CATIA_装配部件有限元分析.
- 格式:ppt
- 大小:360.00 KB
- 文档页数:12
用CATIA对弧形梁进行有限元分析
操作内容:应用CATIA 分析仿真(Analysis Simulation)对弧形梁进行有限元分析(包括前处理与后处理两部分内容)。
操作软件:CATIA V5 R18
操作步骤:
零件设计模块
第一步、绘制弧形梁的草图,见下图。
第二步、对草图进行拉伸,见下图。
第三步、对部件赋予材料属性,见下图。
高级网格划分模块
第四步、进入高级网格划分模块,选择静力分析,见下图。
第五步、对弧形梁进行四面体网格划分,见下图。
第六步、显示网格划分后的效果,见下图。
创成式结构分析模块
第七步、进入创成式结构分析模块,见下图。
第八步、赋予梁3D属性,见下图。
第九步、对梁施加压力载荷,见下图。
第十步、对梁的两端施加固定约束,见下图。
第十一步、开始计算,见下图。
第十二步、对计算结果进行后处理,见下图。
形变图
冯米斯应力图
位移图
主应力图。
CATIA装配部件有限元分析CATIA(计算机辅助三维交互应用)是一种广泛应用于机械设计和制造领域的软件。
它提供了一套完整的工具和功能,用于实现产品创新、设计优化和数字化制造。
CATIA的装配部件有限元分析是其中一个功能强大的工具,可以帮助工程师评估设计的结构强度和性能。
装配部件有限元分析(FEA)是一项工程分析技术,用于通过将大型复杂结构分解为小的离散单元,然后通过求解线性和非线性方程组来模拟和预测结构的行为和响应。
在CATIA中,装配部件有限元分析可以通过定义装配体与零部件之间的约束关系和关联关系来分析和评估整个装配体的性能。
在进行装配部件有限元分析之前,首先需要定义整个装配体的几何模型。
CATIA可以通过多种方式创建几何模型,包括绘制、拉伸、旋转、剪切等操作,以及导入其他CAD软件中的模型。
一旦几何模型定义完毕,就可以将其转换为有限元网格模型。
在有限元网格模型中,装配体被分解为小的离散单元,每个单元称为有限元。
这些有限元具有一些特定的属性,如几何形状、材料特性和边界条件。
材料特性定义了材料的力学性能,如弹性模量、屈服强度和断裂韧性。
边界条件定义了固定和加载条件,如约束、力、压力等。
一旦有限元网格模型定义完毕,就可以进行装配部件的有限元分析。
CATIA提供了多种分析类型,包括静态分析、动态分析、热分析、疲劳分析和优化分析。
静态分析用于评估结构的强度和稳定性,动态分析用于分析结构的振动特性,热分析用于评估结构的热响应,疲劳分析用于评估结构在不同加载条件下的寿命,优化分析用于改进结构设计。
装配部件有限元分析的结果通常以图形和数值形式呈现。
CATIA可以生成各种图表和图形,以显示应力、应变、位移、刚度等参数的分布情况。
此外,CATIA还可以生成报告和动画,以帮助工程师更好地理解和解释分析结果。
总之,CATIA的装配部件有限元分析是一种强大的工具,可以帮助工程师评估装配体的强度、稳定性和性能。
通过使用CATIA的装配部件有限元分析,工程师可以优化设计、降低制造成本并提高产品质量。
CATIA设计优化技巧分享随着现代工业制造的发展,设计工程师们面临着越来越高的要求。
为了提高设计效率和产品质量,他们不断寻求新的技巧和方法。
CATIA作为一款专业的三维设计软件,为设计师们提供了丰富的功能和工具。
本文将分享一些CATIA设计优化技巧,帮助设计工程师们更加高效地使用CATIA进行设计。
立体造型技巧在CATIA中,立体造型是设计过程中的基本操作之一。
下面将分享一些立体造型的技巧,帮助设计师更加准确和高效地进行建模。
1. 利用辅助平面和轴线:在建模过程中,合理使用辅助平面和轴线可以提高建模的精度和效率。
通过选择合适的辅助平面和轴线,可以更加准确地对模型进行定位和旋转,同时还可以更好地控制模型的对称性和比例关系。
2. 使用参数化建模:参数化建模是CATIA中的一项强大功能。
通过定义参数和公式,设计师可以创建具有可调整尺寸和形状的模型。
这种方法可以大大提高设计的灵活性和可重复性。
3. 应用草图功能:CATIA的草图功能可以帮助设计师快速构建基础形状。
合理运用草图工具,可以高效地创建各种形状,减少重复劳动。
装配设计技巧除了立体造型,装配设计也是CATIA的重要应用之一。
下面将介绍一些装配设计的技巧,帮助设计师更好地完成装配任务。
1. 使用装配约束:在进行装配设计时,合理使用装配约束可以确保零件之间的正确位置和运动关系。
CATIA提供了多种装配约束选项,如约束、连接、限制等。
设计师可以根据具体需求选择适当的约束方法,确保装配的准确性和稳定性。
2. 借助装配分析:CATIA的装配分析功能可以帮助设计师评估装配的可行性和性能。
在装配过程中,设计师可以进行干涉检查、运动模拟等分析,及时发现并解决问题,确保装配的质量和效果。
3. 利用装配模式:CATIA提供了多种装配模式,如顶层装配、子装配、虚拟装配等。
在进行复杂装配设计时,设计师可以采用逐步、分阶段的方式进行设计,通过不同的装配模式进行模块化设计和验证。
实验报告目录实验一:CATIA 中的工程分析动臂应力分析问题描述解题思路操作过程实验二:电子样机运动机构模拟四连杆运动机构模拟问题描述解题思路操作过程实验三:电子样机空间分析柴油机燃油供给系中输油泵空间分析问题描述解题思路操作过程感想实验一:装载机动臂应力分析问题描述装载机无偏载工作时,动臂承受一定外载荷和来自车架的约束。
动臂结构示意图见图1。
在建立模型时,油缸假设为柔性弹簧,A铰点作为动臂的支点,允许动臂绕通过A 铰点的轴转动,B铰点是动臂油缸支点(动臂油缸的刚度假设为2.0e7N_m)。
C铰点和D铰点是外载荷的作用点。
本实例分析的工况是正铲无偏载,载荷、结构同时对称,最好取出模型的一般,通过施加对称约束,进行有限元求解二、 解题思路1、 进入并载入源文件2、 前处理(施加约束和载荷)3、 求解4、 后处理三、 操作过程1、进入并载入源文件⑴、打开文件 dongbi.CATPART 。
