3章+前馈神经网络(3.3BP算法)
- 格式:ppt
- 大小:458.50 KB
- 文档页数:3
BP神经网络算法步骤
<br>一、概述
BP神经网络(Back Propagation Neural Network,BPNN)是一种经
典的人工神经网络,其发展始于上世纪80年代。
BP神经网络的原理是按
照误差反向传播算法,以及前馈神经网络的模型,利用反向传播方法来调
整网络各层的权值。
由于其具有自动学习和非线性特性,BP神经网络被
广泛应用在很多和人工智能、计算智能紧密相关的诸如计算机视觉、自然
语言处理、语音识别等领域。
<br>二、BP神经网络的结构
BP神经网络经常使用的是一种多层前馈结构,它可以由输入层,若
干隐藏层,以及输出层三部分组成。
其中,输入层是输入信号的正向传输
路径,将输入信号正向传送至隐藏层,在隐藏层中神经元以其中一种复杂
模式对输入信号进行处理,并将其正向传送至输出层,在输出层中将获得
的输出信号和设定的模式进行比较,以获得预期的输出结果。
<br>三、BP神经网络的学习过程
BP神经网络的学习过程包括正向传播和反向传播两个阶段。
其中,
正向传播是指从输入层到隐藏层和输出层,利用现有的训练数据,根据神
经网络结构,计算出网络每一层上各结点的的激活值,从而得到输出结果。
正向传播的过程是完全可以确定的。
BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。
每个连接都有一个权重,表示信息传递的强度或权重。
算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。
2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。
重复该过程,直到达到输出层。
3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。
4.反向传播:根据误差反向传播,调整网络参数。
通过链式求导法则,计算每层的误差并更新对应的权重和阈值。
5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。
优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。
(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。
(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。
(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。
2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。
(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。
(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。
三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。
2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。
3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。
4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。
BP算法推导过程与讨论BP(Backpropagation)算法是一种用于训练神经网络的优化算法。
它通过将网络得到的输出与期望的输出进行比较,计算网络的误差,并通过误差反向传播来更新网络的权重,以达到优化网络性能的目的。
下面是BP算法的推导过程与讨论。
首先,假设我们有一个三层的前馈神经网络,包括输入层、隐藏层和输出层。
网络的输入向量为x,对应的权重矩阵为W,输出向量为y,对应的权重矩阵为V。
我们的目标是通过调整权重矩阵W和V,使得网络的输出y与期望的输出y^尽可能接近。
为了衡量网络输出的误差,一种常用的方法是均方误差(MSE),即误差函数定义为E=1/2*(y-y^)²。
BP算法的核心思想是通过梯度下降法来最小化误差函数。
梯度下降法的基本思路是沿着误差函数的负梯度方向更新权重,以减小误差函数的值。
为了推导BP算法的更新规则,我们需要计算误差函数对权重矩阵W和V的偏导数,即∂E/∂W和∂E/∂V。
然后根据链式法则,我们可以得到误差函数对输入向量x的偏导数∂E/∂x。
首先,计算误差函数对输出向量y的偏导数∂E/∂y。
根据链式法则,我们有∂E/∂y = ∂E/∂o ∙∂o/∂y,其中o表示输出函数,可以是线性函数或非线性函数,关键在于选择合适的激活函数。
对于线性函数,∂o/∂y = 1;对于Sigmoid函数,则有∂o/∂y = o ∙ (1 - o)。
然后,计算误差函数对权重矩阵V的偏导数∂E/∂V。
