匀速圆周运动是变速曲线运动的理解
- 格式:doc
- 大小:63.00 KB
- 文档页数:4
高中物理《圆周运动》教学设计(优秀7篇)圆周运动教案篇一一、教学任务分析本节课的教学内容是上海市二期课改新教材,即上海科学技术出版社出版的《物理》(修订本)高中一年级第一学期第五章《A、圆周运动快慢的描述》部分,本节课是高一必修内容。
学生虽然已经初步学习了有关运动的知识,但如何研究圆周运动的特征是新的学习内容。
圆周运动的定义,及描述圆周运动的线速度、角速度的知识在本章中具有重要的地位。
本节课的教学既要着重让学生理解波速、波长、频率的关系,又要让学生对波形图有初步的认识,并在学习的过程中让学生体验观察法、比较法等在物理学习中的作用,从而培养学生多方面的能力。
二、教学目标:1、知识与技能:(1)、理解匀速圆周运动。
(2)、理解匀速圆周运动中的线速度和角速度。
(3)、能够运用匀速圆周运动的有关公式分析和解决有关问题的能力。
2、过程与方法:(1)、通过对两种运动的比较学习,使学生能运用对比方法研究问题。
(2)、通过对描述匀速圆周运动的物理量的学习,使学生了解、体会研究问题要从多个的侧面考虑。
(3)、通过对线速度、角速度的关系探究使学生体验获得知识的过程,并感悟科学探究法在物理学习中的作用。
3、情感、态度与价值观:(1)、通过录像使学生对“物理来自生活”形成深刻印象。
(2)、通过对手表指针的运动的观察、探索并得到线速度、角速度的定义式及关系使学生正确认识物理学是一门实验科学。
(3)、通过对内容的观察让学生树立学以致用的价值观,并增强对物理学的好感。
通过合作学习,加强学生之间的协作关系和团队精神。
三、教学重点和难点教学重点:1、线速度、角速度的概念和计算。
2、什么是匀速圆周运动教学难点:要学生理解从不同角度比较快慢可能得出相反的结论。
对匀速圆周运动是变速运动的理解。
四、教具准备高中物理圆周运动教案篇二(一)知识与技能1、理解线速度、角速度、转速、周期等概念,会对它们进行定量的计算。
2、知道线速度与角速度的定义,知道线速度与周期,角速度与周期的关系。
圆周运动教学重点线速度、角速度、周期概念,及其相互关系的理解和应用,匀速圆周运动的特点.教学难点角速度概念的理解和匀速圆周运动是变速曲线运动的理解。
三维目标知识与技能1。
了解物体做圆周运动的特征。
2。
理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算.3.理解线速度、角速度、周期之间的关系.过程与方法1.联系日常生活中所观察到的各种圆周运动的实例,找出共同特征。
2.知道描述物体做圆周运动快慢的方法,进而引出描述物体做圆周运动快慢的物理量:线速度v、角速度ω、周期T、转速n等.3.探究线速度与角速度之间的关系.情感态度与价值观1.经历观察、分析总结及探究等学习活动,培养学生实事求是的科学态度.2。
通过亲身感悟,使学生获得对描述圆周运动快慢的物理量(线速度、角速度、周期等)以及它们相互关系的感性认识.课前准备多媒体课件、机械钟表、小球、细线、风扇、雨伞、水等.教学过程导入新课演示导入演示机械式钟表时针、分针、秒针的运动情况(可以拨动钟表的调节旋钮),让学生观察后说出不同指针运动的特点,从而引出圆周运动的概念.情景导入课件展示生活中常见的圆周运动:观览车脱水桶生活中,我们一定见过很多类似的运动,它们的运动轨迹是一些圆,我们把这种运动叫做圆周运动.推进新课引导学生列举生活中的圆周运动.参考案例:1。
田径场弯道上赛跑的运动员的运动;2.风车的转动;3。
地球的自转与公转;4。
自行车的前后轮、大小齿轮转动等.研究物体的运动时,我们往往关心的是物体的运动快慢。
对于做直线运动的物体,我们用单位时间内的位移来描述物体的运动快慢.问题:对于圆周运动又如何描述它们的运动快慢呢?一、线速度演示1:在台式电风扇的叶片上分别标记红、蓝两种颜色的点,到中间轴的距离不等.用手拨动叶片转动,注意要慢,让学生明显观察到两点的运动轨迹。
让学生仔细观察,说出哪个点运动得快,你是怎么比较的. 讨论交流我们发现,两个点在相同的时间内通过的弧长不相等,通过的弧长长的点运动得快,通过的弧长短的点运动得慢。
4描述匀速圆周运动的物理量必记知识点一、匀速圆周运动(1)定义:质点沿圆周运动,若在相等的时间内通过的弧长相等,若在相等的时间内通过的弧长相等,这种运动就叫匀速圆周运这种运动就叫匀速圆周运动.(2)运动学特征:角速度、周期和频率都是不变的;而线速度、向心加速度都是大小不变,方向时刻在变.所以,匀速圆周运动是变速运动、,是变加速运动,是变力作用下的曲线运动.所以匀速圆周中的“匀速”是指匀速率的意思,而不是指速度不变. 二、描述匀速圆周运动快慢的物理量(1)线速度:描述质点沿圆周运动的快慢,是矢量.①大小:ts v =,s 是质点在时间t 内走过的弧长.单位:m /s .②方向:沿圆弧上该点的切线方向.(2)角速度:描述质点绕圆心转动的快慢.定义式:tj w =,(j 是质点和圆心的连线在时间t 内转过的角度.单位:rad /s .)(3)周期T :做匀速圆周运动的质点运动一周所用的时间.单位:s .(4)频率f :做匀速圆周运动的质点在单位时间内沿圆周走过的圈数,也叫转速.叫频率时单位是Hz ,叫转速时(用n 表示)单位是r /s .(转/秒) 三、v 、ω、T 、f 之间的内在关系:fR R T Rt sv p w p 22==== f Rv T t p p j w 22==== fvR T 122===wpp (注意:ω、T 、f 三个量中任意一个确定,另外两个量也就确定了.) 