高中数学人教A版必修五3.4基本不等式(一)ppt课件
- 格式:ppt
- 大小:184.00 KB
- 文档页数:17
§3.4 基本不等式:ab ≤a +b2(一)学习目标 1.理解基本不等式的内容及证明(重点);2.能熟练运用基本不等式来比较两个实数的大小;3.能初步运用基本不等式证明简单的不等式(难点).预习教材P97-98完成下列问题: 知识点 重要不等式与基本不等式【预习评价】1.(1)基本不等式中的a ,b 可以是代数式吗? (2)a +b 2≥ab 与⎝⎛⎭⎪⎫a +b 22≥ab 是等价的吗? 提示 (1)可以.但代数式的值必须是正数,否则不成立. (2)不等价,前者条件是a >0,b >0,后者是a ,b ∈R . 2.下列不等式正确的是( ) A.a +1a ≥2 B.(-a )+⎝ ⎛⎭⎪⎫-1a ≤-2C.a 2+1a 2≥2D.(-a )2+⎝ ⎛⎭⎪⎫-1a 2≤-2解析 ∵a 2>0,故a 2+1a 2≥2成立. 答案 C题型一 利用基本不等式比较大小【例1】 设0<a <b ,则下列不等式中正确的是( ) A.a <b <ab <a +b2B.a <ab <a +b2<bC.a <ab <b <a +b2 D.ab <a <a +b2<b解析 法一 ∵0<a <b ,∴a <a +b2<b ,排除A ,C 两项.又ab -a =a (b -a )>0,即ab >a ,排除D 项,故选B.法二 取a =2,b =8,则ab =4,a +b 2=5,所以a <ab <a +b2<b . 答案 B规律方法 利用基本不等式比较实数大小的注意事项(1)利用基本不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质(单调性).(2)利用基本不等式时,一定要注意条件是否满足a >0,b >0. 【训练1】 (1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A.m >nB.m <nC.m =nD.m ≥n(2)若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.解析 (1)因为a >2,所以a -2>0,又因为m =a +1a -2=(a -2)+1a -2+2,所以m ≥2(a -2)·1a -2+2=4,由b ≠0,得b 2≠0,所以2-b 2<2,n =22-b 2<4, 综上可知m >n . (2)因为a >b >1, 所以lg a >lg b >0,所以Q =12(lg a +lg b )>lg a ·lg b =P ;Q =12(lg a +lg b )=lg a +lg b =lg ab <lg a +b 2=R .所以P <Q <R . 答案 (1)A (2)P <Q <R 题型二 用基本不等式证明不等式【例2】 已知a ,b ,c 为正数,且a +b +c =1,证明:1a +1b +1c ≥9.证明 1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+(b a +a b )+(c a +a c )+(c b +b c ) ≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立.规律方法 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式. 【训练2】 已知a ,b ,c 为正数,且a +b +c =1, 证明:(1-a )(1-b )(1-c )≥8abc .证明 (1-a )(1-b )(1-c )=(b +c )(a +c )(a +b ) ≥2bc ·2ac ·2ab =8abc . 当且仅当b =c =a =13时,等号成立.课堂达标1.已知a >0,b >0,则1a +1b +2ab 的最小值是( )A.2B.2 2C.4D.5解析 ∵a >0,b >0, ∴1a +1b +2ab ≥21ab +2ab ≥41ab ·ab =4, 当且仅当⎩⎪⎨⎪⎧1a =1b ,1ab =ab ,即a =b =1时,等号成立.答案 C2.若0<a <b 且a +b =1,则下列四个数中最大的是( ) A.12 B.a 2+b 2 C.2abD.a解析 a 2+b 2=(a +b )2-2ab ≥(a +b )2-2·⎝ ⎛⎭⎪⎫a +b 22=12. a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab . ∵0<a <b 且a +b =1,∴a <12.∴a 2+b 2最大. 答案 B3.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是( ) A.6 B.4 2 C.2 6D.8解析 ∵a +b =3,∴2a +2b ≥22a ·2b =22a +b =28=42, 当且仅当a =b =32时,“=”成立. 答案 B4.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b ≥4;③(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4;④a 2+9>6a .其中恒成立的是________(填序号).解析 由于a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0,故①恒成立;由于⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +b a +a b ≥2ab ·1ab +2b a ·ab =4.当且仅当⎩⎪⎨⎪⎧ab =1ab ,b a =a b ,即a =b =1时,“=”成立,故②恒成立; 由于(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a +a b =4.当且仅当a b =b a ,那么a =b =1时“=”成立,故③恒成立;当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③. 答案 ①②③课堂小结1.两个不等式a 2+b 2≥2ab 与a +b2≥ab 都是带有等号的不等式,对于“当且仅当…时,取‘=’”这句话的含义要有正确的理解.一方面:当a =b 时,a +b2=ab ;另一方面:当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理的拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.基础过关1.