根据链式法则,我们有∂E/∂V=∂E/∂y∙∂y/∂V。
再次应用链式法则,可以得到∂E/∂y=∂E/∂o∙∂o/∂y=∂E/∂o∙∂o/∂y∙∂y/∂V。
根据定义,∂E/∂o=(y-y^),∂y/∂V=h,其中h表示隐藏层的输出向量。
接下来,我们来计算误差函数对权重矩阵W的偏导数∂E/∂W。
同样地,根据链式法则,我们有∂E/∂W=∂E/∂y∙∂y/∂W。
再次应用链式法则,可以得到∂E/∂y=∂E/∂o∙∂o/∂y=∂E/∂o∙∂o/∂y∙∂y/∂h∙∂h/∂W。
bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。
它可以用于分类、回归和其他许多任务。
BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。
BP神经网络的基本结构包括输入层、隐藏层和输出层。
每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。
神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。
通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。
BP神经网络的训练包括两个关键步骤:前向传播和反向传播。
前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。
反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。
在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。
误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。
利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。
通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。
然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。
为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。
总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。
通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。
BP神经网络算法预测模型
BP神经网络(Back Propagation Neural Network,BPNN)是一种常
用的人工神经网络,它是1986年由Rumelhart和McClelland首次提出的,主要用于处理有结构的或无结构的、离散的或连续的输入和输出的信息。
它属于多层前馈神经网络,各层之间存在权值关系,其中权值是由算法本
身计算出来的。
BP神经网络借助“反向传播”(Back Propagation)来
实现权值的更新,其核心思想是根据网络的输出,将错误信息以“反馈”
的方式传递到前面的每一层,通过现行的误差迭代传播至输入层,用来更
新每一层的权值,以达到错误最小的网络。
BP神经网络的框架,可以有输入层、隐含层和输出层等组成。
其中
输入层的节点数即为输入数据的维数,输出层的节点个数就是可以输出的
维数,而隐含层的节点数可以由设计者自由设定。
每一层之间的权值是
BP神经网络算法预测模型中最重要的参数,它决定了神经网络的预测精度。
BP神经网络的训练步骤主要有以下几步:首先,规定模型的参数,
包括节点数,层数,权值,学习率等;其次,以训练数据为输入,初始化
权值,通过计算决定输出层的输出及误差;然后,使用反向传播算法,从
输出层向前,层层地将误差反馈到前一层。
BP神经网络学习及算法1.前向传播:在BP神经网络中,前向传播用于将输入数据从输入层传递到输出层,其中包括两个主要步骤:输入层到隐藏层的传播和隐藏层到输出层的传播。
(1)输入层到隐藏层的传播:首先,输入数据通过输入层的神经元进行传递。
每个输入层神经元都与隐藏层神经元连接,并且每个连接都有一个对应的权值。
输入数据乘以对应的权值,并通过激活函数进行处理,得到隐藏层神经元的输出。
(2)隐藏层到输出层的传播:隐藏层的输出被传递到输出层的神经元。
同样,每个隐藏层神经元与输出层神经元连接,并有对应的权值。
隐藏层输出乘以对应的权值,并通过激活函数处理,得到输出层神经元的输出。
2.反向传播:在前向传播后,可以计算出网络的输出值。
接下来,需要计算输出和期望输出之间的误差,并将误差通过反向传播的方式传递回隐藏层和输入层,以更新权值。
(1)计算误差:使用误差函数(通常为均方差函数)计算网络输出与期望输出之间的误差。
误差函数的具体形式根据问题的特点而定。
(2)反向传播误差:从输出层开始,将误差通过反向传播的方式传递回隐藏层和输入层。
