第13章交变应力
- 格式:doc
- 大小:39.00 KB
- 文档页数:3
第13章 压力容器的开孔与补强本章重点内容及对学生的要求:(1) 回转壳体上开小孔造成的应力集中; (2) 开孔补强的原则、补强结构和补强计算; (3) 不另行补强的要求;(4) GB150-98对容器开孔及补强的有关规定。
第一节 容器开孔附近的应力集中1、 相关概念(1)容器开孔应力集中(Opening and stress concentration )在压力容器或设备上开孔是化工过程操作所决定的,由于工艺或者结构的需要,容器上经常需要开孔并安装接管,例如:人孔、手孔、进料与出料口等等。
容器开孔接管后在应力分布与强度方面会带来下列影响:◆ 开孔破坏了原有的应力分布并引起应力集中。
◆ 接管处容器壳体与接管形成结构不连续应力。
◆ 壳体与接管连接的拐角处因不等截面过渡而引起应力集中。
上述三种因素均使开孔或开孔接管部位的引力比壳体中的膜应力大,统称为开孔或接管部位的应力集中。
(2)应力集中系数(stress concentration factor )常用应力集中系数Kt 来描述开孔接管处的力学特性。
若未开孔时的名义应力为σ,开孔后按弹性方法计算出的最大应力为σmax ,则弹性应力集中系数为:σσmax=t K (1) 压力容器设计中对于开孔问题研究的两大方向是: ✧ 研究开孔应力集中程度,估算K t 值;✧ 在强度上如何使因开孔受到的削弱得到合理的补强。
2、平板开小孔的应力集中Fig. 1 Variation in stress in a plate containing a circular hole and subjected to uniform tension设有一个尺寸很大的巨型薄平板,开有一个圆孔,其小圆孔的应力集中问题可以利用弹性力学的方法进行求解。
承受单向拉伸应力开小圆孔的应力集中如图1所示,只要板宽在孔径的5倍以上,孔附近的应力分量为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσθθ2sin 32122cos 312122cos 34121242224222422222r a r a r a r a r a r a ra r r (2) 平板开孔的最大应力在孔边 2πθ±=处, 孔边沿a r =处:σσστπθθθ3,0max 2===±=r应力集中系数:0.3max==σσt K 3、薄壁球壳开小圆孔的应力集中如图2所示,球壳受双向均匀拉伸应力作用时,孔边附近任意点的受力为:Fig. 2 Variation in stress in a sphere shell containing a circular hole孔边处r=a ,σσ2max = , 应力集中系数0.2max==σσt K 4、薄壁圆柱开小圆孔的应力集中如图3所示,薄壁柱壳两向薄膜应力δσ21pD =,δσ42pD =,如果开有小圆孔,则孔边附近任意点的受力为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-=θστθσσσθσσσσθθ2sin 32142cos 3141432cos 34122312422214212242222122r a r a r a r a r a r a ra r r (3)Fig. 3 Variation in stress in a cylindrical shell containing a circular hole孔边处r 1r 3r=a,=0,=(-con2),=02θθσσθστ。
第1章 机械及机械零件设计概要思考题:1. 在机械零件设计中,确定许用应力时,极限应力要根据零件的材料性质和应力种类选定,试区分金属材料的几种极限应力:σB (τB )、σS (τS )、σ-1(τ-1)、σ0(τ0)、σr (τr ),它们各适用于什么工作情况?对于脆性材料,在静应力作用下→ 脆性断裂→σlim (τlim )=σB (τB )对于塑性材料,在静应力作用下→ 塑性变形→σlim (τlim )=σS (τS )对于塑性材料,在对称循环变应力作用下→ 疲劳断裂→σlim (τlim )=σ-1(τ-1)对于塑性材料,在脉动循环变应力作用下→ 疲劳断裂→σlim (τlim )=σ0(τ0) 3.稳定变应力有那几种类型?它们的变化规律如何? 稳定循环变应力的种类: -1<r <+1——不对称循环变应力r=0——脉动循环变应力 r=-1——对称循环变应力 r=+1——静应力第2章 机械零件的强度思考题:1. 什么叫疲劳曲线?绘制疲劳曲线的根据是什么?如何划分有限寿命区和无限寿命区?σ—N 疲劳曲线——应力循环特性r 一定时,材料的疲劳极限σrN (τrN )与应力循环次数N 之间关系的曲线。