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值是( ) A.3-1 B.3+1 C.23+2D.23-2解析 由a (a +b +c )+bc =4-23⇒a (a +b )+(a +b )c =(a +b )(a +c )=4-23, 而2a +b +c =(a +b )+(a +c ) ≥2(a +b )(a +c )=24-23=2(3-1)=23-2.∴当且仅当a +b =a +c ,即b =c 时等号成立. 答案 D2.已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5·a 7,则P 与Q 的大小关系是( ) A.P >Q B.P <Q C.P =QD.无法确定 解析 P =a 3+a 92>a 3·a 9=a 5·a 7=Q . 答案 A3.a ,b ∈R ,则判断大小关系:a 2+b 2________2|ab |.( )A.≥B.=C.≤D.>解析 由基本不等式a 2+b 2=|a |2+|b |2≥2|a ||b |=2|ab |, 当且仅当|a |=|b |时,等号成立. 答案 A4.不等式a 2+4≥4a 中,等号成立的条件为________. 解析 令a 2+4=4a ,则a 2-4a +4=0, ∴a =2. 答案 a =25.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ∵a >0,b >0, ∴ab =a +b +3≥2ab +3, 即ab -2ab -3≥0, 解得ab ≥3,即ab ≥9. 答案 [9,+∞)6.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c . 证明 ∵a ,b ,c 都是正数,∴bc a ,ca b ,abc 也都是正数. ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +abc ≥2b ,三式相加得2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +abc ≥a +b +c . 当且仅当a =b =c 时,等号成立. 7.已知a ,b ,c 为正实数,且a +b +c =1. 求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.证明 ∵a ,b ,c 均为正实数,且a +b +c =1,∴1a -1=1-a a =b +c a ≥2bc a ,同理1b -1≥2ac b ,1c -1≥2ab c .由于上述三个不等式两边均为正,分别相乘得 ⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8. 当且仅当a =b =c =13时,等号成立.能力提升8.若2m +4n <22,则点(m ,n )必在( ) A.直线x +y =1的左下方 B.直线x +y =1的右上方 C.直线x +2y =1的左下方 D.直线x +2y =1的右上方解析 ∵22>2m +4n ≥22m ·4n =2m2+n +1, ∴m 2+n +1<32, 即m +2n <1,∴(m ,n )在x +2y =1的左下方. 答案 C9.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,a ,b ∈(0,+∞),A =f ⎝⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系是( ) A.A ≤B ≤C B.A ≤C ≤B C.B ≤C ≤AD.C ≤B ≤A解析 2ab a +b ≤2ab2ab ≤ab ≤a +b 2,又∵f (x )=⎝ ⎛⎭⎪⎫12x为减函数,∴f ⎝ ⎛⎭⎪⎫2ab a +b ≥f (ab )≥f ⎝⎛⎭⎪⎫a +b 2, 即C ≥B ≥A .答案 A10.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析 ∵a 2+a -2>0,∴a >1或a <-2(舍), ∴y =log a x 是增函数,又t +12≥ t ,∴log a t +12≥log a t =12log a t ,当且仅当t =1时取等号. 答案 ≤11.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎪⎫a +b 22;③a +b 2≥ab a +b ;④a b +ba ≥2.其中恒成立的不等式有________(填序号).解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎪⎫a +b 22,可知②正确;当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b =-12,可知③不正确;当a =1,b =-1时,可知④不正确. 答案 ①②12.已知a ,b ,c 都是非负实数,试比较a 2+b 2+b 2+c 2+c 2+a 2与2(a +b +c )的大小.解 对a 2+b 2,b 2+c 2,c 2+a 2分别利用不等式2(a 2+b 2)≥(a +b )2,即可比较出二者的大小. 因为a 2+b 2≥2ab , 所以2(a 2+b 2)≥(a +b )2, 当且仅当a =b 时,等号成立. 又因为a ,b 都是非负实数,所以a 2+b 2≥22(a +b ),当且仅当a =b 时,等号成立.同理b 2+c 2≥22(b +c ),当且仅当b =c 时,等号成立,c 2+a 2≥22(c +a ),当且仅当a =c 时,等号成立.所以a 2+b 2+b 2+c 2+c 2+a 2≥22[(a +b )+(b +c )+(c +a )]=2(a +b +c ),当且仅当a =b =c 时,等号成立.故a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).13.(选做题)设实数x ,y 满足y +x 2=0,且0<a <1,求证:log a (a x +a y )<18+log a 2. 证明 ∵a x >0,a y >0, ∴a x +a y ≥2a x +y , 又∵0<a <1,∴log a (a x +a y )≤log a 2a x +y =12log a a x +y +log a 2 =12(x +y )+log a 2. ∵y +x 2=0,∴log a (a x +a y )≤12(x -x 2)+log a 2 =-12(x -12)2+18+log a 2≤18+log a 2,又上式中等号不能同时取到,所以原不等式得证.。