言管壳式换热器是一种常用于工业生产过程中的传热设备,通过管壳之间的传热,对流传热和传导传热来完成能量的传递。
本文将对管壳式换热器的基本原理、结构和工作原理进行详细介绍。
一、基本原理管壳式换热器由管束、壳体和管板等组成。
工作过程中,热量通过壳体流通的介质(如水、气体等)经过管束的外表面传递给换热器中的工艺流体,实现传热。
其基本原理包括对流传热和传导传热两部分。
1. 对流传热对流传热是指热量通过流体的流动而传递的过程。
在管壳式换热器中,工艺流体通过管束的管道中流动,与管道外面的介质进行对流传热。
传热过程中,流体的流速和流动方式对换热效果有着重要的影响。
2. 传导传热传导传热是指热量通过物质的热传导而传递的过程。
在管壳式换热器中,热量从管束的工艺流体传递到管束的外表面,再通过壳体传导给外部介质。
传导传热过程中,材料的导热性能和温度差是影响换热效果的关键因素。
二、结构管壳式换热器的基本结构包括管束、壳体、管板和垫片等。
具体结构如下:1.管束:管束是管壳式换热器中的主要传热元件,由一系列管道组成,起到传热的作用。
管束通常由多根管道并排排列而成,根据不同的传热需求,可以采用不同的管束结构。
2.壳体:壳体是管壳式换热器的外壳,起到固定管束和保护换热器的作用。
壳体通常由钢板焊接而成,能够承受一定的压力和温度。
3.管板:管板是管束和壳体之间的连接件,起到固定管束和密封壳体的作用。
管板通常由金属材料制成,能够耐受高温和高压的工况。
4.垫片:垫片位于管束和管板之间,起到密封作用。
垫片通常由柔性材料(如橡胶、石墨等)制成,能够适应不同的工作条件和温度变化。
三、工作原理管壳式换热器的工作原理可以简述如下:1.工艺流体进入换热器的管束中,并流经管道,与管道的外表面进行换热。
2.热量从管束内的工艺流体传递到管束的外表面上,通过传导传热和对流传热的方式,热量传递给外部介质。
3.外部介质经过壳体,在管板上与管束的表面进行对流传热,实现热量的传递和交换。
目录一、管壳式换热器概述 (2)二、换热管与管板的连接方式及特点 (2)2.1、焊接 (2)2.2、胀接 (3)2.3、胀接加焊接 (3)2.3.1、先胀后焊 (3)2.3.2、先焊后胀 (4)2.4、胶接加胀接 (4)三、管壳式换热器的主要形式与结构 (4)3.1、固定管板式换热器 (4)3.2、浮头式换热器 (5)四、换热器的主要强度计算(管板) (6)五.换热器的主要强度计算(圆平板) (8)5.1、基于圆平板的强度计算 (8)5.2、基于安置在弹性基础上的圆平板的强度计算 (9)六.心得体会 (10)一、管壳式换热器概述管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。
壳体多为圆筒形,内部装有管束,管束两端固定在管板上。
进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。
为提高管外流体的传热分系数,通常在壳体内安装若干挡板。
挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。
换热管在管板上可按等边三角形或正方形排列。
等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。
又称列管式换热器。
是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。
管壳式换热器具有可靠性高、适应性广等优点,在各工业领域中得到最为广泛的应用。
近年来,尽管受到了其他新型换热器的挑战,但反过来也促进了其自身的发展。
在换热器向高参数、大型化发展的今天,管壳式换热器仍占主导地位。
二、换热管与管板的连接方式及特点2.1、焊接换热管与管板采用焊接连接时,由于对管板加工要求较低,制造工艺简单,有较好的密封性,并且焊接、外观检查、维修都很方便,是目前管壳式换热器中换热管与管板连接应用最为广泛的一种连接方法。
在采用焊接连接时,有保证焊接接头密封性及抗拉脱强度的强度焊和仅保证换热管和管板连接密封性的密封焊。
对于强度焊其使用性能有所限制,仅适用于振动较小和无间隙腐蚀的场合。
采用焊接连接时,换热管间距离不能太近,否则受热影响,焊缝质量不易得到保证,同时管端应留有一定的距离,以利于减少相互之间的焊接应力。