绘制疲劳曲线的根据是:σrN (τrN )和NN 在104——N D 之间为有限寿命区;N 超过N D 为无限寿命区2. 采用有限寿命设计的目的是什么?如何计算有限寿命下零件材料的疲劳极限?有色金属和高强度合金钢无无限寿命区。
3. 绘制疲劳极限应力线图(σm —σa )的根据是什么?简化的极限应力线图(σm —σa )是由哪些实验数据绘制而成的?以σm 为横坐标、σa 为纵坐标,即可得材料在不同应力循环特性r 下的σm —σa 的关系曲线。
材料的疲劳特性交变应力的描述σm ─平均应力;σa ─应力幅值σmax ─最大应力;σmin ─最小应力r ─应力比(循环特性)2min max m σσσ+=2min max a σσσ-=maxmin σσ=r 描述规律性的交变应力可有5个参数,但其中只有两个参数是独立的。
交变载荷的形变规律
交变载荷是指在结构或材料上产生交变应力的载荷,其形变规律可以从材料力学和结构力学的角度来进行分析。
从材料力学的角度来看,交变载荷会导致材料内部产生交变应力,这些应力会引起材料的形变。
根据材料的本构关系,可以得到材料的应力-应变关系,从而推导出在交变载荷作用下材料的形变规律。
在交变载荷下,材料会发生交变应变,其形变规律可以通过材料的疲劳试验和理论分析得到。
从结构力学的角度来看,交变载荷作用下的结构会产生交变应力,从而引起结构的形变。
结构的形变规律受到结构的几何形状、材料性质、载荷大小和频率等因素的影响。
在交变载荷下,结构会发生交变挠曲、扭转和变形,其形变规律可以通过有限元分析、模态分析和振动试验得到。
总的来说,交变载荷的形变规律是一个复杂的问题,需要综合考虑材料力学和结构力学的知识,以及实际工程中的载荷情况和边界条件。
通过理论分析和实验研究,可以得到交变载荷下材料和结构的形变规律,为工程设计和结构安全提供重要参考。
揭示材料力学的奥秘知到章节测试答案智慧树2023年最新山东农业工程学院第一章测试1.从材料力学的角度来讲,为了使构件能正常的工作,必须使构件具有足够的()。
参考答案:其余选项都是2.材料力学研究的内力是构件各部分的相互作用力。
()参考答案:错3.因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
()参考答案:错4.材料力学只限于研究弹性范围内的小变形情况。
()参考答案:对5.角应变是变形后,构件中任意两根微线段夹角角度的变化量。
()参考答案:错第二章测试1.在下列说法中,正确的是()。
参考答案:内力随外力的增大而增大2.用截面法求内力时,是对()建立平衡方程而求解的。
参考答案:左段或右段3.关于轴向拉压杆件轴力的说法中,错误的是()。
参考答案:轴力是沿杆轴作用的外力4.计算M-M面上的轴力。
()参考答案:-P5.梁在某一段内作用有向下的分布载荷时,在该段内它的弯矩图为( )参考答案:上凸曲线第三章测试1.拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。
()参考答案:错2.虎克定律适用于弹性变形范围内。
()参考答案:错3.材料的延伸率与试件的尺寸有关。
()参考答案:对4.应用拉压正应力公式的条件是()。
参考答案:外力的合力沿杆轴线;5.一圆截面直杆,两端受的拉力相同,若将长度增大一倍其他条件不变,则下列结论错误的是( )。
参考答案:伸长量不变第四章测试1.挤压发生在局部表面,是连接件在接触面上的相互压紧;而压缩是发生在杆件的内部。
()参考答案:对2.剪断钢板时,所用外力使钢板产生的应力大于材料的屈服极限。
()参考答案:错3.在平板与螺栓之间加一垫片,可以提高()的强度。
参考答案:平板挤压4.在冲床上将钢板冲出直径为d的圆孔,冲力F与()。
参考答案:与直径d成正比5.对于圆柱形连接件的挤压强度问题,应该直接用受挤压的半圆柱面来计算挤压应力。
()参考答案:错第五章测试1.圆杆受扭时,杆内各点均处于纯剪切状态。
《工程力学》(工程类)课程学习资料继续教育学院《工程力学》(工程类)课程复习大纲一、考试要求本课程是一门专业课,要求学生在学完本课程后,能够牢固掌握本课程的基本知识,并具有应用所学知识说明和处理实际问题的能力。
据此,本课程的考试着重基本知识考查和应用能力考查两个方面,包括识记、理解、应用三个层次。
各层次含义如下:识记:指学习后应当记住的内容,包括概念、原则、方法的含义等。
这是最低层次的要求。
理解:指在识记的基础上,全面把握基本概念、基本原则、基本方法,并能表达其基本内容和基本原理,能够分析和说明相关问题的区别与联系。
