热处理工艺的“四把火”
- 格式:docx
- 大小:185.30 KB
- 文档页数:2
热处理四把火的定义
答:热处理四把火的定义是:
热处理的四把火是退火、正火、淬火和回火。
退火是将工件在炉内缓慢加热到临界点以上一定温度,保持一段时间,随炉缓慢冷却的一种热处理工艺,通常在炉内进行。
退火的目的是降低硬度,切削加工性;降低残余应力,稳定尺寸,减少变形和裂纹倾向;细化晶粒,调整结构,消除结构缺陷。
正火是将加热后的工件从炉中取出,放在空气中冷却。
正火时,钢的晶粒可以在稍快的冷却中得到细化。
不仅可以获得满意的强度,而且可以显著提高韧性,降低构件的开裂倾向。
淬火是将工件加热到淬火温度临界点以上30-50度,保温一段时间,然后放入淬火剂中冷却。
淬火的目的是大幅度提高钢的刚度、硬度、耐磨性、疲劳强度和韧性,以满足各种机械零件和工具的不同使用要求。
还可以通过淬火满足一些特殊钢材的铁磁性、耐腐蚀性等特殊物理化学性能。
回火是淬火后在较低温度下对零件进行加热和冷却。
回火通常用于降低或消除淬火零件中的内应力,或降低其硬度和强度以改善其延展性或韧性。
淬火后的工件应及时回火,通过淬火和回火的配合,获得所需的力学性能。
热处理工艺的四把火
热处理工艺的四把火是指控制温度、时间、气氛和冷却速率这四个方面。
这四个方面是影响热处理结果的关键因素,正确控制它们可以确保材料达到预期的机械性能和组织结构。
1. 温度:温度是影响材料性能和组织结构的重要因素之一。
不同材料的热处理温度不同,正确控制温度可以确保材料达到所需的硬度、韧性和强度。
2. 时间:时间是指材料在特定温度下进行热处理的持续时间。
不同的热处理工艺需要不同的时间。
过长或过短的时间都可能导致材料的性能和组织结构不符合要求。
3. 气氛:气氛是指材料在热处理过程中所处的气体环境。
不同的材料需要不同的气氛来实现特定的热处理效果,例如氧化退火需要在含有氧气的气氛中进行。
4. 冷却速率:冷却速率是指材料从高温到室温的冷却速度。
不同材料对冷却速率的要求不同,正确控制冷却速率可以确保材料达到所需的组织结构和性能。
控制这四个方面是热处理工艺中非常关键的,只有正确地控制好这四个方面,才能获得满足设计要求的零件。
材料学-热处理工艺中的四把火.doc热处理是一种改善材料性能的加工方法,其中非常重要的是热处理工艺。
热处理工艺的关键部分是加热和冷却过程,这些过程可以通过控制温度、时间和冷却速率来实现。
为了实现最佳的热处理效果,需要掌握热处理中的“四把火”。
一把火:加热温度加热温度是热处理过程中最重要的参数。
加热温度不仅影响到材料的力学性能和物理性能,还影响到材料的组织结构和晶体结构。
正确的加热温度可以改善材料的性能,而错误的加热温度可能导致材料的不良效果。
在选择加热温度时,需要考虑材料的化学成分、缺陷和热处理目标。
材料的化学成分和缺陷会影响到材料的加热曲线,需要进行适当的调整。
例如,过高的加热温度可能导致晶界和晶内析出物的破坏,从而影响材料的性能。
加热时间是材料在加热过程中所处的时间。
加热时间是热处理工艺中另一个重要的参数。
正确的加热时间可以使材料达到目标温度,并有足够的时间达到平衡状态。
而错误的加热时间可能导致材料未达到预期的性能。
在选择加热时间时,需要考虑材料的大小、形状和加热装置。
较大的材料需要更长的加热时间,而不同的加热装置可能需要不同的加热时间。
三把火:冷却速率冷却速率决定着材料冷却过程中晶体结构的形成。
冷却速率的不同可以导致材料的晶体结构和性能有很大的变化。
有时,热处理后的材料可能需要再次热处理才能使其达到最佳的性能。
在选择冷却速率时,需要考虑材料的类型、加热温度和热处理目标。
较快的冷却速率可以提高材料的强度,较慢的冷却速率可以提高材料的韧性。
不同的加热方式会影响材料的晶体结构、性能和加工性能。
常见的加热方式包括炉温加热、电子束加热和火焰加热。
不同的加热方式对材料的影响不同,需要根据材料的性质和热处理目标进行选择。
总之,热处理工艺中的“四把火”是非常重要的,掌握它们可以提高热处理的效果,从而改善材料的性能。
在实际应用中,需要根据材料的性质和热处理目标进行选择和调整,以达到最佳的效果。
“四把火”是指冶金工业生产中最重要的四项热处理工艺包括退火,正火,淬火,回火。
一、“第一把火”退火退火是将工件加热到适当温度,保持一定的时间,然后缓慢冷却(一般随炉冷却)的热处理工艺。
退火的主要目的是为了降低钢铁材料的硬度,提高塑性和韧性,改善切削加工性能和锻压加工性能;细化钢铁材料组织,均匀其化学成分;消除钢铁材料的内应力,防止其变形和开裂;为后续加工或热处理做准备。
退火主要用于碳素结构钢、合金结构钢的铸件、锻件、焊件及钢锭等。
根据钢铁材料的化学成分和退火目的的不同,退火通常分为完全退火、等温退火、球化退火、去应力退火、均匀化退火等。
(部分退火的加热温度范围如图 01所示。
部分退火工艺曲线如图 02所示。
)图 01 部分退火工艺加热温度范围示意图图 02 部分退火工艺曲线示意图二、“第二把火”正火正火就是将工件加热到奥氏体化后,保持适当的时间后,在空气中冷却的热处理工艺。
正火与退火相比,一般加热温度比退火高;冷却速度比退火快,过冷度较大,因此正火后得到的组织比较细,强度和硬度比退火高。
