土的基本特性与工程分类
- 格式:ppt
- 大小:2.04 MB
- 文档页数:80
For personal use only in study and research; not for commercial use第二章土的性质及工程分类土的性质包括:物理性质、力学性质、水理性质、工程性质。
土是由固体颗粒、水和空气组成的三相体系。
由于三相比例的不同,决定了土的物理性质(轻重、疏密、干湿、软硬)。
土的物理性质又决定了土的力学性质,因此土的物理性质是我们研究的主要特性之一。
本章主要介绍土的组成及土的结构土的物理性质指标无粘性土的密实度粘性土的物理特性土的渗透性及渗流土的动力特性地基(岩)土的工程分类2.1概述土是风化的产物,是由固体颗粒、水和空气组成的三相体系,下面看三相组成示意图。
在外力作用下,土体并不显示为一般固体的特性,也不表现为一般液体的特性,因此,在研究土的工程性质时,既有别于固体力学,也有别于液体力学。
2.2土的三相组成及土的结构2.2.1 土的组成一、土的固体颗粒土的固体颗粒的大小和形状,矿物成分及其组成情况,是决定土的物理力学性质的重要因素。
2.2.1.1土的矿物成分矿物成分分为原生矿物、次生矿物2.2.1.2土粒粒组自然界中存在的土,都是由大小不同的土粒组成的。
土粒的粒径由粗到细逐渐变化时,土的性质也相应地发生变化。
例如,土的性质随着粒径的变细,可由无粘性变化到有粘性。
因此可以将土中各种不同粒径的土粒,按适当的粒径范围,分为若干组,各个粒组,随着分界尺寸的不同而呈现一定质的变化,划分粒组的分界尺寸称为界限粒径。
目前我国常用的土粒粒组划分方法,按照界限粒径的大小,将土粒分为六个组:漂石(块石)(>200)、卵石(碎石)(200~60)、圆砾(角砾)(60~2)砂粒(2~0.075)、粉粒(0.075~0.005)和粘粒<0.005(注漂石、卵石、圆砾是一定磨圆形状、圆形或亚圆形)土中土粒的大小及其组成情况,通常以土中各个粒组的相对含量来表示,称为土的颗粒级配。
如何来分析土中的颗粒级配情况,通常用筛分法与水分法两种。
如有你有帮助,请购买下载,谢谢!第一章:土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。
固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。
2.土粒颗粒级配(粒度) 2. 土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。
粒径大于等于0.075mm 的颗粒可采用筛分法来区分。
粒径小于等于0.075mm 的颗粒需采用水分法来区分。
颗粒级配曲线斜率: 某粒径范围内颗粒的含量。
陡—相应粒组质量集中;缓--相应粒组含量少;平台--相应粒组缺乏。
特征粒径: d 50 : 平均粒径;d 60 : 控制粒径;d 10 : 有效粒径;d 30粗细程度: 用d 50 表示。
曲线的陡、缓或不均匀程度:不均匀系数C u = d 60 / d 10 ,Cu ≤5,级配均匀,不好Cu ≥10,,级配良好,连续程度:曲率系数C c = d 302 / (d 60 ×d 10 )。
较大颗粒缺少,Cc 减小;较小颗粒缺少,Cc 增大。
Cc = 1~ 3, 级配连续性好。
粒径级配累积曲线及指标的用途:1.粒组含量用于土的分类定名;2)不均匀系数Cu 用于判定土的不均匀程度:Cu ≥ 5, 不均匀土; Cu < 5, 均匀土;3)曲率系数Cc 用于判定土的连续程度:C c = 1 ~ 3,级配连续土;Cc > 3或Cc < 1,级配不连续土。
4)不均匀系数Cu 和曲率系数Cc 用于判定土的级配优劣:如果 Cu ≥ 5且C c = 1 ~ 3,级配良好的土;如果 Cu < 5 或 Cc > 3或Cc < 1, 级配不良的土。
土粒的矿物成份——矿物分为原生矿物和次生矿物。
原生矿物:岩浆在冷凝过程中形成的矿物(圆状、浑圆状、棱角状) 次生矿物:原生矿物经化学风化后发生变化而形成。
(针状、片状、扁平状) 粗粒土:原岩直接破碎,基本上是原生矿物,其成份同生成它们的母岩。