这是较高层次的要求。
应用:指能够用学习过的知识分析、计算和处理涉及一两个知识点或多个知识点的会计问题,包括简单应用和综合应用。
二、考试方式闭卷笔试,时间120分钟三、考试题型●选择题:20%●填空题:20%●简单计算题:30%●综合计算题:30%四、考核的内容和要求第1章物体的受力分析与结构计算简图了解工程力学课程的研究对象、内容及研究方法和学习目的;了解静力学公理,理解约束和约束力。
掌握物体的受力分析和受力图。
第2章平面任意力系理解平面汇交力系合成与平衡的几何法和解析法、平面力对点之矩、平面力偶的概念,平面任意力系的简化;静定和超静定问题的判断。
掌握求解平面汇交力系问题的几何法和解析法的计算、平面力对点之矩的计算和平面力偶系合成与平衡问题的计算,平面任意力系的平衡条件和平衡方程,物体系统平衡问题的计算。
第3章空间力系理解空间汇交力系、空间力对点的矩和力对轴的矩及空间力偶的概念。
掌握空间任意力系的平衡方程及空间平衡问题的求解,重心的概念及重心问题的求解。
第4章杆件的内力与内力图理解变形固体的基本假设。
掌握内力、截面法和应力的概念和变形与应变及杆件变形的基本形式。
第5章拉伸、压缩与剪切理解直杆轴向拉伸或压缩时斜截面上的应力,拉伸、压缩超静定问题和温度应力、装配应力。
掌握轴向拉伸或压缩时横截面上的内力和应力的概念及计算,材料拉伸、压缩时的强度计算以及轴向拉伸或压缩时的变形及变形能。
ANSYS帮助中疲劳一章的翻译(1)(资料来源:半导体仿真论坛—)第13章疲劳13.1 疲劳的定义疲劳是结构在承受低于其极限载荷的力的反复作用下发生破裂的现象。
例如,一根钢条或许可以承受只有300KN的静态拉力的作用,但在200KN的力的反复作用下,就很可能发生破坏。
引起疲劳失效的主要因素包括:·经历的载荷周期数;·单周期内应力的变化幅度;·单周期内的平均应力;·局部应力集中的存在。
当计算在预计的生命周期中某个部分的耗用状况时,一个正式的疲劳评估要涉及以上任何一个因素。
13.1.1 ANSYS程序的任务ANSYS 疲劳计算是以ASME锅炉与压力容器规范的第3部分(和第8部分第二章)为依据,采用了简化了的弹塑性假设和Miner累积疲劳准则。
除了基于ASME规范的疲劳计算外,用户也可以自己定义宏指令,或者用合适的第三方程序与ANSYS分析结果相接。
(更多信息请参考ANSYS APDL程序指南)ANSYS有以下疲劳计算能力:·用户可以对现有的应力结果进行后处理来确定任何实体单元和壳单元的疲劳耗用因数(对线单元模型疲劳分析用户也可以手工输入应力)。
·用户可以在预先选定的位置上确定一定数目的事件以及这些事件中的载荷,然后保存这些位置上的应力。
·用户可以为每个位置定义应力集中系数和给每个事件定义比例因数。
13.1.2 基本术语位置在模型上所要保存疲劳应力的节点。
用户通常可以选取结构上易于发生疲劳破坏的的点的位置。
事件是在某个特定的应力循环中出现在不同的时刻的一系列应力状态。
更多信息请参考本章后面的获取精确耗用系数指南。
载荷一个应力状态,是事件的一部分。
交变应力强度是任何两个载荷间的应力状态的差的测量值,程序不因平均应力的影响而调整交变应力强度。
13.2 疲劳计算的步骤疲劳计算是应力计算结束后在通用后处理器POST1中进行的。
通常包括以下五个主要步骤:1. 进入通用后处理POST1,恢复数据库;2. 设定尺寸(位置﹑事件和载荷的数目),定义疲劳材料特性,确定应力位置,定义应力集中因数。
答案……………题目在后边一、判断题1错;2错;3错;4对;5错。
二、填空题2 强度、刚度、稳定性;3 运动效应、变形效应、内;4 连续性、应力和位移等力学量;5 弹性、塑性。
三、选择题1C;2C;3D;4C;5D;6C;7C。
第二章杆件的内力分析一、判断题1对;2错;3错;4错;5错;6错;7错;8对;9错。
二、填空题1 顺时针;2 上凹下凸;3 极;4 相同、不同、相同;5 相同、大于;6 斜直线、抛物线、极值。
三、选择题1A;2B;3C;4A;5A;6D;7C;8C;9A。
第三章杆件横截面上的应力应变分析一、判断题1错;2对;3对;5错;6错;7错;8对;9对;10错;11对;12错;13对。
二、填空题1 法线、切线、正应力、σ、切应力、τ;2 F/A、横截面上、0、F/2A、45度斜截面上、F/2A、F/A;3 3、EGν、G=E/2(1+ν)、2;4略;5 高速轴所传递的扭矩比低速轴小;6 剪力为零、弯矩是常数的弯曲;7 材料服从胡克定律、杆件小变形;8 集中力作用的一侧;9 略;10 上下边缘、中性轴上。
三、选择题1C;2D;3B;4B;5C;6C;7C;8C;9A;10B。
