13离子交换色谱
- 格式:ppt
- 大小:901.50 KB
- 文档页数:20
离子色谱(ion Chromatography)是高效液相色谱的一种,是分析离子的一种液相色谱方法。
根据分离机理,离子色谱可分为高效离子交换色谱(HPLC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。
离子色谱-用途离子色谱主要是利用离子交换基团之间的交换,也即利用离子之间对离子交换树脂的亲和力差异而进行分离。
离子交换色谱柱的填料是阴、阳离子交换树脂,是在有机高聚物或硅胶上接枝有机季铵或磺酸基团。
常用的检测器是电导检测器。
离子色谱主要用于阴阳离子的分析,特别是阴离子的分析。
离子色谱的检出限在μg/L?mg/L,而且多种离子同时测定,简便,快速。
到目前为止,离子色谱仍然是测定阴离子最佳的方法。
离子色谱是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱,其有别于传统离子交换色谱柱色谱的主要是树脂具有很高的交联度和较低的交换容量,进样体积很小,用柱塞泵输送淋洗液通常对淋出液进行在线自动连续电导检测。
分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。
适用于亲水性阴、阳离子的分离。
例如几个阴离子的分离,样品溶液进样之后,首先与分析柱的离子交换位置之间直接进行离子交换(即被保留在柱上),如用NaOH作淋洗液分析样品中的F-、Cl-和SO42-,保留在柱上的阴离子即被淋洗液中的OH-基置换并从柱上被洗脱。
对树脂亲和力弱的分析物离子先于对树脂亲和力强的分析物离子依次被洗脱,这就是离子色谱分离过程,淋出液经过化学抑制器,将来自淋洗液的背景电导抑制到最小,这样当被分析物离开进入电导池时就有较大的可准确测量的电导信号。
离子色谱主要用于环境样品的分析,包括地面水、饮用水、雨水、生活污水和工业废水、酸沉降物和大气颗粒物等样品中的阴、阳离子,与微电子工业有关的水和试剂中痕量杂质的分析。
另外在食品、卫生、石油化工、水及地质等领域也有广泛的应用。
离子交换色谱摘要:离子交换色谱主要包括阴离子交换色谱和阳离子交换色谱。
本文介绍了,离子交换色谱的分离原理,检测方法,淋洗液、色谱柱类型和特点,以及离子交换色谱的应用。
离子色谱(IC)是高效液相色谱(HPLC)的一种,是分析阴离子和阳离子的一种液相色谱方法。
离子色谱的分离机理主要是离子交换,有3种分离方式,它们是高效离子交换色谱(HPIC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。
3种分离方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子交换功能基和容量各不相同。
HPIC 用低容量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。
3种分离方式各基于不同分离机理:HPIC的分离机理主要是离子交换,HPIEC主要为离子排斥,而MPIC则是主要基于吸附和离子对的形成。
离子交换色谱的离子交换分离基于流动相和固定相上的离子交换基团之间发生的离子交换过程。
对高极化度和疏水性较强的离子,分离机理还包括非离子交换的吸附过程。
离子交换色谱主要是用于无机和有机阴离子和阳离子的分离。
离子交换功能基为季铵基的树脂用作为阴离子分离,为磺酸基和羧酸基的树脂作为阳离子分离。
离子交换色谱主要用于分析常见的Cl-,F-,Br-等无机阴离子,有机酸,糖和氨基酸等有机阴离子,分析的阳离子主要是同一元素的多种价态金属阳离子的分离与分析;离子排斥色谱主要用于分离和分析有机酸和无机酸;离子对色谱主要是用于对表面活性剂的分离和分析。
1分离原理离子交换色谱的色谱柱的填料主要由基质(substrate material)和功能基(functional)两部分组成。
功能基是可解离的无机基团,与流动相接触,在固定相表面形成带电荷的离子交换位置,与流动相中的离子发生离子交换,在离子交换反应中,功能基的本体结构不发生明显变化,仅由其离子交换功能基的离子与外界同性电荷的离子发生等量离子交换。
色谱柱填料又被称为“离子交换剂”[1]。
离⼦交换⾊谱(ion exchange chromatography)2、离⼦交换⾊谱(ion exchange chromatography)蛋⽩质、多肽均属于两性电解质,在缓冲液pH⼩于其等电点时,带净正电荷,⽽在缓冲液pH⼤于其等电点时,带净负电荷。
阴离⼦交换凝胶本⾝带有正电荷基团,阳离⼦交换凝胶本⾝带负电荷基团。
由于静电相互作⽤⽽使样品结合到凝胶上,再采⽤盐浓度梯度或者更换缓冲液的pH值进⾏洗脱对于等电点⼩于5.0的酸性蛋⽩质,推荐使⽤阴离⼦交换,对于等电点⼤于7.0的碱性蛋⽩质,推荐使⽤阳离⼦交换。
两种模式:⼀种使⽬的蛋⽩结合凝胶,通过梯度洗脱;⼀种使⽬的蛋⽩不结合凝胶,⽽⼤部分杂质结合凝胶,则穿过液中含有⽬的蛋⽩。
column chromatography(柱⾊谱)batch chromatography(批⾊谱)c、疏⽔作⽤⾊谱利⽤蛋⽩质、多肽在⾼盐存在下,可以结合疏⽔凝胶,⽽在盐浓度降低时⼜可以解脱的原理实现分离。