四、v 、ω、T 、f 之间的外在关系:①任何两个(或两个以上)的物体,如果绕同一根轴转动(或者绕同一圆心做圆周运动),那么它们的角速度ω、周期T 、频率f 必相等.②任何两个通过皮带相连接的转轮(或两个相吻合的齿轮).当轮子转动时,皮带上的任意点与两轮边缘上的任何点的线速度v 大小必相等. 五、向心加速度:描述线速度方向改变的快慢,是矢量. ①大小:ww .22v R Rv a ===. ②方向:总是指向圆心,时刻在变化.典型题一、慨念应用题型1、如图所示,为皮带传动装置,右轮半径为r ,a 为它边缘上的一点,左侧是大轮轴,大轮半径为4r ,小轮半径为2r ,b 为小轮上一点,b 到小轮中心距离为r ,c .d 分别位于小轮和大轮的边缘上,若在传动中不打滑,则 ( ) A .a 点与b 点线速度大小相等B .a 点与b 点角速度大小相等C .a 点与c 点线速度大小相等D .a 点与d 点向心加速度大小相等2、如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:r 1=2r 2,r 3=1.5r 1,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线速度之比为 .角速度之比为 .周期之比为 .3、如图所示,在轮B 上固定有同轴小轮A ,轮B 通过皮带带动轮C ,皮带和两轮之间无相对滑动,A 、B 、C 三轮的半径依次为r 1、r 2和r 3,绕在A 轮边的绳子一端固定在A 轮边缘上,另一端系有重物P .当重物P 以速度v 匀速下落时,C 轮转动的角速度为 .4、如图所示,甲、乙两球做匀速圆周运动,向心加速度随半径变化.由图象可以知 道 ( ) A .甲球运动时,线速度大小保持不变B .甲球运动时,角速度大小保持不变C .乙球运动时,线速度大小保持不变D .乙球运动时,角速度大小保持不变 二、由圆周运动的周期性引起的多解问题 5、如图所示,、如图所示,一直径为一直径为d 纸质圆筒以角速度ω绕轴O 高速转动,现有一颗子弹沿直径穿过圆筒,若子弹在圆筒转动不到半周时,在筒上留下a 、b 两个弹孔,已知a0、b0间夹角为j ,则子弹的速率为 ( ) A .pwj 2d B .jw dC .jp w -2d D .jp w -d6、如图所示的装置可测量子弹的飞行速度,在一根轴上相隔S=1m 处安装两个平行的薄圆盘,使轴带动两圆盘以n=3000r /min 匀速转动,飞行的子弹平行于轴沿一直线穿过两圆盘,即在盘上留下两个孔,现测得两小孔所在半径间的夹角为300,子弹飞行速度大小可能是下述的 ( ) A .500m /s B .600m /s C .700m /s D .800m /s 7、如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v = ,圆盘转动的角速度ω= 。
物理圆周运动讲解
圆周运动是物理学中最常见的曲线运动之一。
质点在以某点为圆心,半径为 r 的圆周上运动时,其轨迹称为圆周运动。
圆周运动可分为匀速圆周运动和变速圆周运动两种。
在圆周运动中,向心力始终作用于质点,使质点始终保持向圆心运动的趋势,故向心力被视为维持质点圆周运动的动力。
匀速圆周运动时,质点所受的向心力大小不变,与质点的质量成反比,故质点的角速度与线速度的大小不变。
匀速圆周运动的周期即为质点转过一周所需的时间,转速即为每秒转过的弧度。
变速圆周运动则是由外力矩作用引起的,外力矩的大小和方向始终垂直于圆周平面,且与质点的速度方向相反。
当外力矩足够大时,质点将离开原来的圆周轨道,进入螺旋形轨道,并最终落地。
在圆周运动中,重要的公式包括向心力公式、角速度公式、线速度公式和周期公式等。
此外,圆周运动的规律也可以应用于其他形式的曲线运动,例如行星绕太阳的运动、地球的自转等。
匀变速曲线运动分类
匀变速曲线运动是指物体在运动过程中,其加速度的大小和方向均保持不变的曲线运动。
根据物体运动的特征,匀变速曲线运动可以进一步细分为以下两种类型:
1. 抛体运动:这是一种在重力作用下运动的匀变速曲线运动,物体在空中划过一条抛物线轨迹。
由于受到重力的作用,抛体运动的速度方向时刻发生变化,但加速度的大小和方向始终保持不变。
2. 匀速圆周运动:这是一种匀速旋转的曲线运动,物体在圆形轨道上以恒定的速度运动。
虽然物体在运动过程中速度的大小保持不变,但其速度方向时刻发生变化,因此也属于匀变速曲线运动的范畴。
无论是抛体运动还是匀速圆周运动,它们都具有各自独特的运动特征和规律。
通过对这些规律的研究和应用,我们可以更好地理解这些运动形式的特点,并为实际工程应用提供理论支持和实践指导。
1。
匀速圆周运动是匀变速曲线运动吗
不是,匀变速曲线运动就是加速度不变的运动,根据牛顿第二定律,加速度不变就是受到的合力不变,这里的合力不变包括两个方面,其一是大小不变,其二是方向不变,一般先判断方向,只要方向改变那就不是匀变速曲线运动了。
显然匀速圆周运动的受力方向一直是指向圆心的,方向不停变化,所以就不是匀变速曲线运动了。
匀速圆周运动不是匀变速曲线运动
匀变速曲线运动是指在运动过程中,加速度方向与速度方向不同且加速度恒定(即加速度大小不变,方向也不变) 的运动。
如平抛运动,虽然是曲线运动,但是受力始终只有重力,所以加速度也始终只有重力加速度,一直不变。
所以就是匀变速曲线运动。
