甘油三酯的代谢资料
- 格式:ppt
- 大小:1.49 MB
- 文档页数:51
⽢油三酯的代谢20 ~ 20 学年度第学期教师课时授课教案学科系:医学院授课教师:专业:临床科⽬:⽣物化学年⽉⽇年⽉⽇第七章脂类代谢第⼆节⽢油三酯的代谢⽢油三酯是机体主要的脂类,其代谢主要包括分解代谢与合成代谢。
各组织中的⽢油三酯不断地进⾏⾃我更新,其中脂肪组织和肝有较⾼的更新率,其次为肠黏膜和肌⾁组织,⽽⽪肤和神经组织中⽢油三酯更新率最低。
⼀、⽢油三酯的分解代谢(⼀)脂肪动员贮存在脂肪组织中的⽢油三酯,在脂肪酶催化下,逐步⽔解为⽢油和游离脂肪酸(FFA)并释放⼊⾎,经⾎液运输⾄全⾝各组织⽽被氧化利⽤的过程称为脂肪动员。
脂肪动员的过程如下:脂肪⽔解是在⽢油三酯(TG)脂肪酶、⽢油⼆酯(DC)脂肪酶、⽢油⼀酯(MG)脂肪酶的作⽤下逐步完成,上述酶中,以⽢油三酯脂肪酶的活性最低,故⽢油三酯脂肪酶是脂肪动员的限速酶,⽽其活性受多种激素的调控,因此⼜称激素敏感性脂肪酶。
胰岛素、前列腺素E2可降低这种酶的活性,抑制脂肪动员,故称为抗脂解激素;胰⾼⾎糖素、肾上腺素、去甲肾上腺素等可提⾼该酶的活性,促进脂肪动员,称为脂解激素。
机体对脂肪动员的调控就是通过激素对这⼀限速酶的作⽤实现的。
进⾷后胰岛素分泌增加,脂肪动员减弱;当禁⾷、饥饿或处于兴奋时,肾上腺素、胰⾼⾎糖素等分泌增加,脂肪动员加强。
脂肪动员⽣成的脂肪酸和⽢油释放⼊⾎,游离脂肪酸与⾎浆⽩蛋⽩结合成复合物,运输到全⾝组织⽽被利⽤。
(⼆)⽢油的代谢脂肪动员产⽣的⽢油,可在肝、肾等组织氧化供能,也可进⾏糖异⽣。
在⽢油激酶催化下,⽢油磷酸化⽣成-磷酸⽢油,再脱氢⽣成磷酸⼆羟丙酮,后者可循糖代谢途径氧化供能或异⽣成糖,反应如下:(三)脂眆酸的氧化分解除脑组织和成熟红细胞外,⼤部分组织均能氧化脂肪酸,以肝和肌⾁最为活跃。
在氧供应充⾜的情况下,脂肪酸氧化分解为CO2和H20并释放⼤量的能量。
1.脂肪酸的活化脂肪酸在细胞质中进⾏活化。
在脂酰CoA合成酶的催化下,由ATP供能,辅酶A参与,活化⽣成脂酰CoA。
甘油三酯的合成代谢?甘油三酯(Triglyceride),是长链脂肪酸和甘油形成的脂肪分子,是人体内含量最多的脂类,大部分组织均可以利用甘油三酯分解产物供给能量,同时肝脏、脂肪等组织还可以进行甘油三酯的合成,在脂肪组织中贮存。
人体可利用甘油、糖、脂肪酸和甘油一酯为原料,经过磷脂酸途径和甘油一酯途径合成甘油三酯。
1. 甘油一酯途径:以甘油一酯为起始物,与脂酰CoA共同在脂酰转移酶作用下酯化生成甘油三酯。
2. 磷脂酸途径:磷脂酸,即3-磷酸-1,2-甘油二酯,是合成含甘油脂类的共同前体。
糖酵解的中间产物—类磷酸二羟丙酮在甘油磷酸脱氢酶作用下,还原生成3-磷酸甘油;游离的甘油也可经甘油激酶催化,生成3-磷酸甘油(因脂肪及肌肉组织缺乏甘油激酶,故不能利用激离的甘油)。
3-磷酸甘油在脂酰转移酶作用下,与两分子脂酰CoA反应生成3-磷酸-1,2甘油二酯,即磷脂酸。
此外,磷酸二羟丙酮也可不转为3-磷酸甘油,而是先酯化,后还原生成溶血磷脂酸,然后再经酯化合成磷脂酸。