另外,正火与退火相比具有操作简便、生产周期短、生产效率高、生产成本低的的优点。
正火的目的与退火类同,不过具有更高的力学性能,主要用于对于力学性能要求不高的普通结构零件,正火可作为最终热处理。
对于低中碳结构钢,主要是提高硬度,改善切削加工性能;对于过共析钢,为球化退火、淬火做组织准备。
三、“第三把火”淬火淬火是指将工件加热到奥氏体化后,保持一定时间,然后以适当速度冷却获得马氏体(或贝氏体)组织的热处理工艺。
淬火的主要目的就是为了强化材料,提高材料的强度或硬度,用于要求有较高强韧性的工模具和弹簧及要求高硬度的零件之中。
这里要注意,淬火后的工件是不能直接使用的,必须进行回火后才能投入生产、使用。
不同的钢种其淬火加热温度不同。
非合金钢的淬火加热温度可由铁碳合金相图确定,如图 03所示。
图 03 非合金钢淬火加热的温度范围淬火加热时间包括升温时间和保温时间。
退火、正火、淬火、回火工艺金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。
金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。
为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。
钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。
另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。
早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。
白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。
中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。
随着淬火技术的发展,人们逐渐发现冷剂对淬火质量的影响。
三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。
这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。
中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。
但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。
1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。
金属热处理通常的“四把火”金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。
金属热处理是材料生产中的最重要的工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体化学成分,而是通过改变工件的内部的显微组织,或改变工件的表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能观察到的。
金属热处理中的“四把火”指退火、正火、淬火(固溶)和回火(时效)。
金属热处理大致有退火、正火、淬火和回火四种基本工艺,俗称金属热处理的“四把火”。
一、金属热处理的第一把火——退火:1、退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。
2、退火的目的:①改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。
②软化工件以便进行切削加工。
③细化晶粒,改善组织以提高工件的机械性能。
④为最终热处理(淬火、回火)作好组织准备。
二、金属热处理的第二把火——正火:1、正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
2、正火的目的:①可以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。
②可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。
③可以消除晶界的游离渗碳体,以改善其深冲性能。
三、金属热处理的第三把火——淬火:1、淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。
淬火后钢件变硬,但同时变脆。
2、淬火的目的:①、提高金属成材或零件的机械性能。
热处理工艺的四把火文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-热处理工艺的“四把火”金属热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的热处理工艺。
按照其处理工艺可以分为退火、正火、淬火、回火四种基本工艺,称为“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
