原核生物基因转移(转座)
- 格式:pptx
- 大小:5.91 MB
- 文档页数:26
原核生物转座子的转座机制1.引言1.1 概述原核生物转座子是一类具有转座能力的DNA序列,可以在基因组中移动位置并插入到新的位置。
转座是一种重要的基因组重组机制,能够在生物进化过程中产生遗传多样性。
在原核生物中,转座事件常常发生,对于细菌和古菌的基因组结构和功能起着重要的影响。
原核生物转座子具有多样的分类,包括细菌转座子和古菌转座子等。
细菌转座子一般以IS元件和转座酶为特征,可以分为复制转座子和保守转座子。
复制转座子通过复制转座机制进行移动,而保守转座子则是通过切割转座机制进行位置的重排。
古菌转座子的分类方式较为复杂,包括Tn元素、羧甲基转移酶和嵌合子等。
原核生物转座子的转座机制基本原理是通过转座酶的介导,将转座子从原有位置切割并插入到新的位置。
转座酶是一种特殊的酶类,能够识别和切割转座子两端的特定序列,并在目标位置引起切割和粘合的重组反应。
转座子的转座机制具有高度的特异性和选择性,可以确保转座子的准确插入和稳定遗传。
原核生物转座子的重要性不容小觑。
它们在细菌和古菌的基因组重组和进化中发挥着重要的作用,能够帮助适应环境变化,增加基因组多样性。
此外,原核生物转座子还参与了一些重要的生物学过程,如抗生素抗性的传播和基因调控的调整等。
未来的研究方向包括对转座子的结构和功能的深入研究,以及对其在细菌和古菌进化中的作用机制的进一步探究。
此外,对于转座子的调控机制、应用价值等方面也需要开展更多的研究。
通过对原核生物转座子的深入了解,有望揭示更多有关基因组的演化和多样性形成的奥秘。
1.2文章结构文章结构部分的内容可以从以下几个方面展开:1.2 文章结构本文旨在探讨原核生物转座子的转座机制。
为了达到这个目的,文章将分为三个主要部分,分别是引言、正文和结论。
引言部分将用来引出本文的研究背景和意义。
首先,我们将概述原核生物转座子的概念和分类,帮助读者了解转座子的基本知识。
然后,我们会详细介绍转座机制的基本原理,包括转座子的结构和作用方式等。
基因重组是指一个基因的DNA序列是由两个或两个以上的亲本DNA组合起来的。
基因重组是遗传的基本现象,病毒、原核生物和真核生物都存在基因重组现象。
减数分裂可能发生基因重组。
基因重组的特点是双DNA链间进行物质交换。
真核生物,重组发生在减数分裂期同源染色体的非姊妹染色单体间,细菌可发生在转化或转导过程中,通常称这类重组为同源重组(homologous recombination),即只要两条DNA序列相同或接近,重组可在此序列的任何一点发生。
然而在原核生物中,有时基因重组依赖于小范围的同源序列的联会,重组只限于该小范围内,只涉及特定位点的同源区,把这类重组称作位点专一性重组(site-specific recombination),此外还有一种重组方式,完全不依赖于序列间的同源性,使一段DNA序列插入另一段中,在形成重组分子时依赖于DNA复制完成重组,称此类重组为异常重组(illegitimate recombination),也称复制性重组(replicative recombination)。
一、自然重组自然界不同物种或个体之间的基因转移和重组是经常发生的,它是基因变异和物种进化的基础。
自然界的基因转移的方式有:接合作用:当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA就可从一个细胞(细菌)转移至另一细胞(细菌),这种类型的DNA转移称为接合作用(conjugation )。
转化作用(transformation) 通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型。
转导作用:当病毒从被感染的(供体)细胞释放出来、再次感染另一(受体)细胞时,发生在供体细胞与受体细胞之间的DNA转移及基因重组即为转导作用(transduction)。
转座:大多数基因在基因组内的位置是固定的,但有些基因可以从一个位置移动到另一位置。
这些可移动的DNA 序列包括插入序列和转座子。
由插入序列和转座子介导的基因移位或重排称为转座(transposition )。
分子生物学名词解释分子生物学名词解释1.cDNA(complementary DNA):在体外以mRNA为模板,利用反转录酶和DNA聚合酶合成的一段双链DNA。
2.CpG岛:真核生物中成串出现在DNA上的CpG二核苷酸。
5-甲基胞嘧啶主要出现在CpG序列、CpXpG、CCA/TGG和GATC中,在高等生物CpG二核苷酸序列中的C通常是甲基化的,极易自发脱氨,生成胸腺嘧啶,所以CpG二核苷酸序列出现的频率远远低于按核苷酸按核苷酸组成计算出的频率。
3.C值(Cvalue):通常是指一种生物单倍体基因组DNA的总量,以每细胞内的皮克(pg)数表示。
4.C值反常现象(C value paradox):也称C值谬误。
指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些较低等的生物C 值却很大,如一些两栖物种的C值甚至比哺乳动物还大。