而匀速圆周运动,虽然运动过程中,速度大小不变,加速度大小不变,但是加速度的方向一直在改变,所以加速度一直在改变。
故而不是匀变速曲线运动。
匀速圆周运动和非匀速圆周运动的区别:
物体做匀速圆周运动只有沿半径方向的力,没有沿圆周切线方向上的力。
物体做非匀速圆周运动不但有沿半径方向的力,还有沿圆周切线方向上的力。
所以,研究圆周运动首先要分析物体的受力情况。
一、匀速圆周运动的基本概念:1、匀速圆周运动的定义质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动叫做匀速圆周运动。
2、描述匀速圆周运动快慢的物理量(1)线速度v①物理意义:描述质点沿圆周运动的快慢。
②定义:质点做圆周运动通过的弧长s和所用时间t的比值叫做线速度。
③大小:,单位:④方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向。
由于质点做匀速圆周运动时的速度方向不断发生变化,所以匀速圆周运动是一种变速运动。
(2)角速度①物理意义:描述质点转过圆心角的快慢。
②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间的比值,就是质点运动的角速度。
③大小:单位:。
④匀速圆周运动是角速度不变的圆周运动。
(3)周期T和频率f①物理意义:周期和频率都是描述物体做圆周运动快慢的物理量。
②定义:做圆周运动的物体运动一周所用的时间叫做周期。
用T表示,单位:s。
做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做频率。
用f表示,单位:Hz。
在国际单位制中是,在一些实际问题中常用的是每分钟多少转,用n表示,转速的单位为转每秒,即。
3、线速度、角速度、周期之间的关系(1)线速度和角速度间的关系如果物体沿半径为r的圆周做匀速圆周运动,在时间t 内通过的弧长是s,半径转过的角度是,由数学知识知,于是有,即。
上式表明:①当半径相同时,线速度大的角速度也大,角速度大的线速度也大,且成正比。
如图(a)所示。
②当角速度相同时,半径大的线速度大,且成正比。
如图(b)所示。
③当线速度相同时,半径大的角速度小,半径小的角速度大,且成反比。
如图(c)、(d)所示。
(2)线速度与周期的关系由于做匀速圆周运动的物体,在一个周期内通过的弧长为,所以有。
上式表明,只有当半径相同时,周期小的线速度大;当半径不同时,周期小的线速度不一定大,所以周期与线速度描述的快慢是不一样的。
(3)角速度与周期的关系由于做匀速圆周运动的物体,在一个周期内半径转过的角度为,则有。
匀速圆周运动知识点解析1.匀速圆周运动的定义(1)轨迹是圆周的运动叫圆周运动。
(2)质点沿圆周运动,如果在相同时间里通过的弧长相等,这种运动叫匀速圆周运动。
(3)匀速圆周运动是最简单的圆周运动形式,也是最基本的曲线运动之一。
(4)匀速圆周运动是一种理想化的运动形式。
许多物体的运动接近这种运动,具有一定的实际意义。
一般圆周运动,也可以取一段较短的时间(或弧长)看成是匀速圆周运动。
2.周期(1)物体做匀速圆周运动时,运动一周所用的时间。
(2)周期用符号T表示,单位是秒。
(3)周期是反映重复性运动的运动快慢的物理量。
它从另一个角度描述了物体的运动。
3.线速度(1)物体做匀速圆周运动时,通过的弧长s跟通过这段弧长所用时间t的比值,叫运动物体线速度大小。
线速度的方向为圆周上某点的切线方向。
(2)线速度的计算公式:(3)线速度的意义:线速度实质上还是物体某一时刻的瞬时速度,虽然是用弧长和时间的比定义了速度大小,但当时间t趋于零时,弧长和为区别角速度而取名为线速度。
4.角速度转过这些角度所用时间t的比值,叫物体做匀速圆周运动的角速度。
(2)角速度计算公式:(3)角速度单位为:弧度/秒(rad/s)。
(4)角速度是矢量,方向为右手螺旋法则的大拇指的指向。
(5)角速度是描述转动快慢的物理量。
在描述转动效果时,它比用线速度描述更具有代表性。
5.向心加速度(1)匀速圆周运动的加速度方向匀速圆周运动的速度大小不变,速度的方向时刻在变,由于速度方向的变化,质点一定具有加速度,该加速度反映速度方向变化的快慢,该加速度的方向沿着半径指向圆心。
设质点沿半径是r的圆周做匀速圆周运动,在某时刻它处于A点,速度是vA,经过很短时间Δt后,运动到B点,速度为vB。
根据矢量合成的三角形法则可知,矢量vA与Δv之和等于vB,所以Δv是质点在A点时的加速度。
如图4-20。
时Δv便垂直于vA。
而vA是圆的切线,故Δv是指向圆心的。
即A点加速度指向圆心,所以匀速圆周运动的加速度又叫向心加速度。
(必修1部分)第一章运动的描述1质点参考系和坐标系教学重点:①质点概念的建立;②明确参考系的概念及运动的关系。
教学难点:①质点模型条件的判断;②坐标系的建立。
2时间和位移教学重点:时间和位移的概念。
教学难点:①生活中时间与时刻的区别;②位移的理解。
3运动快慢的描述——速度教学重点:①速度概念的建立;②对速度比值定义法的理解。
教学难点:①速度矢量性的理解;②瞬时速度的推导。
4实验:用打点计时器测速度教学重点:①学会使用打点计时器;②能根据纸带计算物体运动的瞬时速度;③会用描点法描绘物休的v-t 图象,并从中获取物理信息。
教学难点:①处理纸带的方法;②用描点法绘图。
5速度变化快慢的描述——加速度教学重点:理解加速度的概念,树立变化率的思想。
教学难点:①区分速度、速度的变化量及速度的变化率;②利用图象来分析加速度的相关问题。
