(3)物体运动的加速度,是距离函数关于时间的二阶导 数, 即 a(t)ddvtdd22tys(t).
二、简单函数高阶导数的习例 例1.设f(x)xn,求各阶导. 函数 例 2 .设 yax,求 y(n ). 例 3 .设 f(x ) cx o ,求 s f(n )(x ). 例 4 . 设 y f (x l ) 且 n , f ( u ) 可 ,求 y .导 例5.由ddxyy1,求dd2yx2.
叫y做 f(x)的二.阶导数 记 :y为 或 f(x )或 d d 22 yx 或 d2 d f(2 x x ).
即 f(x )lim f(x x )f(x ).
x 0
x
记号与求导过程: d d22 yxd dxd dx yd d(dx)y dd dx 22 yx.
类似地,y=f(x)的二阶导数的导数叫做三阶导数. 记为 f(x),y,dd3x3y.
内容小结
课堂思考与练习
一、 高阶导数的定义与记号 问题:变速直线运动的加速度.
设sf(t), 则瞬时速 v(t)度 f(为 t) 加速 a是度 速 v对度 时 t的间 变化率 a ( t ) v ( t ) [ f ( t ) ] .
定义: 若 yf(x)的导 yf数 (x)在 x处可 ,这导 个
解:设 uco x,v sx2,则
u (k)co x sk 2 (k1, 2 ,2 , 0)
v 2 x ,v 2 ,v ( k ) 0( k 3 ,4 , ,2 )0
y ( 2 ) 0 u ( 2 ) v 0 C 2 1 u ( 1 0 ) v 9 C 2 2 u ( 1 0 ) v 8
f(x)sinx2 c ox s 2 2 c ox s2 2
f(x)sinx22cosx32