5.DNA的半保留复制(semiconservative replication):DNA 在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA 分子与原来DNA分子的碱基顺序完全一样。
因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。
6.DNA的半不连续复制(semi-discontinuous replication):DNA复制过程中前导链的复制是连续的,而另一条链,即后随链的复制是中断的、不连续的。
7.DNA的变性(denaturation)和复性(renaturation):变性是DNA双链的氢键断裂,最后完全变成单链的过程。
复性是热变性的DNA经缓慢冷却,从单链恢复成双链的过程。
8.DNA聚合酶(DNA polymerase):一种催化由脱氧核糖核苷三磷酸合成DNA的酶。
因为它以DNA为模板,所以又被称为依赖于DNA的DNA聚合酶。
不同种类的DNA 聚合酶可能参与DNA的复制和/或修复。
分子生物学重要名词解释染色体(chromosome):原指真核生物细胞分裂中期具有一定形态特征的遗传物质载体。
现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。
染色质(chromatin):由DNA和蛋白质构成,在分裂间期染色体结构疏松,称为染色质。
其实染色质与染色体只是同一物质在不同细胞周期的表现。
常染色质(euchromatin):是进行活跃转录的部位,呈疏松的环状,电镜下表现为浅染,易被核酸酶在一些敏感的位点(hypersensitive sites)降解。
异染色质(heterochromatin):在间期核中处于凝缩状态,无转录活性,也叫非活动染色质(inactive chromatin),是遗传惰性区。
在细胞周期中表现为晚复制,早凝缩,即异固缩现象(heteropycnosis)。
组蛋白(histones):进化上非常保守的碱性蛋白质,是DNA的结合蛋白,也是染色体的结构蛋白,分H1、H2A、H2B、H3、H4五种,与DNA共同组成真核生物染色质的基本单位结构。
核小体(nucleosome):DNA绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外1.8周(146bp),形成核小体核心颗粒。
DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,包括单核苷酸多态性、串联重复序列多态性。
SNP(single nucleotide polymorphism ):单核苷酸多态性,是指基因组DNA序列中单个核苷酸的突变引起的多态性。
包括转换、颠换、缺失和插入。
通过SNP可发现疾病相关基因突变,指导用药与药物设计,标记相邻的疾病基因。
端粒(telomere):真核生物线性基因组DNA末端的一种特殊结构,是一段DNA序列和蛋白质形成的复合体。
内含子(intron):原初转录物中经RNA拼接反应而被去除的RNA序列或基因中与这些RNA序列相应的DNA序列。
外显子(exon):在前体mRNA剪接(Splicing)后仍被保留下来、存在成熟mRNA中的RNA序列或与其对应的DNA序列,可在蛋白质生物合成过程中被表达为蛋白质。
第二章基因【目的要求】掌握:基因的概念及结构特点;结构基因;基因转录调控相关序列;顺式作用元件;多顺反子,单顺反子。
一、基因:是负责编码RNA或一条多肽链的DNA片段,包括编码序列、编码序列外的侧翼序列及插入序列。
二、结构基因:基因中编码RNA或蛋白质的DNA序列成为结构基因。
三、基因转录调控相关序列:1原核生物基因的调控序列中最基本的是启动子和终止子,有些基因中还有不同的调节蛋白结合位点或操纵元件。
操纵元件:是一段能够被不同基因表达调控蛋白识别和结合的DNA序列,是决定基因表达效率的关键元件。
2真核生物基因中的调控序列一般被称为顺式作用原件,包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
启动子和上游启动元件:TATA盒-TFIID-RNA聚合酶复合物(启动转录);CAA盒-CTF(决定转录的效率);GC盒-Sp1(促进转录)。
增强子:可特异性的与转录因子结合,增强转录因子的活性。
四、顺式作用元件:真核生物基因中的调控序列一般被称为顺式作用原件。
包括启动子和上游启动子元件、增强子、反应元件和poly(A)加尾信号。
五、多顺反子:原核生物的结构基因多转录为多顺反子mRNA,即每一个mRNA分子带有几种蛋白质的遗传信息(来自几个结构基因),利用共同的启动子及终止信号,组成“操纵子”的基因表达调控单元。
转录出来的mRNA分子可以编码几种不同的、但是多为功能相关蛋白质。
六、单顺反子:真核生物结构基因转录为单顺反子mRNA,即一个编码基因转录生成一个mRNA分子、经翻译生成一条多肽链,基本上没有操纵子的结构。
转录生成的mRNA前体中既有编码序列(外显子),又有间隔序列(内含子),需要进行转录后的剪切加工以及各种修饰,形成成熟的mRNA。
1熟悉:基因型;表现型;基因突变;;外显子;内含子;选择性剪接。
一、基因型:指逐代传递下去的成对因子的集合,因子中一个来源于父本,另一个来源于母本。