换热管伸出管板的长度要满足规定的要求,以保证其有效的承载能力。
在焊接方法上,根据换热管和管板的材质可以采用焊条电弧焊、#$%焊、&’(焊等方法进行焊接。
对于换热管与管板间连接要求高的换热器,如设计压力大、设计温度高、温度变化大,以及承受交变载荷的换热器、薄管板换热器等宜采用#$%焊。
常规的焊接连接方法,由于管子与管板孔之间存在间隙,易产生间隙腐蚀和过热,并且焊接接头处产生的热应力也可能造成应力腐蚀和破坏,这些都会使换热器失效。
目前在国内核工业、电力工业等行业使用的换热器中,换热管与管板的连接已开始使用内孔焊接技术,这种连接方法将换热管与管板的端部焊接改为管束内孔焊接,采用全熔透形式,消除了端部焊的缝隙,提高了抗间隙腐蚀和抗应力腐蚀的能力,其抗振动疲劳强度高,能承受高温、高压,焊接接头的力学性能较好;对接头可进行内部无损探伤,焊缝内部质量可得到控制,提高了焊缝的可靠性。
但内孔焊接技术装配较难,对焊接技术要求高,制造和检验复杂,并且制造成本相对较高。
随着换热器向高温、高压和大型化发展,对其制造质量要求越来越高,内孔焊接技术将会得到更加广泛的应用。
2.2、胀接胀接是一种传统的换热管与管板的连接方法,利用胀管器械使管板与管子产生弹塑性变形而紧密贴合,形成牢固连接,达到即密封又能抗拉脱的目的。
在换热器的制造过程中,胀接适用于无剧烈的振动,无过大的温度变化,无严重的应力腐蚀的场合。
目前采用的胀接工艺主要有机械滚胀和液压胀接。
机械滚胀胀接不匀,一旦管子与管板连接失效再用胀管来修复十分困难;采用液袋式液压胀接由电脑控制操作,精度较高,并能保证胀接紧密程度均匀一致,连接的可靠性比机械胀接要好。
但对加工精度要求严格,对密布的接头要保证"##$胀接成功也有一定困难,如果失效再胀接修复也较为困难。
2.3、胀接加焊接当温度和压力较高,且在热变形、热冲击、热腐蚀和流体压力的作用下,换热管与管板连接处极易被破坏,采用胀接或焊接均难以保证连接强度和密封性的要求。
目前广泛采用的是胀焊并用的方法。
胀接加焊接结构能够有效地阻尼管束振动对焊缝的损伤,可以有效地消除应力腐蚀和间隙腐蚀,提高了接头的抗疲劳性能,从而提高了换热器的使用寿命,比单纯胀接或强度焊具有更高的强度和密封性。
对普通的换热器通常采用“贴胀%强度焊”的形式;而使用条件苛刻的换热器则要求采用“强度胀%密封焊”的形式。
胀接加焊接按胀接与焊接在工序中的先后次序可分为先胀后焊和先焊后胀两种。
2.3.1、先胀后焊胀接时使用的润滑油会渗透进入接头间隙,而它们对焊接裂纹、气孔等有很强的敏感性,从而使焊接时产生缺陷的现象更加严重。
这些渗透进入间隙的油污很难清除干净,所以采用先胀后焊工艺,不宜采用机械胀接的方式。
采用贴胀虽不耐压,但可以消除管子与管板管孔的间隙,所以能有效的阻尼管束振动到管口的焊接部位。
但是采用常规手工或机械控制的胀接方法无法达到均匀的贴胀要求,而采用由电脑控制胀接压力的液袋式胀接方法可方便、均匀地实现贴胀要求。
在焊接时,由于高温熔化金属的影响,间隙内气体被加热而急剧膨胀,这些具有高温高压的气体在外泄时对强度胀的密封性能会造成一定的损伤。
2.3.2、先焊后胀对于先焊后胀工艺,首要的问题是控制管子与管板孔的精度及其配合。
当管子与管板管孔的间隙小到一定值后,胀接过程将不至于损伤焊接接头的质量。
但是焊口承受剪切力的能力相对较差,所以强度焊时,若控制达不到要求,可能造成过胀失效或胀接对焊接接头的损伤。
在制造过程中,换热管的外径与管板管孔之间存在着较大的间隙,且每根换热管的外径与管板管孔间隙沿轴向是不均匀的。
当焊接完成后胀接时,管子中心线必须与管板管孔中心线相重合,才能保证接头质量,若间隙较大,由于管子的刚性较大,过大的胀接变形将对焊接接头产生损伤,甚至造成焊口脱焊。
2.4、胶接加胀接采用胶接和胀接的工艺有助于解决换热器中换热管与管板连接处经常出现的泄漏和渗漏的问题,重要的是根据被胶接件的工作条件正确选择胶接剂。
在工艺实施过程中要结合换热器的结构、尺寸选择好工艺参数,主要包括固化压力、固化温度、胀紧力等,并在生产过程中严格进行控制。
此工艺简单、易行、可靠,在企业的实际使用中已得到了认可,具有推广价值。
三、管壳式换热器的主要形式与结构3.1、固定管板式换热器固定管板式换热器的典型结构如图1.1所示。