磷脂酸在磷脂酸磷酸酶作用下,水解释放出无机磷酸,而转变为甘油二酯,它是甘油三酯的前身物,只需酯化即可生成甘油三酯。
甘油三酯所含的三个脂肪酸可以是相同的或不同的,可为饱和脂肪酸或不饱和脂肪酸。
甘油三酯的合成速度可以受激素的影响而改变,如胰岛素可促进糖转变为甘油三酯。
由于胰岛素分泌不足或作用失效所致的糖尿病患者,不仅不能很好利用葡萄糖,而且葡萄糖或某些氨基酸也不能用于合成脂肪酸,而表现为脂肪的氧化速度增加,酮体生成过多,其结果是患者体重下降。
此外,胰高血糖素、肾上腺皮质激素等也影响甘油三酯的合成。
TCA循环等等重要代谢途径哪些步骤有维生素或其辅酶参与反应?1、乙酰CoA与草酰乙酸的羧基进行醛醇型缩合,柠檬酸转变成异柠檬酸:前者由柠檬酸合成酶催化,后者由顺乌头酸酶催化,均为变构酶,需要维生素B12作为变构酶的辅酶,参与一些异构化作用。
2、第一次氧化脱酸:在异柠檬酸脱氢酶作用下,异柠檬酸生成α-酮戊二酸、NADH和CO2 而第二次氧化脱羧:在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰-CoA、。
第三节甘油三酯的代谢一、甘油三酯的分解代谢〔一〕脂肪的发动Li one-sensitive triglyceride lipase,HSL3脂解激素:肾上腺素、胰高血糖素、促肾上腺皮质激素〔ACTH〕4抗脂解激素:胰岛素甘油三酯脂肪酶甘油二酯脂肪酶甘油一酯脂肪酶甘油三酯→甘油二酯→甘油一酯→甘油FFA FFA FFA 〔二〕脂肪酸的β-氧化除成熟红细胞和脑组织外,其他细胞都可利用脂肪酸,以肝和肌肉最活泼。
反响过程分四个阶段:1 脂肪酸的活化——脂酰CoA的生成〔胞液〕脂酰CoA合成酶存在于内质网及线粒体外膜上2.脂酰CoA进入线粒体借助肉碱携带3 脂酸的β氧化〔线粒体〕1脱氢2加水3再脱氢4硫解脂酰CoA→β烯脂酰CoA→β羟脂酰CoA→β酮脂酰CoA→脂酰CoA乙酰CoA●β氧化特点:◆两次脱氢:FADH2、NADH◆两个产物:乙酰CoA、比原来少两个碳原子的脂酰CoA◆四个重复步骤:脱氢、加水、再脱氢、硫解◆每次产5个ATP◆含2n个碳的脂肪酸,经n-1次β氧化,生成n个乙酰CoA4 三羧酸循环〔线粒体〕能量计算:——以16碳饱和软脂酸的氧化为例脂酸氧化的能量生成--活化:消耗2个高能磷酸键--β-氧化:7轮循环产物:8分子乙酰CoA、7分子NADHH、7分子FADH2 --三羧酸循环生成ATP 8×10 7×4 = 1108净生成ATP 108 –2 = 106{脂肪酸的其他氧化方式}1、脂肪酸的α-氧化,2、脂肪酸的ω-氧化,3、不饱和脂肪酸的氧化。
甘油三酯的代谢
甘油三酯(Triglycerides)是一种由甘油和三个脂肪酸分子组成的脂质。
以下是甘油三酯的代谢过程:
1. 摄入甘油三酯:甘油三酯主要通过饮食摄入,尤其是高脂肪食物。
2. 胰岛素的作用:血液中的胰岛素可以促进甘油三酯的合成和储存。
它会刺激脂肪组织摄取血液中的脂肪酸,并与甘油结合形成甘油三酯,储存在脂肪细胞中。
3. 分解甘油三酯:当身体需要能量时,脂肪细胞中的甘油三酯会被分解成甘油和脂肪酸。
