列一元一次方程的步骤
- 格式:doc
- 大小:22.50 KB
- 文档页数:1
四、列一元一次方程解应用题的步骤有:1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。
2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。
3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。
4、列方程:根据等量关系列出方程。
列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。
5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。
6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。
7、作答:正确回答题中的问题。
五、常见的一元一次方程应用题:1、和差倍分问题:(1)增长量=原有量×增长率; (2)现在量=原有量+增长量2、等积变形问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。
(1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h(2)长方开的面积 周长=2×(长+宽) S=长×宽3、数字问题:一般可设个位数字为a ,十位数字为b ,百位数字为c 。
十位数可表示为10b+a , 百位数可表示为100c+10b+a 。
然后抓住数字间或新数、原数之间的关系找等量关系列方程。
4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” )(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量(5)商品的销售利润=(销售价-成本价)×销售量(6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。
或者用标价打x 折: 折后价(售价)=标价×10x 计算。
一次方程的求解方法一次方程作为方程中最基础的形式,应用广泛,需要熟练掌握。
在管综考试中,涉及到的一次方程包含一元一次方程和二元一次方程组。
一、一元一次方程的求解一元一次方程求解的一般步骤:1、去分母:在方程两边同乘以各分母的最小公倍数,注意每项都要乘。
2、去括号:依据乘法分配律和去括号法则,注意变号,防止漏乘。
3、移项:把含有未知数的项移到方程的一边,常数项移到另一边,注意移项要变号。
5、系数化为1:方程两边同时除以未知数的系数或者乘以系数的倒数。
在求解具体的题目时,上述步骤不一定全部用到,同学们要根据具体的题目进行选择。
二、二元一次方程组的求解消元是解二元一次方程组的基本思路,所谓消元就是减少未知数的个数,使多元方程最终转化为一元方程再进行求解。
常用的消元方法有:代入消元法(简称代入法)和加减消元法(简称加减法)。
一般情况下,当未知数的系数为1时,选择代入消元法更快,同一未知数的系数出现相同或者互为相反数时,选择加减消元法更快。
如果这两种情况都不符合,一般会利用等式的性质,将某一未知数的系数化为相同或者相反数,再用加减消元法进行求解。
三、一次方程的应用在应用题中,利用一次方程求解的一般步骤是:1、审:审题,找准等量关系。
2、设:设未知数,一般求谁设谁。
3、列:根据等量关系列出方程。
4、解:根据前面所学方法求解方程。
在例3中,我们利用了二元一次方程组进行求解,列出方程后,由于方程中系数有分数,可以先去掉分母以后再进行求解。
例4的解题关键在于分析出每个竖式无盖箱子与横式无盖箱子需要几块正方形木板和长方形木板,从而找准等量关系,列出方程组。
在解方程组时,不同于例3,这道题目可以用选项代入验证,同学们可以结合自身掌握程度灵活选取。
∙列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:⑴审题:理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
∙一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。
①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
一元一次方程的解的求解步骤一元一次方程是一种基本的数学表达式,其形式为ax + b = 0,其中a和b为已知常数,x为未知数。
求解一元一次方程的过程可以用一些简单的步骤来完成。
本文将介绍一元一次方程的解的求解步骤,并进行详细的论述。
一、整理方程式首先,我们需要将方程式整理成标准形式,即将等式两边的项进行整理和合并。
以方程ax + b = 0为例,我们可以通过移动常数项b来对方程进行整理。
首先,将b移到方程式等号的另一侧,变为ax = -b。
二、求解未知数接下来,我们可以通过求解未知数x来得到方程的解。
在一元一次方程中,未知数x的系数为a,即a是x的系数,代表了x的数量和x 的单位。
我们可以通过两种方法来求解未知数:分子除以分母法和代入法。
1. 分子除以分母法分子除以分母法是一种常用的求解一元一次方程的方法。
通过将方程式两边同时除以系数a,我们可以得到x的解。
即x = -b/a。
这个解表示了方程式的根,即方程式的解。
2. 代入法代入法是一种通过代入已知数据来求解一元一次方程的方法。
它适用于无法直接使用分子除以分母法求解的情况。
