∵f(x)图象的对称轴为直线 x=2,∴f(x) 在(0,1)上单调递减,
∴当x=1 时 ,f(x)取到最小值,为一3,∴实数m 的取值范围
是[一0, — 3],故选A.
答案: A
2.若不等式 x²+mx—1<0对于任意x∈[m,m+1] 都成立,则 实数m 的取值范围是 解析:由题意,得函数f(x)=x²+mx—1在[m,m+1] 上的 最大值小于0,又抛物线f(x)=x²+mx—1开口向上,
(3)若a 可以为0,需要分类讨论, 一般优先考虑a=0 的 情形.
三、典型例题分析 考点一一元二次不等式的解法
考法(一)不含参数的一元二次不等式
[典例] 解下列不等式:(1)—3x²—2x+8≥0;
(2)0<x²—x—2≤4; [解]( 1)原不等式可化为3x²+2x—8≤0,
即(3x—4)(x+2)≤0, 解 得
考法(二)含参数的一元二次不等式 [典例] 解不等式ax²—(a+1)x+1<0(a>0). [解] 原不等式变为(ax—1)(x—1)<0,
因 为a>0, 所 以
所以当a>1,
时,解
当 a=1 时,解集为o; 当 0<a<1, 艮 时,解为
综上,当0<a<1 时,不等式的解集 当a=1 时,不等式的解集为o; 当a>1 时,不等式的解集为
[解题技法] 1. 解含参数的一元二次不等式的步骤 (1)若二次项系数含有参数,则应讨论参数是等于0,小于 0 , 还是大于0,然后将不等式转化为二次项系数为正的形式;
(2)判断方程根的个数,讨论判别式△与0的关系; (3)确定无根时可直接写出解集;确定方程有两个根时,要 讨论两根的大小关系,从而确定不等式的解集.