第二章匀变速直线运动的研究1实验:探究小车速度随时间变化的规律教学重点:①由实验数据得出v-t图象;②由v-t图象得出小车的速度随时间变化的规律。
教学难点:①实验探究过程的注意事项;②实验数据的处理。
2匀变速直线运动的速度与时间的关系教学重点:①匀变速直线运动v-t图象的物理意义;②匀变速直线运动的速度与时间的关系公式及应用。
教学难点:应用v-t图象推导出匀变速直线运动的速度与时间的关系公式。
3匀变速直线运动的位移与时间的关系教学重点:①理解匀变速直线运动的位移及其应用;②理解匀变速直线运动的位移与时间的关系及其应用。
教学难点:①v-t图象中位移的表示;②微元法推导位移公式。
4匀变速直线运动的位移与速度的关系教学重点:①匀变速直线运动的位移—速度关系的推导;②灵活运用匀变速直线运动的速度公式、位移公式以及速度—位移公式解决实际问题。
教学难点:①运用匀变速直线运动的速度公式、位移公式推导出有用的结论;②灵活运用所学运动学公式解决实际问题。
5自由落体运动教学重点:自由落体运动的规律。
教学难点:自由落体运动规律的得出。
圆周运动教学设计一、教材分析《圆周运动》是这一章教学的重点,也是学习向心加速度和向心力这一知识的前提,在这一节中,更能突出速度的矢量性。
教材通过实例,先介绍了什么是圆周运动,首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,这是本节的重点。
角速度的概念学生初次接触,应使学生有确切理解。
公式中的φ就应当用弧度做单位来表示,这一点要提示学生注意,这对得出公式是十分重要的。
教材介绍了转速的概念,应该要求学生能独立地由转速(单位符号r/min)得到周期(单位符号为s)或角速度(单位符号为rad/s)。
这一节概念较多,要通过实验和列举实例,引导和启发学生思考、讨论、认识现象,建立概念.二、学情分析圆周运动是学生在充分掌握了曲线运动、平抛运动的规律后,接触到的一个较为复杂的曲线运动,本节内容作为该部分的起始章节,主要向学生介绍圆周运动的几个基本概念,为后继的学习打下一个良好的基础。
圆周运动是曲线运动的一种特殊情况,生活中随处可见,在学习过程中,只要注意观察和实验,并结合实际经验,很好的理解和掌握圆周运动、匀速圆周运动的概念,重点理解和掌握线速度v、角速度ω、同期T和转速n的意义及相互关系.明确线速度和角速度是从不同的角度来描述圆周运动的快慢,线速度描述质点沿圆弧运动的快慢,角速度描述质点绕圆心转动的快慢。
三、考点分析圆周运动这节课在高考中主要选择题和计算题形式设计,主要考察的内容有对匀速圆周运动的物理量之间关系的理解、对转动装置问题的分析、圆周运动与其他运动的综合运动等知识。
四、教学三维目标1.知识与技能(1).理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度、理解角速度和周期的概念,会用它们的公式进行计算。
(2).理解线速度、角速度、周期之间的关系:v=rω=2πr/T(3).理解匀速圆周运动是变速运动。
2.过程与方法(1)。
匀速圆周运动教学设计一、教材分析《匀速圆周运动》选自粤教版高中物理必修2第二章第1节。
学生在充分掌握了曲线运动和平抛运动后学习圆周运动的规律、向心力的来源和生活中的应用,为后面学习万有引力、带电粒子在磁场中运动打下基础,所以它起到了承前启后的作用.二、学情分析1.瞬时速度的概念有一定的认识,但理解还有难度2.初步的极限思想已有,可以进行简单应用3.对直线运动的描述有较深的理解4.生活中的圆周运动有较多的感性认识三、三维教学目标1.知识与技能1) 能举例说明生活中的匀速圆周运动,能用线速度、角速度概念描述匀速圆周运动2)能说明线速度、角速度和周期的物理意义,正确的表述其定义式和关系式。
3) 能够使用匀速圆周运动的有关公式分析和计算两类转动问题。
2.过程与方法1)通过观察、体验各种匀速圆周运动,提出比较圆周运动快慢问题进为解决问题而建立物理概念的过程中,培养对新知识的探索能力,从研究方法的高度提高创新意识。
2)能够应用匀速圆周运动的公式分析和解决有关问题。
3.情感、态度与价值观1)在解决描述匀速圆周运动快慢问题的过程中,体会对于同一个问题可以从不同的侧面进行研究的思路,领略事物的多面性,复杂性,初步体会事物是普遍联系的思想。
2)在用圆周运动公式分析解决两种生活中的传动问题的过程中,逐步养成关注生活的习惯,培养对科学研究的兴趣.四、教学重点、难点1.重点1)线速度、角速度、周期的概念以及它们之间的联系。
2)匀速圆周运动的特点.2.难点1)线速度、角速度及周期之间的关系.2)对匀速圆周运动是变速曲线运动的理解。
五、教法与学法教法:探索发现法--通过教师引导使学生主动探究,最大限度的调动学生的主动性和学习兴趣,充分体现“教师主导,学生主体”的教学原则学法:结合高中学生认识和思维发展水平,根据新课程理念的要求,创设情境,提出问题,学生们讨论,并在老师的引导下集思广益,总结归纳出描述圆周运动快慢的各物理量的定义及相互关系;通过对实际圆周运动的观察和对实际情境的讨论,得出概念和描述匀速圆周运动快慢的三个量及关系,符合学生由感性认识上升到理性思维的认知规律.主动探究获得结论比被动接受更容易让学生体验学习的乐趣.六、教学过程1。
1.圆周运动1.知道什么是匀速圆周运动,知道匀速圆周运动是变速运动。
2.理解线速度、角速度、转速、周期等概念,会对它们进行定量计算。
3.理解掌握v=ωr和ω=2πn等公式。