通过将方程式ax + b =0中的x替换为已知数值,我们可以解出未知数x的值。
例如,如果我们已知a = 2,b = 10,那么将这些已知数值代入方程式中,得到2x +10 = 0。
进一步整理这个方程式,我们可以得到x = -5,这就是方程的解。
三、验证解的准确性在求解一元一次方程后,我们需要验证所得到的解是否正确。
验证解的过程就是将方程式中的未知数替换为已知数,然后检查等式是否成立。
以方程ax + b = 0为例,我们可以将解x代入方程式进行验证。
如果等式成立,表示所得到的解是准确的。
如果等式不成立,则需要回顾求解步骤,检查是否出现错误。
四、总结综上所述,一元一次方程的解的求解步骤可以概括为整理方程式、求解未知数和验证解的准确性。
通过这些步骤,我们可以得到一元一次方程的解,解决实际生活中的各种问题。
如何列一元一次方程一、一元一次方程的概念一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
一般形式为:ax + b = 0,其中a和b为已知常数,x为未知数。
在一元一次方程中,a称为方程的系数,b称为常数项。
解一元一次方程的过程就是求出使方程成立的未知数的值。
二、解题步骤1. 读题理解:仔细阅读题目,理解问题中涉及的未知数及其关系。
2. 设未知数:假设未知数为x,根据题目中的条件,设定合适的变量。
3. 建立方程:根据题目中给出的条件,利用已知量和未知数建立方程。
4. 解方程:对建立的方程进行化简和变形,使方程只含有一个未知数,并求解出未知数的值。
5. 检验结果:将求得的未知数代入原方程中,检验是否满足题目中的条件。
三、实际问题的例子1. 问题描述:小明去商场买了3件衣服和2双鞋,共花费了550元。
其中一件衣服的价格是鞋子价格的2倍,求衣服和鞋子的价格。
解题步骤:(1) 设衣服的价格为x元,鞋子的价格为y元。
(2) 根据题目中的条件,建立方程:3x + 2y = 550。
(3) 化简方程:3x = 550 - 2y。
(4) 求解未知数x:x = (550 - 2y) / 3。
(5) 将x的值代入方程,得到一元一次方程:3(550 - 2y) / 3 + 2y = 550。
(6) 化简方程,解得y = 150,代入方程求得x = 100。
(7) 检验结果:3 * 100 + 2 * 150 = 550,符合题目中的条件。
所以,衣服的价格为100元,鞋子的价格为150元。
2. 问题描述:某超市举行促销活动,购买3袋大米和2瓶油共花费90元,其中一袋大米的价格是一瓶油的2倍,求大米和油的价格。
解题步骤:(1) 设大米的价格为x元,油的价格为y元。
(2) 根据题目中的条件,建立方程:3x + 2y = 90。
(3) 化简方程:3x = 90 - 2y。
(4) 求解未知数x:x = (90 - 2y) / 3。
.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=×1(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=×100% 利息=本金×利率×期数1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?1.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+ )x=12.解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.解:设圆柱形水桶的高为x毫米,依题意,得·()2x=300×300×804.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为分.过完第二铁桥所需的时间为分.依题意,可列出方程+ =∴2x-50=2×100-50=1505.解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50于是2x=10,3x=15,5x=256.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=14407.解:(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C 种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000。
•解一元一次方程的步骤:
一般解法:
⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)
⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)(=号的一边移到另一边时变符号)
⒋合并同类项:把含有未知数的项系数进行运算,把已知项进行运运算。
(先确定符号,1、加法:同号相加,符号不变,绝对值相加;异号相加,符号随大,大-小。
2、减法,减去一个数等于加上这个数的相反数。
3、乘除法,同号得正,异号得负)
•⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解(系数为分数时,乘系数的倒数;系数为整数时,除以系数)。
一元一次方程的解法步骤
一元一次方程是数学中最基础且常见的方程形式,它由一个未知数和一次方程组成。
解一元一次方程的过程主要涉及到简单的代数运算,以下是解一元一次方程的基本步骤:
步骤一:整理方程
首先,对给定的一元一次方程进行整理,将方程式中的未知数项和常数项分别移到方程式的两侧,使得等式中的未知数项只剩下一个。
步骤二:化简方程
