2)
(3)求递推数列的通项
1。通过适当化归,转换成等比数列或等差数列
→ an+1 3an + 2an1 0
an+1 an 2(an an1)
→ an
an1 3an1 +
1
,
a1
1
ana1n0a, a1n21
1
3
4
2。通过选择适当的形式,引入待定的参数,再确定参数的值
→ cn bcn1 + m
[说明]该公式整理后an是关于n的一次函数。
[等差数列的前n项和]
1.
Sn
n(a1 + an ) 2
2.
Sn
na1 +
n(n 1) d 2
[说明]对于公式2整理后an是关于n 的没有常数项的二次函数
[等差中项] 如果a,A,b成等差数列,那么A叫做a与b的等
差中项。即:2A=a+b 或 A a + b 2
求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.
数列{an}:a1 1, a2 3, a3 2, an+2 an+1 an ,求S2005
七、利用数列的通项求和 先根据数列的结构及特征进行分析,找出数 列的通项及其特征,然后再利用数列的通项 揭示的规律来求数列的前n项和
高考数学总复习(第二轮) 第2讲 数列
一、基本知识归纳
1、一般数列
[数列的通项公式]
an
a1 S n
S1(n Sn1 (n
1)
2)
[数列的前n项和] Sn a1 + a2 + a3 + … + an