有限元讲稿
- 格式:ppt
- 大小:596.50 KB
- 文档页数:2
平面问题的有限单元法有限单元法是随着计算机的出现而发展起来的一种有效数值计算方法,有限单元法出现于40年代,被应用于飞机结构分析,有限元这个术语是1956年首先使用的。
目前已广泛地用于工程结构的力学分析中。
第一节基本概念一、实质理想化连续体―――――――单元集合体(解析模拟、逼近求解区域)无限自由度有限个自由度有限单元法首先把结构划分成许多单元,在一定的简化假设前提下,研究单元的力学特性,即单元分析;然后把各单元综合起來, 把局部的力学特性扩展到整体, 即整体分析;12最后导出一组以结构结点位移为未知量的代数方程组。
通过求解方程组而得到单元的结点位移值,就可近似计算出结构任意一点的受力状态。
这种以结点位移为基本未知量的计算方法称为有限单元位移法。
二、理论基础弹性力学:变分原理能量原理基本方程:几何方程、物理方程1. 平面问题的几何方程⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂∂∂∂∂∂∂=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=v u x y y x x v y u y v x u xy y x 00γεεε3这就是弹性力学平面问题的几何方程,它给出了某一点的位移与该点应变之间的关系。
反映了变形协调关系。
2. 平面问题的物理方程⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧xy y x xy y x E γεεμμμμτσσ2100010112 即: D εζ= 给出了力与变形之间的关系,称为平面问题物理方程,是针对平面应力问题推导出的。
对于平面应变问题,只需将公式中的E 换成21μ-E,把μ换成μμ-1即可。
这样,弹性矩阵D 就变为:4⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----+-=)1(22100011011)21)(1()1(μμμμμμμμE D (2.8)这就是适用于平面应变问题的弹性矩阵。
3. 弹性体的能量原理(1)应变能 在弹性范围内,对于平面问题,某个面积A 的应变能可以用下式表示tdxdy V xy xy y y Ax x )(21γτεσεσ++=⎰⎰ 写成矩阵的形式为5t d x d y V AT ζε⎰⎰=21 (2)外力势能 外力势能用矩阵的形式可表示为∑-=i T i P V P d 式中 {}iy ixi P P =P −−作用在弹性体i 点的外力分量; {}i i i v u =d −−i 点的位移分量(3)弹性体的总势能弹性体在外力作用的总势能定义为应变能和荷载势能之和,即∑⎰⎰-=+=i T i AT PP tdxdy V V E P ζεd 21 (4)最小势能原理6单元的众多的结点位移)(e δ中, 须满足条件:0)(=e P E δ即 0)()(=∂∂e e P E δ的一组位移才是真正的位移。
张年梅有限元方法讲义全文共四篇示例,供读者参考第一篇示例:张年梅有限元方法讲义有限元方法是一种非常重要的数值计算方法,广泛应用于力学、电磁学、声学、地球物理学等领域。
张年梅是中国工程院院士、有限元方法的权威专家,他在有限元方法的研究和应用方面取得了很多成果。
他的有限元方法讲义成为了很多工程学子和研究人员学习的重要参考资料。
有限元方法是一种用数值方法解决复杂工程问题的工具。
它将实际工程问题抽象为有限个简单形状的单元,并通过适当的数学方法和计算机程序求解得到问题的近似解。
有限元方法的基本思想是将一个复杂的结构或领域分割成有限个简单的子结构或子域,然后在每一个子结构或子域上建立合适的数学模型,最后通过组合所有子结构或子域的模型获得整体结果。
张年梅有限元方法讲义详细介绍了有限元方法的基本原理、数学模型的建立和求解方法。
讲义先介绍了有限元方法的起源和发展历程,然后对基本概念和术语进行了解释,包括有限元模型、单元、节点、网格等。
接着讲义详细介绍了有限元方法的基本原理,包括离散化、变分原理、加权残差法、Galerkin法等。
有限元方法的数学模型的建立是有限元分析的关键步骤。
张年梅有限元方法讲义介绍了常见的结构、固体、流体、电磁等问题的有限元建模方法,包括线性弹性分析、非线性分析、热传导分析、流体动力学分析等。
在建立数学模型之后,有限元方法的求解方法也是十分重要的。
张年梅有限元方法讲义介绍了有限元方法的常用数值解法,包括直接法、迭代法、有限元展开法等。
有限元方法在实际工程问题中有着广泛的应用。
张年梅有限元方法讲义通过大量的案例和实例展示了有限元方法在结构分析、热力分析、电磁分析等领域的应用。
讲义还介绍了有限元方法在工程设计和优化中的应用,包括拓扑优化、材料优化、结构优化等。
张年梅有限元方法讲义是一部权威的、全面的有限元方法教材,受到了广大工程学子和研究者的欢迎和好评。
通过学习这本讲义,读者可以系统地了解有限元方法的基本原理和求解方法,掌握有限元方法在工程问题中的应用技能,为解决工程问题提供强有力的工具支持。