管束连接在管板上,管板与壳体焊接。
其优点是结构简单、紧凑,能承受较高的压力,价格低,管程清洗方便,管子损坏时易于堵管或更换;缺点是当管束与壳体的壁温或材料的线膨胀系数相差较大时,壳体和管束中将产生较大的热应力。
这种换热器适用于壳侧介质清洁且不易结垢并能进行清洗,管、壳程两侧温差不大或温差较大但壳侧压力不高的场合。
为减少热应力,通常在固定管板式换热器中设置柔性元件(如膨胀节、挠性管板等),来吸收热膨胀差。
图1.1固定管板式换热器1-折流挡板; 2-管束; 3-壳体; 4-封头; 5-接管; 6-管板;3.2、浮头式换热器浮头式换热器的典型结构如图1.2所示。
两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,称为浮头。
浮头由浮动管板、钩圈和浮头端盖组成,是可拆连接,管束可从壳体内抽出。
管束与壳体的热变形互不约束,因而不会产生热应力。
浮头式换热器的优点是管间和管内清洗方便,不会产生热应力;但其结构复杂,造价比固定管板式换热器高,设备笨重,材料消耗量大,且浮头端小盖在操作中无法检查,制造时对密封要求较高。
适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
图1.2浮头式换热器1-壳盖; 2-固定管板; 3-隔板; 4-浮头钩圈法兰; 5-浮动管板; 6-浮头盖;四、换热器的主要强度计算(管板)管板的结构与一般的圆平板有相似之处,但差别亦不小。
主要是管板上的开孔和同管板连接在一起的管束对管板强度的影响等。
目前一些管板厚度设计公式因对各影响因素考虑不同而有较大差异。
根据不同的设计依据,管板厚度的设计公式可概括为下列几类:①将管板当作受均布载荷的实心圆板,以按弹性理论得到的圆平板最大弯曲应力为主要依据,并加入适当的修正系数以考虑管板开孔削弱和管束的实际支承作用。
这种设计方法对管板作了很大简化,因而是一种半经验公式。
但由于公式简单,便于运算,同时又有长期使用经验,结果比较安全,因而有些管板厚度设计公式仍以此作为基础。
②将管束当作弹性支承,而管板则作为放置于这弹性基础上的圆平板,然后根据载荷大小、管束的刚度和周边支承情况来确定管板的弯曲应力。
由于它比较全面地考虑了管束的支承和温差等影响,因而比较精确,但计算公式较多,计算过程也较繁杂。
在大力发展电子计算技术的今天,是一种有效的设计方法。
③取管板上相邻四根管子之间的棱形面积,按弹性理论求此棱形面积在均布压力作用下的最大弯曲应力。
由于此法与管板实际受载情况相差甚大,仅用于粗略计算。
4.1对管板还需进行剪切强度校核。
当管板上布管区为圆形时,设最外圈管子中心圆直径为D 。
,根据外载和剪应力之间的平衡关系:[]()001309.00t d t P D t -=σ故 []t t PD t 025.0=式中:[t]t —管板材料在设计温度下的许用剪应力,取[t]t=0.8 [s]t;t —不包括附加量的管板厚度,t=tc-C 。
考虑管板开孔削弱系数为(1-do/to),则管板按剪切强度的计算公式为:[]t t D P D τππ0204=式中:to ——管孔中心距,mm ;d 。
——管子外径,mm ;D 。
——布管区最外圈管子中心圆直径,mm当布管区不是圆形时,则D 。
为布管区外缘管子中心连线所限定的周边当量直径,即:004L A D =其中 L 。
——最外圈管子的中心距分段测量叠加后所形成的布管周长,如图4.2和4.3给出了按典型的三角形和正方形规则布管时的周长L 。
(图中粗线表示),mm ;A 。
——周长L 。
所包围的总面积,mm2。
图4.2三角形布管 图4.3正方形布管此外,为满足制造工艺要求,管板还须有足够的厚度。
胀接时,为保证胀接的可靠性,管板的最小厚度(不包括厚度附加量)按GB151选取。
管子和管板采用焊按连接时,由于焊接可以达到甚至超过管子本身的强度,所以只要管子强度足够,管板最小厚度可不受此限制,而由焊接工艺及管板焊接变形等要求来确定。
管板厚度应同时考虑上述弯曲强度、剪切强度及管板最小厚度三项因素,从中取最大厚度,然后加上厚度附加量五.换热器的主要强度计算(圆平板)5.1、基于圆平板的强度计算管束对管板支承作用的大小随换热器结构形式而异。