接着,根据步骤一的结果,对方程进行化简,将未知数的系数和常数项进行合并,得到简化后的一元一次方程。
步骤三:消去系数
消去方程中未知数的系数,使得方程式中的未知数系数为1,这样可以简化计算的步骤。
步骤四:移项运算
通过移项运算,将一元一次方程的未知数项移动至等式的一侧,常数项移动至等式的另一侧,这样可以帮助我们解出未知数的值。
步骤五:求解未知数
根据步骤四的移项运算结果,通过代数运算求解出方程中的未知数的值,得出方程的解。
步骤六:验证解
最后,将求得的未知数的值代入原方程中,验证所得的解是否符合原方程的要求,如果验证通过,则证明求解正确,得到了一元一次方程的解。
通过以上步骤,我们可以较为简单地解出一元一次方程的解,这为解决实际问题中的数学方程提供了基本的方法和思路。
人教版六年级上册数学知识点归纳解一元一次方程的基本步骤在数学学习中,一元一次方程是我们常见的一种方程类型。
学习解一元一次方程的基本步骤对于巩固和提高我们的数学能力至关重要。
在本文中,我们将归纳总结人教版六年级上册数学中解一元一次方程的基本步骤。
一、方程的定义和概念方程是数学中用等号连接的含有未知数的算术或代数式。
一元一次方程是指只含有一个未知数,并且该未知数的最高次数为1的方程。
二、解一元一次方程的基本步骤解一元一次方程的基本步骤主要包括以下几个方面:1. 观察方程并确定未知数:首先,仔细观察方程,确定方程中的未知数是什么。
一元一次方程通常以字母表示未知数,如x、y等。
2. 移项:将含有未知数的项全部移动到方程的一边,将常数项移动到另一边,以使方程变成x=常数的形式。
在移项过程中,要注意保持等式两边的平衡。
3. 合并同类项:将等式两边的同类项进行合并,得到简化的方程。
4. 系数化为1:将未知数的系数化为1,使得方程变为x=常数的形式。
若未知数的系数不为1,则将方程两边同时除以未知数的系数。
5. 检验解:将求得的解代入原方程进行验证,确保解满足原方程。
三、解一元一次方程的示例以下通过一个具体的例子来演示解一元一次方程的基本步骤:例题:2x + 3 = 11步骤1:观察方程并确定未知数:方程中的未知数为x。
步骤2:移项:将3移到方程的另一边,得到2x = 11 - 3,即2x = 8。
步骤3:合并同类项:无需合并同类项。
步骤4:系数化为1:将未知数x的系数2化为1,得到x = 8 ÷ 2,即x = 4。
步骤5:检验解:将求得的解x = 4代入原方程,2x + 3 = 2(4) + 3 = 8 + 3 = 11,等式成立。
通过以上步骤,我们成功地解出了一元一次方程2x + 3 = 11的解为x = 4。
四、总结解一元一次方程的基本步骤是观察方程并确定未知数,移项,合并同类项,系数化为1,以及检验解。
12、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.商品利润率=1.商品销售此类问题主要涉及的关键量:进价,标价,实际售价,利润,利润率。
熟记这些量间的基本关系式:商品的利润=商品的实际售价-商品的进价.(这里不考虑其它因素)商品的利润率=商品打折后的售价=商品的标价÷10×折扣数.另外在解决商品的利润率的问题中,还涉及如下关系式.注意会由基本关系式推出式子的变形,以便于解决问题.例:由×100%=利润率,可得商品的实际售价=商品的进价×(1+利润率).例1、商店里的皮上衣每件标价为2200元,在一次促销活动中,它打八折销售,结果仍获利10%,求此商品的进价.分析:题中的相等关系是商品的进价×(1+利润率)=商品的实际售价.解:设此商品的进价为x元,依题意(1+10%)x=2200×0.8.解这个方程,得x=1600.答:此商品的进价为1600元.例2、以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%的方法进行销售,商家还能有利润吗?为什么?依题意其后来折扣后的售价为(1+30%)a×(1+40%)(1-50%)=0.91a.∵0.91a-a=-0.09a,∴×100%=-9%.答:商家不仅没有利润,而且亏损的利润率为9%.2.银行存贷款例3、夏老师欲购买一辆汽车,销售商告诉夏老师,若采取分期付款方式:一种付款方式是第一月付4万元,以后每月付款一万元;另一种付款方式是前一半时间每月付款1万四千元,后一半时间,每月付款1万1千元;两种付款方式中付款钱数和付款时间都相同。
一元一次方程解法详解一元一次方程是初中数学中的基础知识,也是解决实际问题的数学工具之一。
本文将详解一元一次方程的解法,帮助读者理解和掌握这一重要概念。
一、一元一次方程的定义一元一次方程(简称一次方程)是指等号两边含有变量、常数和运算符(如加减乘除)的代数式。
通常形式为ax+b=0,其中a、b都是已知的实数,而x是未知数,a不等于0。
二、解一元一次方程的步骤解一元一次方程的一般步骤如下:步骤一:将方程按照等号两边排列,使得方程左边为零。
步骤二:类似项合并,即合并方程左边的x项和常数项,使方程左边只剩下一个x。
如果方程左边有多个x,则可以进行移项、合并同类项等操作。
步骤三:通过除法运算,将x的系数化为1。
即将方程左边的x系数除以x的系数,使得方程左边x的系数变为1。
步骤四:通过加减法逆运算,将常数项移到方程右边。
步骤五:检验解是否正确。
将方程左边的x代入原方程,验证等式是否成立。