(2) 、进行有限元分析前的基本设置工作。
(3) 、单击 Start/Analysis Simulation/Generative Structural Analysis 进入有限元分析模 块,选择Static Analysis,进入静态有限元分析,如图2所示。
2、前处理El开始EHOVIA V5文件编辑 观图插入工具窗口帮助ITev Analysis Case| [鼻硒定寸/取消Fimt t Element Model - 1 Nodes and Elen ent sStatic Anal]Properties.1Frequency Analysi E]Keep as default starting uielyEi s case图2在A 点建立刚性虚件,如下图所示。
B 点建弹簧虚件,如下图所示u 寿 Properties.1 “事 MateTials. 1 Handler No selectionIT&jri^ Rigid Virtu :al Part. 1 Supports ■■埶 Virtu. … ®限 疋A 占八、、自 由 度如 下 图所 示o圆锥角约束,如下图所示。
CATIA有限元分析计算实例CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动CATIA软件。
单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。
图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。
在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。
点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。
(2)进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。
单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。
这时进入【草图绘制器】工作台。
图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。
在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。
用同样分方法再绘制一个同心圆,如图11-6所示。
图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。
点击【约束】工具栏内的【约束】按钮,如图11-7所示。
点击选择圆,就标注出圆的直径尺寸。
用同样分方法标注另外一个圆的直径,如图11-8所示。
图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。
在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。
用同样的方法修改第二个圆的直径尺寸为50mm。
修改尺寸后的圆如图11-10所示。
图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。
退出【草图绘制器】工作台,进入【零部件设计】工作台。
CATIA有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动CATIA软件。
单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。
图11-1单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。
在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。
点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。
(2)进入【草图绘制器】工作台在左边的模型树中单击选中【xy平面】, 如图11-3所示。
单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。
这时进入【草图绘制器】工作台。
图11-2【新建零部件】对话框图11-3单击选中【xy平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。
在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。
用同样分方法再绘制一个同心圆,如图11-6所示。
图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。
点击【约束】工具栏内的【约束】按钮,如图11-7所示。
点击选择圆,就标注出圆的直径尺寸。
用同样分方法标注另外一个圆的直径,如图11-8所示。
图11-6两个同心圆草图图11-7【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。
在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。
用同样的方法修改第二个圆的直径尺寸为50mm。
修改尺寸后的圆如图11-10所示。
图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。
退出【草图绘制器】工作台,进入【零部件设计】工作台。
图11-10修改直径尺寸后的圆图11-11【工作台】工具栏(5)拉伸创建圆筒点击【基于草图的特征】工具栏内的【凸台】按钮,如图11-12所示。