4.熟悉同轴转动和皮带传动的特点。
5.理解匀速圆周运动的多解问题。
1.线速度(1)定义:物体做圆周运动通过的□01弧长与所用时间之比,v=□02ΔsΔt。
(2)意义:描述做圆周运动的物体□03运动的快慢。
(3)方向:线速度是矢量,方向为物体做圆周运动时该点的□04切线方向,与半径□05垂直。
(4)匀速圆周运动①定义:沿着圆周运动,并且线速度大小□06处处相等的运动。
②性质:线速度的方向是时刻□07变化的,所以是一种□08变速运动,“匀速”是指□09速率不变。
2.角速度(1)定义:物体做圆周运动转过的□10角度与所用时间之比,ω=□11ΔθΔt。
(2)意义:描述做圆周运动的物体绕圆心□12转动的快慢。
(3)单位①角的单位:弧度,符号是□13rad。
②角速度的单位:弧度每秒,符号是□14rad/s或□15s-。
(4)匀速圆周运动是角速度□16不变的圆周运动。
3.周期(1)周期T:做匀速圆周运动的物体,运动一周所用的□17时间,单位:□18秒(s)。
(2)转速n:物体转动的□19圈数与所用时间之比,单位:□20转每秒(r/s)或□21转每分(r/min)。
(3)周期和转速的关系:□22T=1n(n单位是r/s)。
(4)周期和角速度的关系:□23T=2πω。
4.线速度与角速度的关系(1)在圆周运动中,线速度的大小等于□24角速度的大小与□25半径的乘积。
(2)公式:v=□26ωr。
判一判(1)做匀速圆周运动的物体相等时间内通过的弧长相等。
()(2)做匀速圆周运动的物体相等时间内通过的位移相同。
()(3)匀速圆周运动是一种匀速运动。
()提示:(1)√做匀速圆周运动的物体,线速度大小处处相等,根据Δs=vΔt,相等时间内通过的弧长相等。
(2)×做匀速圆周运动的物体相等时间内通过的位移大小相等,但方向可能不同。
第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图552所示.由a nr图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图552知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5732.向心力分析如图573所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图578所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图578(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。
匀变速曲线运动匀变速曲线运动是指物体在运动过程中速度的大小和方向均不断改变的一种运动方式。
在物理学中,匀变速曲线运动也被称为曲线运动。
在匀变速曲线运动中,物体所处的轨迹通常是一条弯曲的曲线,例如圆周运动、抛物线运动、螺旋线运动等。
由于速度大小和方向的不断改变,物体在运动过程中将会受到向心力的作用,导致运动轨迹发生偏离。
在匀变速曲线运动中,物体的速度变化可以分为两种情况:匀速圆周运动和匀变速曲线运动。
1. 匀速圆周运动匀速圆周运动是指物体在圆周运动中速度的大小始终保持不变,但速度的方向不断改变的运动方式。
在匀速圆周运动中,物体所处的轨迹为圆形,物体受到的向心力大小与速度的平方成正比,方向指向圆心。
物体的运动方向与向心力的方向垂直,即切向圆周轨迹。
2. 匀变速曲线运动匀变速曲线运动是指物体在曲线运动中速度的大小和方向均不断改变的运动方式。
在匀变速曲线运动中,物体所处的轨迹通常为曲线,物体受到的向心力大小与速度的平方成正比,方向指向曲线的切线。
物体的运动方向与向心力的方向不垂直,即既有向心加速度,又有切向加速度。
在匀变速曲线运动中,物体的加速度可分为向心加速度和切向加速度。
向心加速度是指向心力产生的加速度,其大小与速度平方成正比;切向加速度则是在速度方向上的加速度,其方向与速度的变化方向相同或相反。
物体在匀变速曲线运动中的速度与加速度的关系可以用运动学和动力学两种方法来分析。
在运动学分析中,可以用速度与时间的变化关系来描述物体在曲线运动中的变化情况;在动力学分析中,则需考虑物体所受到的力和力的作用时间,从而得出物体的加速度变化情况。
总之,匀变速曲线运动是一种复杂的运动方式,其速度和加速度都在不断改变,需要通过物理学的知识来进行分析和研究。
《圆周运动》说课稿《圆周运动》说课稿1尊敬的各位评委,各位老师:下午好!我叫王雷,来自通州市刘桥中学,我说课的题目是《匀速圆周运动》。
《匀速圆周运动》选自高中物理第一册第五章。
它是学生在充分掌握了曲线运动的规律后,接触到的一个较为复杂的曲线运动,本节内容作为该部分的起始章节,主要要向学生介绍圆周运动的几个基本概念,为后继的学习打下一个良好的基础。
根据本节课学要求和特点,我设计本课的教学目标有以下几点:教学目标:一、知识目标:1、知道什么是匀速圆周运动2、理解什么是线速度、角速度和周期3、理解线速度、角速度和周期之间的关系二、能力目标:能够匀速圆周运动的有关公式分析和解决有关问题。
再学习过程中能用信息技术手段为物理学习服务。
使抽象的事物形象化;理性的知识感性化;复杂的概念,简单化。
三、德育目标:通过描述匀速圆周运动快慢的教学,使学生了解对于同一个问题可以从不同的侧面进行研究,认识事物的复杂性,多面性。