首先,计算输出层神经元的误差,然后将误差按照权值比例分配给连接到该神经元的隐藏层神经元,并计算隐藏层神经元的误差。
依此类推,直到计算出输入层神经元的误差。
(3)更新权值:利用误差和学习率来更新网络中的权值。
通过梯度下降法,沿着误差最速下降的方向对权值和阈值进行更新。
权值的更新公式为:Δwij = ηδjxi,其中η为学习率,δj为神经元的误差,xi为连接该神经元的输入。
以上就是BP神经网络的学习算法。
在实际应用中,还需要考虑一些其他的优化方法和技巧,比如动量法、自适应学习率和正则化等,以提高网络的性能和稳定性。
此外,BP神经网络也存在一些问题,比如容易陷入局部极小值、收敛速度慢等,这些问题需要根据实际情况进行调优和改进。
bp算法原理BP算法原理BP算法是神经网络中应用最广泛的一种学习算法,它的全称是“反向传播算法”,用于训练多层前馈神经网络。
BP算法基于误差反向传播原理,即先通过前向传播计算网络输出值,再通过反向传播来调整各个神经元的权重,使误差函数最小化。
BP算法的步骤如下:1. 初始化:随机初始化网络每个神经元的权重,包括输入层、隐藏层和输出层的神经元的权重。
2. 前向传播:将训练样本输送到输入层,通过乘积和运算得到每个隐藏层神经元的输出,再通过激活函数得到隐藏层神经元的实际输出值。
然后,将隐藏层的输出值输送到输出层,按照同样的方法计算输出层神经元的输出值。
3. 反向传播:通过误差函数计算输出层神经元的误差值,然后反向传播计算隐藏层神经元的误差值。
4. 权值调整:按照梯度下降法,计算误差对每个神经元的权重的偏导数,根据偏导数的大小来调整各个神经元的权重,使误差逐渐减小。
5. 重复步骤2~4,直到误差小到一定程度或者训练次数达到预定值。
其中,误差函数可以选择MSE(Mean Squared Error)函数,也可以选择交叉熵函数等其他函数,不同的函数对应不同的优化目标。
BP算法原理的理解需要理解以下几个方面:1. 神经元的输入和输出:神经元的输入是由上一层神经元的输出和它们之间的权重乘积的和,加上神经元的偏置值(常数)。
神经元的输出是通过激活函数把输入值转化为输出值。
2. 前向传播和反向传播:前向传播是按照输入层到输出层的顺序计算神经元的输出值。
反向传播是一种误差反向传播的过程,它把误差从输出层往回传递,计算出每个神经元的误差,然后调整各个神经元的权重来使误差逐渐减小。
3. 梯度下降法:梯度下降法是一种优化算法,根据误差函数的梯度方向来寻找误差最小的点。
BP算法就是基于梯度下降法来优化误差函数的值,使神经网络的输出结果逼近实际值。
综上所述,BP算法是一种常用的神经网络学习算法,它利用前向传播和反向传播的过程来调整神经元的权重,不断优化误差函数的值,从而使神经网络的输出结果更加准确。
bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。
2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。
5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。
实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。
经过训练,我们得到了权值矩阵和偏置向量。
当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。
2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。
3.输出层:将隐层的输出数据输出到输出层。
4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。
5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。
这就是BP神经网络算法的基本流程。
在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。
但是,上述流程是BP神经网络算法的基本框架。
BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。
BP神经网络主要由输入层、隐藏层
和输出层构成。
在BP神经网络中,每个神经元都有自己的权重和偏置值。
数
据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。
神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。
然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。
这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。
具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。
首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。