4. 脂肪酸的运输和氧化:脂肪酸会与白蛋白结合,在血液中被运输到需要能量的组织。
在线粒体中,脂肪酸会经过β-氧化途径被氧化成乙酰辅酶A,从而产生能量。
5. 甘油的代谢:分解的甘油可以被肝脏转化为葡萄糖,供给需要能量的组织。
总之,甘油三酯的代谢主要涉及甘油和脂肪酸的合成、储存、分解和运输等过程。
这个过程受到胰岛素和其他激素的调控,并参与能量供给和脂肪代谢等生理过程。
简述甘油三酯的分解代谢1.引言1.1 概述甘油三酯(triglyceride)是一种重要的脂类化合物,在人体和动物体内广泛存在。
它是由一种甘油分子和三个脂肪酸分子通过酯键结合而成的。
作为我们日常饮食中主要的脂肪来源之一,甘油三酯在体内具有多种生理功能和作用。
正常情况下,通过食物摄入的脂肪会转化为甘油三酯储存在脂肪细胞中,以提供能量的长期储备。
甘油三酯的分解代谢是指将体内储存的甘油三酯分解成甘油和脂肪酸,以供能量消耗和维持生命活动。
这个过程主要发生在脂肪组织中的脂肪细胞内,通过一系列的酶反应逐步进行。
甘油三酯的分解代谢对人体的能量平衡和体脂调节非常重要。
当我们的能量需求增加时,例如进行体力活动或长时间禁食,体内储存的甘油三酯会被分解释放出来,供给能量消耗。
而在摄入过多能量的情况下,多余的甘油三酯会重新合成并储存起来,导致体重增加和肥胖。
甘油三酯的分解代谢涉及多种酶的参与和多个途径的调控。
其中最关键的酶包括甘油三酯脂肪酶(triglyceride lipase)和激活蛋白激酶A (protein kinase A),它们通过磷酸化等机制促进甘油三酯的分解。
而甘油和脂肪酸的进一步利用则需要通过线粒体内的β-氧化和其它代谢途径进行。
甘油三酯分解代谢的研究对于深入理解脂肪代谢、肥胖等相关疾病的发生机制以及预防和治疗具有重要意义。
还有许多未知的问题等待我们进一步探索和研究,例如甘油三酯分解代谢的调控机制、与疾病发生关联的分子机理等。
因此,对甘油三酯的分解代谢进行深入研究,可以为我们提供更多关于脂质代谢的信息,有助于更好地保护我们的健康,并为未来的临床治疗和疾病预防提供新的思路和方法。
1.2 文章结构文章结构的目的是为读者提供一个清晰的逻辑框架,以便理解和阅读文章的内容。
本文的结构主要分为引言、正文和结论三个部分。
引言部分主要概述了甘油三酯的分解代谢,并简要介绍了本文的结构和目的。
正文部分包括了甘油三酯的定义和作用、甘油三酯的来源和合成、甘油三酯的分解代谢以及甘油三酯分解代谢的相关酶和途径。
由胆碱开始,胆碱来源于食物或磷酯酰胆碱的降解
3、磷脂酰丝氨酸的合成
(1)、 丝氨酸与磷脂酰乙醇胺的醇基酶促交换 磷酯酰乙醇胺+丝氨酸—磷酯酰丝氨酸+乙醇胺
动物、大肠杆菌中,磷脂酰丝氨酸可脱羧生成磷脂酰乙醇胺
(2)、 磷脂酸—CDP 二脂酰基甘油一磷脂酰丝氨酸(细菌中) P184反应式
4、磷脂酰肌醇的合成
第五节 鞘脂类的代谢
第六节 胆固醇的代谢
胞固醇的合成(自己看一下,不要求) 胞固醇中27个碳原子全部来源于乙酰CoA 。
3、8—二氨基-5-乙基-6-苯基菲啶溴盐。
a 胆碱+ATP 胆碱激酶
b 磷酸胆碱+CTP c.CDP 胆碱+甘油二酯
磷酸胆碱胞嘧啶核苷酸转移酶 磷酸胆碱转移酶