第四章杆件的变形分析一、判断题1错;2对;3对;4错;5错;6错;7错;8错;9对;10错;11对。
二、填空题1 拉压刚度、变形、扭转刚度、变形;2略;3略;4 垂直于轴线、中性轴;5略;6 固定端的挠度和转角都为零;7 弯矩最大处;8略;9 梁材料为线弹性、梁变形为小变形;10 波纹板对其中性轴的惯性矩大于同样截面的平板。
三、选择题1D;2D;3D;4B;5D;6D;7B;8D;9A。
第五章应力状态和应变状态分析一、判断题1对;2错;3错;4错;5错;6错;7对;8对;9对;10错;11对。
二、选择题1A;2A;3C。
第六章材料的力学性能略。
第七章压杆稳定一、判断题1错;2对;3错;4错;5错;6错;7对;8错;9对;10错;11错;12对。
第七章1、磨损:机件表面相接处并作相对运动时,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象。
2、粘着:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
(实际上就是原子间的键合作用)3、磨屑:松散的尺寸与形状均不相同的碎屑????4、跑合:摩擦表面逐渐被磨平,实际接触面积增大,磨损速率迅速减小。
5、咬死:当接触压应力超过材料硬度H的1/3时,粘着磨损量急剧增加,增加到一定程度就出现咬死现象。
6、犁皱:指表面材料沿硬粒子运动方向被横推而形成沟槽。
7、耐磨性:材料在一定摩擦条件下抵抗磨损的能力8、冲蚀:流体或固体以松散的小颗粒按一定的速度和角度对材料表面进行冲击。
9、接触疲劳:机件两接触面作滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片或小块状金属剥落而是材料流失的现象。
10、是比较三类磨粒磨损的异同,并讨论加工硬化对它们的影响?⑴凿削式磨粒磨损:从表面上凿削下大颗粒金属,摩擦面有较深沟槽。
韧性材料——连续屑,脆性材料——断屑。
⑵高应力碾碎性磨粒磨损:磨粒与摩擦面接触处的最大压应力超过磨粒的破坏强度,磨粒不断被碾碎,使材料被拉伤,韧性金属产生塑性变形或疲劳,脆性金属则形成碎裂式剥落。
⑶低应力擦伤性磨粒磨损:作用于磨粒上的应力不超过其破坏强度,摩擦表面仅产生轻微擦伤。
11、试述粘着磨损产生的条件、机理及其防止措施?条件:在滑动摩擦条件下,当摩擦副相对滑动速度较小时发生的。
机理:摩擦副实际表面上总存在局部凸起,当摩擦副双方接触时,即使施加较小载荷,在真实接触面上的局部应力就足以引起塑性变形。
倘若接触面上洁净而未受到腐蚀,则局部塑性变形会使两个接触面的原子彼此十分接近而产生强烈粘着。
第13章随机振动试验13.1 试验目的、影响机理、失效模式产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。
例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。
因此,随机振动试验才能更真实反映产品的耐振性能。
随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。
另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。
随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。
当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。
长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。
随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。
从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。
为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。
早在六十年代,国际上对随机振动的研究就十分活跃。
不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。
1962年美国军标810中首先规定了随机振动试验方法。
1964年英国国防部标准07-55中也提出了随机振动试验。
1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。
目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。