最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。
这个过程反复进行,直到达到停止条件。
BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。
同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。
然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。
总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。
它
可以应用于分类、回归等任务,并具有较强的自适应能力。
但同时也有一些问题需要注意。
BP神经网络算法BP神经网络算法(BackPropagation Neural Network)是一种基于梯度下降法训练的人工神经网络模型,广泛应用于分类、回归和模式识别等领域。
它通过多个神经元之间的连接和权重来模拟真实神经系统中的信息传递过程,从而实现复杂的非线性函数拟合和预测。
BP神经网络由输入层、隐含层和输出层组成,其中输入层接受外部输入的特征向量,隐含层负责进行特征的抽取和转换,输出层产生最终的预测结果。
每个神经元都与上一层的所有神经元相连,且每个连接都有一个权重,通过不断调整权重来优化神经网络的性能。
BP神经网络的训练过程主要包括前向传播和反向传播两个阶段。
在前向传播中,通过输入层将特征向量引入网络,逐层计算每个神经元的输出值,直至得到输出层的预测结果。
在反向传播中,通过计算输出层的误差,逐层地反向传播误差信号,并根据误差信号调整每个连接的权重值。
具体来说,在前向传播过程中,每个神经元的输出可以通过激活函数来计算。
常见的激活函数包括Sigmoid函数、ReLU函数等,用于引入非线性因素,增加模型的表达能力。
然后,根据权重和输入信号的乘积来计算每个神经元的加权和,并通过激活函数将其转化为输出。
在反向传播过程中,首先需要计算输出层的误差。
一般采用均方差损失函数,通过计算预测值与真实值之间的差异来衡量模型的性能。
然后,根据误差信号逐层传播,通过链式法则来计算每个神经元的局部梯度。
最后,根据梯度下降法则,更新每个连接的权重值,以减小误差并提高模型的拟合能力。
总结来说,BP神经网络算法是一种通过多层神经元之间的连接和权重来模拟信息传递的人工神经网络模型。
通过前向传播和反向传播两个阶段,通过不断调整权重来训练模型,并通过激活函数引入非线性因素。
BP 神经网络算法在分类、回归和模式识别等领域具有广泛的应用前景。
BP算法的基本原理BP算法(反向传播算法)是一种神经网络训练算法,用于更新神经网络的权重和偏置,以使之能够适应所需任务的输入输出关系。
BP算法基于梯度下降优化方法,通过求解损失函数关于权重和偏置的偏导数来进行参数更新。
其基本原理涉及到神经网络的前向传播和反向传播两个过程。
以下将详细介绍BP算法的基本原理。
1.前向传播:在神经网络的前向传播过程中,输入数据通过网络的各个层,通过各个神经元的激活函数,最终得到网络的输出。
在前向传播过程中,每个神经元接收到上一层的信号,并通过权重和偏置进行加权求和,然后经过激活函数处理后输出。
具体而言,假设神经网络有L层,第l层的神经元为h(l),输入为x,激活函数为f(l),权重为w(l),偏置为b(l)。
其中,输入层为第1层,隐藏层和输出层分别为第2层到第L层。
对于第l层的神经元h(l),其输入信号为:z(l)=w(l)*h(l-1)+b(l)其中,h(l-1)表示第(l-1)层的神经元的输出。
然后,通过激活函数f(l)处理输入信号z(l)得到第l层的输出信号:h(l)=f(l)(z(l))。
依次类推,通过前向传播过程,神经网络可以将输入信号转化为输出信号。
2.反向传播:在神经网络的反向传播过程中,根据网络的输出和真实值之间的差异,通过链式法则来计算损失函数对于各层权重和偏置的偏导数,然后根据梯度下降法则对权重和偏置进行更新。
具体而言,假设网络的输出为y,损失函数为L,权重和偏置为w和b,求解L对w和b的偏导数的过程为反向传播。
首先,计算L对于网络输出y的偏导数:δ(L)/δy = dL(y)/dy。
然后,根据链式法则,计算L对于第L层的输入信号z(L)的偏导数:δ(L)/δz(L)=δ(L)/δy*δy/δz(L)。
接着,计算L对于第(L-1)层的输入信号z(L-1)的偏导数:δ(L)/δz(L-1) = δ(L)/δz(L) * dz(L)/dz(L-1)。
依次类推,通过链式法则得到L对于各层输入信号z(l)的偏导数。
BP神经网络算法步骤
1.初始化神经网络参数
-设置网络的输入层、隐藏层和输出层的神经元数目。
-初始化权重和偏置参数,通常使用随机小值进行初始化。
2.前向传播计算输出
-将输入样本数据传入输入层神经元。
-根据权重和偏置参数,计算隐藏层和输出层神经元的输出。
- 使用激活函数(如Sigmoid函数)将输出映射到0到1之间。
3.计算误差
4.反向传播更新权重和偏置
-根据误差函数的值,逆向计算梯度,并将梯度传播回网络中。