教学重点:1、理解线速度、角速度和周期2、什么是匀速圆周运动3、线速度、角速度及周期之间的关系教学难点:对匀速圆周运动是变速运动的理解教学方法:讲授、推理归纳法、讨论,通过师生互动,生生互动,让学生主动的去探究知识,激发学习的兴趣和主动性。
教学步骤:为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:一、导入新课(1)物体的运动轨迹是圆周,这样的运动是很常见的,同学们能举几个例子吗?(例:转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等)(2)今天我们就来学习最简单的圆周运动匀速圆周运动二、新课教学1、匀速圆周运动(1)用通过放录像让学生感知卫星做圆周运动,在相等的时间里通过相等的弧长。
(2)并出示定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相同棗这种运动就叫匀速圆周运动。
2、描述匀速圆周运动快慢的物理量(1)线速度a:分析:物体在做匀速圆周运动时,运动的时间t增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s与t的比值越大,物体运动得越快。
圆周运动圆周运动是非匀变速曲线运动。
要理解描写它的各个物理量的意义:如线速度、角速度、周期、转速、向心加速度。
速度方向的变化和向心加速度的产生是理解上的重点和关键。
1、物体做匀速圆周运动的条件合外力的大小不变,且方向总是与速度的方向垂直要注重理解圆周运动的动力学原因:圆周运动实际上是惯性运动和外力作用这一对矛盾的统一。
2、描写圆周运动的物理量及其相互关系线速度:角速度:周期T:周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动的快。
3、几个量的关系:线速度、角速度、周期以及转速之间的关系(转速n的单位取r/s)4、向心加速度大小的计算方法(1)由牛顿第二定律计算:;(2)由运动学公式计算:5、圆周运动的向心力圆周运动的向心力可以是重力、万有引力、弹力、摩擦力以及电磁力等某种性质的力; 可以是单独的一个力或几个力的合力,还可以认为是某个力的分力;向心力是按效果命名的;注意:匀速圆周运动和变速圆周运动的区别:匀速圆周运动的物体受到的合外力完全用来提供向心力,而在变速圆周运动中向心力是合外力的一个分量,合外力沿着切线方向的分量改变圆周运动速度的大小。
6、向心运动和离心运动注意需要的向心力和提供的向心力之不同,如是质量为m的物体做圆周运动时需要向心力的大小;提供的向心力是实实在在的相互作用力。
需要的向心力和提供的向心力之间的关系决定着物体的运动情况,即决定着物体是沿着圆周运动还是离心运动或者向心运动。
向心运动和离心运动已经不是圆周运动,圆周运动的公式已经不再适用。
7、方法解决圆周运动的方法就是解决动力学问题的一般方法,学习过程中要特别注意方法的迁移和圆周运动的特点。
(1)根据解决问题的需要,选取某一位置对物体进行受力分析(2)明确向心力的方向,通过对物体受到的力进行分解或合成求出向心力(3)用适当的量(如线速度、角速度或周期等)表示处物体在该位置的向心加速度(4)用牛顿第二定律列方程求解,必要时进行讨论说明:要重视分析圆周运动中的临界状态8、一些特别关注的问题①同一转动物体上的各点的角速度相同;皮带传动、链条传动以及齿轮传动时,各轮边缘上的点的线速度大小相等。
圆周运动教案(优秀6篇)高中物理圆周运动教案篇一(一)知识与技能1、理解线速度、角速度、转速、周期等概念,会对它们进行定量的计算。
2、知道线速度与角速度的定义,知道线速度与周期,角速度与周期的关系。
3、理解匀速圆周运动的概念和特点。
(二)过程与方法1、学会用比值定义法来描述物理量。
2、会用有关公式求简单的线速度、角速度的大小。
(三)情感、态度与价值观通过本节知识,了解匀速圆周运动的实际应用意义。
圆周运动是变速运动吗篇二高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。
本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。
本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。
(过渡句)知道了教材特点,我们再来了解一下学生特点。
也就是我说课的第二部分:学情分析。
二、学情分析学生虽然已经具备了较为完备的直线运动的知识和曲线运动的。
初步知识,并学会了用比值定义法描述匀速直线运动的快慢,尽管如此,但由于匀速圆周运动的特殊性和复杂性以及学生认知水平的差异,本节课的内容对学生来讲仍然是一个不小的台阶。
(过渡句)基于以上的教材特点和学生特点,我制定了如下的教学目标,力图把传授知识、渗透学习方法以及培养兴趣和能力有机的融合在一起,达到最好的教学效果。
三、教学目标【知识与技能】知道描述圆周运动快慢的两个物理量——线速度、角速度,会推导二者之间的关系。
【过程与方法】通过对传动模型的应用,对线速度、角速度之间的关系有更加深入的了解,提高分析能力和抽象思维能力。
匀速圆周运动是变速曲线运动的理解
1.一质点只受一个恒力的作用,其可能的运动状态为:
①匀变速直线运动②匀速圆周运动
③做轨迹为抛物线的曲线运动④匀变速曲线运动,
其中正确的是()
A.①②③B.①②③④ C.①②④D.①③④
【分析】:当物体受到恒力作用,则加速度不变,通过加速度不变,判断可能的运动状态.