磷酸胆碱+ADP
CDP 胆碱+ppi 磷
脂酰胆碱+CMP
以上三个合成途径的关系:
糖原合成时,Glc 的活性形式是UDP-葡萄糖(尿嘧啶核苷二磷酸Glc ) 磷脂酰胆碱。
一、甘油三酯的水解(一)组织脂肪酶有三种,脂肪酶、甘油二酯脂肪酶和甘油单酯脂肪酶,逐步水解R3、R1、R2,生成甘油和游离脂肪酸。
(二)第一步是限速步骤,肾上腺素、肾上腺皮质激素、高血糖素通过cAMP 和蛋白激酶激活,胰岛素和前列腺素E1相反,有抗脂解作用。
二、甘油代谢脂肪细胞没有甘油激酶,所以甘油被运到肝脏,由甘油激酶磷酸化为3-磷酸甘油,再由磷酸甘油脱氢酶催化为磷酸二羟丙酮,进入酵解或异生,并生成NADH。
三、脂肪酸的氧化(一)饱和偶数碳脂肪酸的氧化1. 脂肪酸的活化:脂肪酸先生成脂酰辅酶A才能进行氧化,称为活化。
由脂酰辅酶A合成酶(硫激酶)催化,线粒体中的酶作用于4-10个碳的脂肪酸,内质网中的酶作用于12个碳以上的长链脂肪酸。
生成脂酰AMP中间物。
乙酰acetyl;脂酰acyl2. 转运:短链脂肪酸可直接进入线粒体,长链脂肪酸需先在肉碱脂酰转移酶I催化下与肉碱生成脂酰肉碱,再通过线粒体内膜的移位酶穿过内膜,由肉碱转移酶II催化重新生成脂酰辅酶A。
最后肉碱经移位酶回到细胞质。
3. β-氧化:在线粒体基质进行,每4步一个循环,生成一个乙酰辅酶A。
l脱氢:在脂酰辅酶A脱氢酶作用下,α、β位生成反式双键,即Δ2反式烯脂酰辅酶A。
酶有三种,底物链长不同,都以FAD为辅基。
生成的FADH2上的氢不能直接氧化,需经电子黄素蛋白(ETF)、铁硫蛋白和辅酶Q进入呼吸链。
l水化:由烯脂酰辅酶A水化酶催化,生成L-β-羟脂酰辅酶A。
此酶只催化Δ2双键,顺式双键生成D型产物。
l再脱氢:L-β-羟脂酰辅酶A脱氢酶催化生成β-酮脂酰辅酶A和NADH,只作用于L型底物。
l硫解:由酮脂酰硫解酶催化,放出乙酰辅酶A,产生少2个碳的脂酰辅酶A。
酶有三种,底物链长不同,有反应性强的巯基。
此步放能较多,不易逆转。
4. 要点:活化消耗2个高能键,转移需肉碱,场所是线粒体,共四步。
每个循环生成一个NADH和一个FADH2,放出一个乙酰辅酶A。
第二节脂类的代谢一、脂肪的动员储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(free fatty acid, FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪的动员。
在脂肪动员中,脂肪细胞内激素敏感性甘油三酯脂肪酶起决定性作用,它是脂肪分解的限速酶。
当禁食、饥饿或交感神经兴奋时,肾上腺素、去甲肾上腺素、胰高血糖素等分泌增加,作用于脂肪细胞膜表面受体,激活腺苷酸环化酶,促进cAMP合成,激活依赖cAMP的蛋白激酶,使胞液内HSL磷酸化而活化。
后者使甘油三酯水解成甘油二酯及脂酸。
这步反应是脂肪分解的限速步骤,HSL是限速酶,它受多种激素的调控,故称为激素敏感性脂肪酶。
能促进脂肪动员的激素称为脂解激素,如肾上腺素、胰高血糖素,ACTH及TSH等。