-使用链式法则计算隐藏层和输出层的梯度。
-根据梯度和学习率参数,更新权重和偏置值。
5.重复迭代训练
-重复执行2-4步,直到网络输出误差满足预定的停止条件。
-在每次迭代中,使用不同的训练样本对网络进行训练,以提高泛化性能。
-可以设置训练轮数和学习率等参数来控制训练过程。
6.测试和应用网络
-使用测试集或新样本对训练好的网络进行测试。
-将测试样本输入网络,获取网络的输出结果。
-根据输出结果进行分类、回归等任务,评估网络的性能。
7.对网络进行优化
-根据网络在训练和测试中的性能,调整网络的结构和参数。
-可以增加隐藏层的数目,改变激活函数,调整学习率等参数,以提高网络的性能。
以上是BP神经网络算法的基本步骤。
在实际应用中,还可以对算法进行改进和扩展,如引入正则化技术、批量更新权重等。
同时,数据的预处理和特征选择也对网络的性能有着重要的影响。
在使用BP神经网络算法时,需要根据实际问题对网络参数和训练策略进行适当调整,以获得更好的结果。
BP神经网络模型预测未来BP神经网络算法概述:简介与原理BP神经网络是一种多层前馈神经网络,该网络的主要特点是:信号前向传递,误差反向传播。
在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层,每一层的神经元状态只影响下一层神经元状态。
如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。
BP神经网络的拓扑结构如下图所示:X1X2Y1Xn输入层隐含层输出层BP神经网络结构图图中是BP神经网络的输入值,是BP神经网络的预测值,为BP神经网络权值。
BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。
BP神经网络的训练过程包括一下几个步骤。
步骤一:网络初始化。
根据系统输入输出序列(,)X Y确定网络输入层节点数,n隐含层节点数l、输出层节点数m、初始化输入层、隐含层和输出层神经元之间的连接权值,,ωω初始化隐含层阈值a,给ij jk定输出层阈值b,给定学习速率和神经元激励函数。
步骤二:隐含层输出计算。
根据输入向量,输入层和隐含层间连接权值,以及隐含层阈值,计算隐含层输出。
步骤三:输出层输出计算。
根据隐含层输出,连接权值和阈值,计算BP神经网络预测输出。
步骤四:误差计算根据网络输出和预期输出,计算网络预测误差。
步骤五:权值更新。
根据网络预测更新网络连接权值步骤六:阈值更新。
根据网络预测误差更新网络节点阈值。
步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。
下面是基本BP算法的流程图。
BP神经网络的拓扑结构如下图所示:X1X2Y1n X输入层 隐含层 输出层BP 神经网络预测的算法流程如下:步骤一:对初始数据进行标准化。
步骤二:利用原始数据对网络进行训练。
步骤三:对未来第t 年第i 类污染程度的河流长度比例进行预测。
步骤四:利用第年预测得到的数据作为样本再对网络进行训练。
步骤五:然后令1t t =+,回到Step2,直到10t =。
BP算法推算过程BP算法(Back Propagation,反向传播算法)是一种用于训练多层前馈神经网络(MLP)的监督学习算法。
它通过将误差从输出层向输入层进行传播来调整网络的权重,以最小化预测输出与实际输出之间的差异。
你所期望的1200字以上解释是无法在一个答案中完全涵盖的,因此我将会提供一个尽可能详细的解释,但依然有一些内容需要自行进一步学习。
首先,我们需要了解一些基本概念。
一个多层前馈神经网络由输入层、若干个隐藏层和输出层组成。
每一层都由许多神经元构成,这些神经元接受来自上一层的输入,并将它们通过一个非线性函数(如sigmoid函数)进行加权和激活。
网络中的每个连接都有一个权重,这些权重可以决定每个输入对应的重要性。
从直观上说,BP算法通过不断调整网络中的权重来使得预测输出与实际输出之间的差异最小化。
为了找到最优的权重,算法需要计算每一对权重的梯度值,然后使用梯度下降法来更新它们。
接下来,我们来看一下BP算法的具体步骤。
1.初始化权重:为网络中的每个连接随机分配一个初始权重值。
2.前向传播:从输入层开始,将输入向前传递到隐藏层和输出层,通过加权和激活函数得到每个神经元的输出。
3.计算误差:将网络的预测输出与实际输出进行比较,计算出每个输出神经元的误差。
4.反向传播:从输出层开始,将误差反向传播回隐藏层和输入层。
这一步骤可以通过计算每个神经元的误差梯度来实现。
5.更新权重:使用梯度下降法来更新每个连接的权重值。
新的权重值可以通过当前权重值加上一个学习速率与对应的梯度相乘得到。
6.重复步骤2-5,直到达到停止条件(例如达到指定的迭代次数或误差小于一些阈值)。
通过循环执行这些步骤,BP算法可以逐渐学习和调整网络中的权重,使得网络的预测输出与实际输出之间的差异越来越小。
最终,网络将会达到一个比较好的拟合效果,并可以用于对未知样本的预测。
值得注意的是,BP算法有一些局限性。
首先,它可能会收敛到一个局部最小值而不是全局最小值。