正火:将钢材或钢件加热到临界点AC3 或ACM 以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
退火:是将工件加热到适当温度(AC3以上20-40度),根据材料和工件尺寸采用不同的保温时间,然后随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下的热处理工艺,其实质是将钢加热奥氏体化后进行珠光体转变。
目的和作用(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;(2)细化晶粒,消除因锻、焊等引起的组织缺陷,均匀钢的组织成分,改善钢的性能或为以后的热处理做准备;(3)消除钢中的内应力,以防止变形或开裂。
淬火:淬火就是将钢加热到Ac3或Ac1点以上某一温度,保持一定时间,然后将工件放入水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却以获得马氏体和(或)贝氏体组织的热处理工艺。
淬火后钢件变硬,但同时变脆。
为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
目的和作用使过冷奥氏体进行马氏体(或贝氏体)转变,得到马氏体(或贝氏体)组织,然后配合以不同温度的回火,获得所需的力学性能。
(注:淬火态工件不允许直接投入现场使用,通常在此之后必须实时进行1-2次或以上之回火加工,以调整其组织及应力等。
)回火:回火就是将经过碎火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
热处理工艺的“四把火”
金属热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的热处理工艺。
按照其处理工艺可以分为退火、正火、淬火、回火四种基本工艺,称为“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
正火:将钢材或钢件加热到临界点AC3 或ACM 以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
退火:是将工件加热到适当温度(AC3以上20-40度),根据材料和工件尺寸采用不同的保温时间,然后随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下的热处理工艺,其实质是将钢加热奥氏体化后进行珠光体转变。
目的和作用
(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;
(2)细化晶粒,消除因锻、焊等引起的组织缺陷,均匀钢的组织成分,改善钢的性能或为以后的热处理做准备;
(3)消除钢中的内应力,以防止变形或开裂。
淬火:淬火就是将钢加热到Ac3或Ac1点以上某一温度,保持一定时间,然后将工件放入水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却以获得马氏体和(或)贝氏体组织的热处理工艺。
淬火后钢件变硬,但同时变脆。
为了降
低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。
目的和作用
使过冷奥氏体进行马氏体(或贝氏体)转变,得到马氏体(或贝氏体)组织,然后配合以不同温度的回火,获得所需的力学性能。
(注:淬火态工件不允许直接投入现场使用,通常在此之后必须实时进行1-2次或以上之回火加工,以调整其组织及应力等。
)
回火:回火就是将经过碎火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
目的和作用
(1)合理地调整力学性能,使工件满足使用要求;
(2)稳定组织,使工件在使用过程中不发生组织转变,从而保证工件的尺寸、形状不变;
(3)降低或消除淬火内应力,以减少工件的变形并防止开裂。
钢的热处理温度Al、A3与Acl、Ac3、Arl和Acm 铁碳合金可以查阅Fe-C相图,如果是合金钢只能根据具体牌号查阅。
A1:在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度;
A3:亚共析钢在平衡状态下,奥氏体和铁素体共存的最高泪度;
Acl:钢加热时,开始形成奥氏体的温度;
Ac3:亚共析钢加热时,所有铁素体均转变为奥氏体的温度;
Arl:钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度;
Acm:过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,即过共析钢的上临界点。
即一般所说的下转变温度是Al或Acl,上转变温度是A3或Ac3或Acm。
不同化学成分,有不同的临界点。
Q245R钢:Acl是735 、Ac3 是855 、Arl是680 、Ar3 是855 .
Q345R钢: Ac1是735 、Ac3 是863 、Arl是685 、Ar3 是840 .
45钢: Ac1是740 、Ac3 是850 、Arl是735 、Ar3 是785 .。