胰岛素、前列腺素E2及烟酸等抑制脂肪的动员,对抗脂解激素的作用。
脂解作用使储存在脂肪细胞中的脂肪分解成游离脂酸及甘油,然后释放入血。
血浆白蛋白具有结合游离脂酸的能力,每分子白蛋白可结合10分子FFA。
FFA不溶于水,与白蛋白结合后由血液运送至全身各组织,主要由心、肝、骨骼肌等摄取利用。
甘油溶于水,直接由血液运送至肝、肾、肠等组织。
主要是在肝甘油激酶作用下,转变为3-磷酸甘油;然后脱氢生成磷酸二羟丙酮,循糖代谢途径进行分解或转变为糖。
脂肪细胞及骨骼肌等组织因甘油激酶活性很低,故不能很好利用甘油。
二、脂酸的β-氧化脂酸是人及哺乳动物的主要能源物质。
在O2供给充足的条件下,脂酸可在体内分解成CO2及H2O并释出大量能量,以ATP形式供机体利用。
除脑组织外,大多数组织均能氧化脂酸,但以肝及肌肉最活跃。
1.脂肪酸的活化脂酰CoA的生成脂酸进行氧化前必须活化,活化在线粒体外进行。
内质网及线粒体外膜上的脂酰CoA合成酶在ATP、CoASH、Mg2+存在的条件下,催化脂酸活化,生成脂酰CoA。
脂酸活化后不仅含有高能硫酯键,而且增加了水溶性,从而提高了脂酸的代谢活性。
第四节甘油三酯的中间代谢一、脂肪的动员(甘油三酯的分解代谢)⒈概念:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。
TG脂肪酶DG脂肪酶MG脂肪酶TG →DG →MG →甘油⒉限速酶:甘油三酯脂肪酶述:该酶的活性受多种激素调控,又称激素敏感性脂肪酶(HSL) ⒊脂解激素:能促进脂肪动员的激素例:胰高血糖素、去甲肾上腺素、肾上腺皮质激素、肾上腺素⒋抗脂解激素:抑制脂肪动员的激素例:胰岛素、前列腺素E2、烟酸等⒌脂肪动员产物-甘油的利用(课本P73)二、脂肪酸的氧化※部位组织:除脑组织、成熟红细胞外,大多数组织均可进行。
其中肝、肌肉最活跃。
亚细胞:胞液、线粒体※过程:分活化、β-氧化和三羧酸循环三个阶段(一)脂酸的活化——脂酰CoA 的生成⒈部位:胞液⒉酶:脂酰CoA合成酶⒊特点:消耗1分子ATP的两个高能磷酸键4.产物:脂酰CoA5.过程:(二)脂酰CoA 进入线粒体1.转运载体:肉碱2.参与的酶:肉碱脂酰转移酶Ⅰ:线粒体内膜外侧面肉碱脂酰转移酶Ⅱ:线粒体内膜内侧面肉碱,脂酰肉碱转位酶:线粒体内膜内侧面肉碱和脂酰肉碱的转运载体3.过程:(课本P73图6-3)(三)β-氧化⒈ 部位:线粒体⒉ 酶:脂肪酸β氧化酶复合体⒊ 产物:1 FADH 2、1 NADH+H +、1分子乙酰CoA 和比原来少2个C 原子的脂酰CoA4.过程:⑴脱氢:脂酰CoA 脱氢酶(辅基FAD);生成1 FADH 22ATP 和反Δ2-烯酰CoA⑵加水:α、β-烯脂酰CoA 水化酶;生成β-羟脂酰CoA ⑶再脱氢:β-羟脂酰CoA 脱氢酶(辅酶NAD +);生成β-酮脂酰CoA 和1 NADH+H + ,3ATP⑷硫解:β-酮脂酰CoA 硫解酶;生成1分子乙酰CoA RCO ~SCoA脂酰CoA 合成酶RCOOHHSCoA偶数碳饱和脂酸的β-氧化:全部生成乙酰CoA。
5.乙酰CoA的去向:⑴进入三羧酸循环氧化;⑵在肝内转变为酮体;⑶也可合成脂酸和胆固醇。