土的物理性质及工程分类课题: 第一章土的物理性质及工程分类一、教学目的:1.了解土的生成和工程力学性质及其变化规律;2.把握土的物理性质指标的测定方法和指标间的相互转换;3.熟识土的抗渗性与工程分类。
二、教学重点:土的组成、土的物理性质指标、物理状态指标。
三、教学难点:指标间的相互转换及应用。
四、教学时数: 6 学时。
五、习题:第一章土的物理性质及工程分类一、土的生成与特性1.土的生成工程领域土的概念:土是指掩盖在地表的没有胶结和弱胶结的颗粒积累物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。
土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。
不同风化形成不同性质的土,有下列三种:(1)物理风化:只转变颗粒大小,不转变矿物成分。
由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。
(2)化学风化:矿物发生转变,生成新成分—次生矿物。
由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。
(3)生物风化:动植物与人类活动对岩体的破坏。
矿物成分没有变化。
2.土的结构和构造(1)土的结构定义:土颗粒间的相互排列和联结形式称为土的结构。
1)种类:单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。
蜂窝结构:单个下沉,遇到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。
絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。
小链之间相互吸引,形成大链环,称絮状结构。
图土的结构3)工程性质:密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏自然结构,则强度低、压缩性高,不行用做自然地基。
(2)土的构造1)定义:同一土层中,土颗粒之间的相互关系。
2)种类:层状结构:由不同颜色或不同粒径的土组成层理,一层一层相互平行。
分散构造:土粒分布匀称,性质相近,如砂与卵石层为分散构造。
结核状构造:在细粒土中混有粗颗粒或各种结核,属结核状构造。
第1章土的物理性质及其工程分类§1.1 土的三相组成自然界的土是由岩石经风化、搬运、堆积而形成的。
因此,母岩成分、风化性质、搬运过程和堆积的环境是影响土的组成的主要因素,而土的组成又是决定地基土工程性质的基础。
土是由固体颗粒、水和气体三部分组成的,通常称为土的三相组成,随着三相物质的质量和体积的比例不同,土的性质也就不同。
1.1.1土的固相土的固相物质包括无机矿物颗粒和有机质,是构成土的骨架最基本的物质,称为土粒。
对土粒应从其矿物成分、颗粒的大小和形状来描述。
1. 土的矿物成分土中的矿物成分可以分为原生矿物和次生矿物两大类。
原生矿物是指岩浆在冷凝过程中形成的矿物,如石英、长石、云母等。
次生矿物是由原生矿物经过风化作用后形成的新矿物,如三氧化二铝、三氧化二铁、次生二氧化硅、粘土矿物以及碳酸盐等。
次生矿物按其与水的作用可分为易溶的、难溶的和不溶的,次生矿物的水溶性对土的性质有重要影响。
粘土矿物的主要代表性矿物为高岭石、伊利石和蒙脱石,由于其亲水性不同,当其含量不同时土的工程性质就各异。
在以物理风化为主的过程中,岩石破碎而并不改变其成分,岩石中的原生矿物得以保存下来;但在化学风化的过程中,有些矿物分解成为次生的粘土矿物。
粘土矿物是很细小的扁平颗粒,表面具有极强的和水相互作用的能力。
颗粒越细,表面积越大,这种亲水的能力就越强,对土的工程性质的影响也就越大。
在风化过程中,在微生物作用下,土中产生复杂的腐殖质,此外还会有动植物残体等有机物,如泥炭等。
有机颗粒紧紧地吸附在无机矿物颗粒的表面,形成了颗粒间的连接,但是这种连接的稳定性较差。
从外表上看到的土的颜色,在很大程度上反映了土的固相的不同成分和不同含量。
红色、黄色和棕色一般表示土中含有较多的三氧化二铁,并说明氧化程度较高。
黑色表示土中含有较多的有机质或锰的化合物;灰蓝色和灰绿色的土一般含有亚铁化合物,是在缺氧条件下形成的;白色或灰白色则表示土中有机质较少,主要含石英或含高岭石等粘土矿物。