材料力学刘鸿文第六版(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的所有知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对刘鸿文主编的《材料力学》(第6版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精编考研真题,培养解题思路。
本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为考研参考书目。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章绪论1. 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章拉伸、压缩与剪切2. 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章扭转3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章弯曲内力4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章弯曲应力5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章弯曲变形6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章应力和应变分析强度理论7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章组合变形8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章压杆稳定9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章动载荷10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章交变应力11.1 复习笔记11.2 课后习题详解11.3 名校考研真题详解第12章弯曲的几个补充问题12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章能量方法13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章超静定结构14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章平面曲杆15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章厚壁圆和旋转圆盘16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章矩阵位移法17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章杆件的塑性变形18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解。
第13章交变应力
一、填空题
1、对称循环交变应力的循环特征r =(),其材料的持久极限用()表示;
2、脉动循环交变应力的循环特征r =(),其材料的持久极限用()表示。
静
应力的循环特征r =()。
3、影响构件持久极限的主要因素()()()。
4、提高构件疲劳强度的主要措施是()、()、()。
5、齿轮传动时,齿根部某点弯曲正应力的循环特征r =(),火车运行时,其车
箱轮轴中段横截面边缘上任一点的应力为()。
6、构件的应力集中越大,其持久极限期()。
构件表面愈粗糙,其持久极限()。
二、选择题
1、图示交变应力的循环特征r =()
A、1/3
B、2/3
C、2
D、3
2、图示交变应力的循环特征r =()
A、-0.5
B、0.5
C、-2
D、2
3、图示交变应力循环特征r,应力振幅σ a 和平均应力σm 分别为()。
A、r =0, σa =50Mpa , σm =50Mpa
B、r =0, σa =100Mpa , σm =50Mpa
C、r =1, σa =50Mpa , σm =100Mpa
D、r =1, σa =50Mpa , σm =50Mpa
4、图示交变应力的应力振幅σa,平均应力σm分别为()
A.σa =20Mpa , σm =-10Mpa
B.σa =-40Mpa , σm =10Mpa
C.σa =30Mpa , σm =-10Mpa
D.σa =30Mpa , σm =30Mpa。