三、解一元一次方程的示例为了更好地理解解一元一次方程的步骤,以下给出一个具体的示例:示例一:2x+3=7步骤一:将方程按照等号两边排列2x-4=0步骤二:合并同类项2x=4步骤三:将x的系数化为1x=2步骤四:将常数项移到方程右边x-2=0步骤五:检验解是否正确将x=2代入原方程,得到2*2+3=7,等式成立示例二:3(x-4)=5x-7步骤一:将方程按照等号两边排列3x-12=5x-7步骤二:合并同类项3x-5x=-7+12-2x=5步骤三:将x的系数化为1x=-5/2步骤四:将常数项移到方程右边x+5/2=0步骤五:检验解是否正确将x=-5/2代入原方程,得到3*(-5/2-4)=5*(-5/2)-7,等式成立通过以上示例,我们可以看出解一元一次方程的步骤是一致的,只是具体的计算过程和运算符的选择会有所不同。
四、解一元一次方程的注意事项在解一元一次方程时,需要注意以下几点:1. 当方程左边的系数为0时,方程无解。
2. 当方程左边和右边的系数相等且常数项相等时,方程有无数解。
解一元一次方程步骤与注意事项一、等式:用等号表示相等关系的式子叫等式。
等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。
等式性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:1)等式中一定含有等号;2)等式两边除以一个数时,这个数必须不为0;3)对等式变形必须同时进行,且是同一个数。
二、一元一次方程概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。
解方程就是求出使方程中等号左右两边相等的未知数的值,能使方程左右两边相等的未知数的值,叫做方程的解。
三、列一元一次方程解应用题的一般步骤:1、审题:弄清题意。
2、找出等量关系:找出能够表示本题含义的相等关系。
3、设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。
1)直接设元法,求什么设什么,方程的解就是问题的答案;2)间接设元法,不是求什么设什么,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案。
4、解方程:解所列的方程,求出未知数的值。
5、检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
四、解方程的一般步骤和注意事项:1、去分母:在方程两边都乘分母的最小公倍数。
注意:去分母时:1)没有分母的项不要漏乘(尤其整数项)。
也可以说方程中的每一项都要乘以分母的最小公分母。
2)去分母时,应把分子作为一个整体加上括号。
2、去括号:(1)运用乘法分配律;(2)括号前边是“-”,去掉括号要变号;括号前边是“+”,去掉括号不变号。
注意:先去小括号,再去中括号,最后去大括号。
3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(也就是说未知数和常数项各占等号一边。
方法:①运用等式性质,两边同加或同减,同乘或同除;②符号过墙魔法,越过“=”时,加减号互变,乘除号互变。
注意:(1)总是移小的;(2)带未知数的放一边,常数值放另一边。
一元一次方程的解法步骤
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程的一般形式
只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程。
任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式。
一元一次方程的解法
1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);
2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;(移项要变号)
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。
等式的性质
1.等式两边同时加(或减)同一个数或式子,等式仍是等式。
若a=b,那么a+c=b+c;
2.等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0);
3.等式具有传递性。
一元一次方程步骤
一元一次方程步骤如下:
1、去分母:在方程两边都乘以各分母的最小公倍数;
2、去括号:先去小括号,再去中括号,最后去大括号;
3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;
4、合并同类项:把方程化成ax=b(a≠0)的形式;
5、系数化成1,在方程两边都除以未知数的系数a,得到方程的解。
扩展资料:
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程最早见于约公元前1600年的古埃及时期。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
1859年,数学家李善兰正式将这类等式译为一元一次方程。
列一元一次方程的步骤
列方程解应用题的步骤为:
①审题:弄清题目和题目中的数量关系,分清已知和未知,适当设出未知数x;
②找出能够表示应用问题全部含义的一个相等关系,从而列出方程;③解所列的方程并检验后写出答案。
列方程解应用题主要有三个困难:
①找不到相等关系;
②找到相等关系后不会列方程;
③习惯于用小学的算术解法,对于代数解法(列方程解应用题)分析应用题不适应,不知道要抓相等关系。
解决这些困难就要养成分析问题的习惯,通过列表格,画直线图等方法找到相等关系。
并且对于题目中的条件要充分利用,不要漏掉,且题目中的条件每个只能用一次,不能重复利用。
否则,列出的就是一个恒等式,而不是一个方程。