【解答】:解:质点只受一个恒力,则加速度恒定.
①匀变速直线运动,加速度恒定.故①正确.
②匀速圆周运动,加速度大小恒定,方向时刻改变,则加速度不恒定.故②错误.
③做轨迹为抛物线的曲线运动,加速度可能不变.比如平抛运动.故③正确.
④匀变速曲线运动,加速度恒定.故④正确.故D正确,A、B、C错误.故选D.
【点评】:解决本题的关键知道受力恒定,加速度恒定,加速度恒定的运动有匀变速直线运动、匀变速曲线运动.注意匀速圆周运动加速度不恒定.
2.做曲线运动的质点,在曲线上某点的速度方向为该点的方向;匀速圆周运动是运动.(填“匀速”或“变速”)
【分析】:曲线运动的速度方向是曲线上该点的切线方向,时刻改变,一定是变速运动,一定具有加速度,合力一定不为零.
【解答】:曲线运动的速度方向是曲线上该点的切线方向;
匀速圆周运动任意时刻的速度方向是曲线上对应点的切线方向,时刻改变,一定是变速运动.
故答案为:切线,变速.
【点评】:本题考查了曲线运动的运动学性质,一定是变速运动,合力指向曲线内侧.
3.一质点只受一个恒力的作用,其可能的运动状态为()
①匀变速直线运动②匀速圆周运动③做轨迹为抛物线的曲线运动④匀速运动.
A.①②③B.①②③④ C.①②④D.①③
【分析】:(1)如果物体开始处于静止状态,则在一个恒力下做匀加速直线运动;
(2)如果物体开始有初速度,并且恒力方向与速度方向在同一条直线上,物体做匀变速运动;
(3)如果物体开始有初速度,并且恒力方向与速度方向不在同一条直线上,物体做曲线运动.
【解答】:①当物体开始有初速度,并且恒力方向与速度方向在同一条直线上,物体做匀变速运动,故①正确;
②物体做匀速圆周运动时,要有力提供向心力,并且该力的方向要时刻改变,而一质点只受一个恒力的作用,力的方向不变,故不能做匀速圆周运动,故②错误;
③当物体所受恒力方向与初速度方向垂直时,物体做类平抛运动,轨迹为抛物线的曲线运动,故③正确;
④当物体只有受平衡力或不受力时才能做匀速运动,若只受一个恒力的作用不可能做匀速运动,故④错误.
故选D.
4.下列运动属于匀变速曲线运动的是()
A.平抛运动B.竖直上抛运动C.斜抛运动D.竖直下抛运动
【分析】:匀变速运动就是加速度不变的运动,物体做曲线运动的条件是速度方向与加速度方向不在同一条直线上.满足上面两点就是匀变速曲线运动.
【解答】:只要加速度不变的运动就称为匀变速运动.“平抛运动、竖直上抛运动、斜抛运动、竖直下抛运动”都只受重力,加速度都不变,都是匀变速运动.但是“竖直上抛运动和竖直下抛运动”是直线运动,只有“平抛运动和斜抛运动”速度方向和加速度方向不在一条直线上,是曲线运动.
所以“平抛运动和斜抛运动”属于匀变速曲线运动.选项AC正确,BD错误.故选AC.【点评】:此题关键理解“匀变速运动”的含义,加速度不变的运动就是匀变速运动.同时注意物体做曲线运动的条件是加速度与初速度不在同一条直线上.
5.(2011•许昌一模)匀速圆周运动属于。
A.匀速运动B.匀加速运动C.加速度不变的曲线运动D.变加速曲线运动.
【分析】:匀速圆周运动的速度方向沿切线方向,加速度方向始终指向圆心,根据速度和加速度的大小和方向特点分析其运动性质.
【解答】:
A 、匀速圆周运动的速度方向沿切线方向,方向时刻在改变,而速度是矢量,所以匀速圆周运动一定变速运动.故A 错误.
B 、
C 、
D 匀速圆周运动的加速度大小不变,方向始终指向圆心,时刻在改变,则加速度变化的,所以匀速圆周运动不是匀加速运动,而是变加速曲线运动.故BC 错误,D 正确. 故答案为:D
【点评】:曲线运动都是变速运动,匀速圆周运动的加速度是向心加速度,方向时刻在变化.
36.匀速圆周运动属于( )
A .匀速运动
B .匀加速运动
C .加速度不变的曲线运动
D .变加速度的曲线运动
【分析】:匀速圆周运动的速度大小不变,速度方向时刻改变,加速度大小不变,方向始终指向圆心.
【解答】:
A 、匀速圆周运动的加速度方向在变化,不是恒定不变的,不是匀变速运动.故A 错误.
B 、匀速圆周运动的加速度大小不变,方向始终指向圆心,是加速度大小不变的曲线运动.故D 正确,B
C 错误. 故选
D .
【点评】:解决本题的关键知道匀速圆周运动是加速度大小不变,方向始终指向圆心的曲线运动.
37.匀速圆周运动是( )
A .匀变速运动
B .速度不变的曲线运动
C .加速度大小不变的曲线运动
D .变加速曲线运动
【解答】:
A 、匀速圆周运动的加速度方向在变化,不是恒定不变的,不是匀变速运动.故A 错误.
B 、匀速圆周运动的速度大小不变,速度方向时刻改变.故B 错误.
C 、匀速圆周运动的加速度大小不变,方向始终指向圆心,是加速度大小不变的曲线运动.故C 正确,
D 错误. 故选C .
38.匀速圆周运动是( )
A .匀速运动
B .匀加速运动
C .加速度不变的曲线运动
D .加速度不断变化的曲线运动
【解答】:A 、匀速圆周运动的速度大小不变,速度方向时刻改变.故A 错误;
B 、匀速圆周运动的加速度方向在变化,不是恒定不变的,不是匀加速运动.故B 错误;
C 、匀速圆周运动的加速度方向在变化,不是恒定不变的,表示加速度不变的曲线运动.故C 错误;
D 、匀速圆周运动的加速度大小不变,方向始终指向圆心,是加速度大小不变的曲线运动.故D 正确. 故选:D
35.质量为m 、电荷量为q 的带电粒子以初速v 0沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速曲线运动,如图所示,若不计粒子重力,则可求出如下相关量:
(1)粒子穿越电场的时间t ;
(2)粒子离开电场时的速度v ;
(3)粒子离开电场时的侧移距离y .
【分析:】(1)带电粒子在电场中沿垂直电场方向做匀速直线运动,已知位移和速度,根据vt x =即可求得时间;
(2)带电粒子沿电场方向做初速度为零的匀加速直线运动,加速度为md qU a y =
,根据at v =可求出电场是沿电场方向的速度y v ,根据矢量合成22y x v v v +=
,即可求出粒子离开电场时的速度v ;
(3)根据22
1at y =即可求出侧移位移. 【解答】:(1)设粒子穿越电场的时间为t ,粒子沿垂直于电场的方向以0v v x =①做匀速直线运动,
由t v x 0=得:0
v l t = ② (2)粒子沿电场方向做初速度为零的匀加速直线运动,加速度为 :md
qU a y =
③ 粒子离开电场时平行电场方向的分速度:t a v y y = ④
粒子离开电场时的速度: 22y x v v v +=
⑤ ①→⑤联立得:2020⎪⎪⎭⎫ ⎝
⎛+=mdv qUl v v
(3)粒子离开电场时的侧移距离:221t a y y =
⑥ ①③⑥联立得:202
2mdv qUl y =
答:粒子穿越电场的时间为0v l t =,粒子离开电场时的速度为2020⎪⎪⎭⎫ ⎝
⎛+=mdv qUl v v ,粒子离开电场时的侧移距离为202
2mdv qUl y =.
【点评】:解决本题的关键是带电粒子在电场中偏转规律,沿电场方向做初速度为零的匀加速直线运动,加速度md qU a y =,速度 t a v y y =,偏转位移y 22
1t a y y =,垂直电场方向做匀速直线运动. 29.如图所示,有一带电粒子进入电场沿曲线AB 运动,虚线a ,b ,c ,d 为电场中的等势面,且Ua >Ub >Uc >Ud ,粒子在A 点初速度V0的方向与等势面平行.不计粒子的重力,下面说法正确的是( )
①粒子带正电
②粒子在运动中电势能逐渐减少
③粒子在运动中动能逐渐减少
④粒子的运动为匀变速曲线运动,轨迹为抛物线.
A .①②
B .①③
C .②③
D .②④
【分析】:解决本题的突破口是:由于电荷只受电场力作用,电场力将指向运动轨迹的内侧.同时注意电场线和等势线垂直,说明电场沿竖直向下方向,电场力竖直向上,负电荷沿轨迹AB 运动,根据电场力做功情况,即可判断电势能的变化.
【解答】:
①、根据电场线和等势线垂直,且从高电势处指向低电势处,得知电场沿竖直向下方向,而粒子的轨迹向上弯曲,则知电场力竖直向上,所以粒子带负电.故①错误.
②、粒子的电场力向上,轨迹向上弯曲,则电场力对粒子做正功,其动能逐渐增大,电势能减小.
故②正确;故③错误;
④、粒子所受的电场力是恒力,粒子的运动为匀变速曲线运动,轨迹为抛物线.故④正确.所以正确的选项为D . 故选:D
【点评】:本题通过带电粒子在电场中的运动考查了等势线和电场线、电势能、电场力等问题,解决这类问题的突破口是:做曲线运动的物体所受合外力指向其轨迹内侧.。