d、亲和⾊谱利⽤蛋⽩质、多肽与某些配基的特异性相互作⽤⽽进⾏分离。
例如:酶-底物,酶-抑制剂,糖蛋⽩-凝集素,抗原-抗体等。
近来发展了⾦属螯合亲和⾊谱,⽤于纯化表⾯含⾊氨酸、酪氨酸、组氨酸等的蛋⽩质以及(His)6-tagged重组蛋⽩。
亲和⾊谱分为特异性亲和⾊谱和组别亲和⾊谱两类。
肝素、凝集素、染料、⾦属螯合亲和⾊谱均为组别亲和⾊谱(同⼀配基可以结合许多种蛋⽩质)。
e、反相⾊谱常⽤于蛋⽩质、多肽的HPLC分析,以及多肽的精细制备分离,分辨率极⾼,可以分离两种仅相差⼀个氨基酸的多肽。
如⾎管紧张素(angiotensin)的⼏个亚型通过反相⾊谱可以很好地分离。
同⼀个样品在同⼀Source 30 RPC柱上进⾏分离,由于⾊谱条件进⾏了改变,⾊谱图截然不同,说明反相⾊谱具有⾼度的选择性。
四、应⽤举例例⼀、⼀种抗HIV gp120单克隆抗体的Fab⽚断(E.coli中表达)分⼦量:50 kD等电点:11表达定位:周质(periplasmic)纯化策略:渗透压休克提取周质,阳离⼦交换去除⼤部分杂质,疏⽔作⽤⾊谱进⼀步去除杂质,最后⽤凝胶过滤分离。
HPLC的常用术语及符号第一部分色谱曲线1、色谱图(chromatogram):色谱柱流出物通过检测器系统时所产生的响应信号对时间或流动相流出体积的曲线图,或者通过适当的方法观察到的纸色谱或薄层色谱斑点、谱带的分布图。
2、(色谱)峰(chromatographic peak):色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线。
3、峰底(peak base):峰的起点与终点之间的连接的直线(图1 中的CD)。
4、峰高(h ,peak height):色谱峰最大值点到峰底的距离(图1 中的BE)。
5、峰宽(W,peak width):在峰两侧拐点(图1 中的F ,G)处所作切线与峰底相交两点的距离(图1中的KL)。
6、半高峰宽(W h/2,peak withd at half height):通过峰高的中点作平行于峰底的直线,此直线与峰两侧相交两点之间的距离(图1 中的HJ)。
7、峰面积(A,peak area):峰与峰底之间的面积(图1中的CHEJDC)。
8、拖尾峰(tailing peak):后沿较前沿平缓的不对称的峰。
9、前伸峰(leading peak):前沿较后沿平缓的不对称的峰。
(又叫伸舌峰、前延峰)10、假峰(ghost peak):除组分正常产生的色谱峰外,由于仪器条件的变化等原因而在谱图上出现的色谱峰,即并非由试样所产生的峰。
这种色谱峰并不代表具体某一组分,容易给定性、定量带来误差。
(又叫鬼峰)11、畸峰(distrorted peak):形状不对称的色谱峰,前伸峰、拖尾峰都属于这类。
12、反峰(negative peak):也称倒峰、负峰,即出峰的方向与通常的方向相反的色谱峰。
14、原点(origin):纸或薄层板上滴加试样部位的中心点(图2)。
15、斑点(spot):平面色谱法中,组分在展开和显谱后呈现近似圆形或椭圆形的色区(图2)。
16、区带(zone):在色谱柱、纸或薄层板上被分离组分所占的区域。
离子交换色谱法分析化学离子交换色谱法是一种常用的分离和分析方法,广泛应用于化学、生物、环境等领域。
该方法基于离子交换剂与样品中离子之间的相互作用,实现对目标化合物的分离和分析。
本文将介绍离子交换色谱法的基本原理、实验操作步骤以及在化学分析中的应用。
一、离子交换色谱法的基本原理离子交换色谱法利用离子交换剂作为固定相,通过与样品中离子之间的相互作用,实现分离目标化合物。
离子交换剂是一种具有交换基团的功能性材料,通过基团与样品中离子进行交换,从而实现对目标化合物的分离。
根据不同的交换基团和固定相材料,离子交换色谱法可应用于不同类型化合物的分离和分析。
二、实验操作步骤1、准备实验仪器和试剂,包括色谱柱、流动相、样品溶液等。
2、将离子交换剂填充至色谱柱中,制成固定相。
3、将样品溶液注入进样器中。
4、开启泵,使流动相通过色谱柱,将样品中的离子与固定相中的交换基团进行交换。
5、通过检测器对分离后的离子进行分析和检测。
6、根据峰高、峰面积等参数计算目标化合物的含量。
三、离子交换色谱法在化学分析中的应用1、有机酸和碱的分离和分析:离子交换色谱法可用于分离和测定有机酸和碱的含量,如乳酸、柠檬酸、苯胺等。
通过选择合适的离子交换剂和流动相,可实现高分辨率分离和准确测定。
2、金属离子的分离和分析:离子交换色谱法可用于分离和测定金属离子,如钠、钾、钙、镁等。
通过选择含有适当功能基团的固定相,可实现对不同金属离子的分离和分析。
3、环境样品的分离和分析:离子交换色谱法可用于分离和测定环境样品中的阴、阳离子,如水样、土壤样品的分离和分析。
通过优化实验条件,可实现高分辨率分离和准确测定。
4、生物样品的分离和分析:离子交换色谱法可用于分离和测定生物样品中的离子,如氨基酸、多肽等。
通过选择合适的固定相和流动相,可实现高分辨率分离和准确测定。
5、其他领域的应用:离子交换色谱法还可应用于化学合成、药物分析、食品分析等领域。
通过选择合适的固定相和流动相,可实现对不同类型化合物的分离和分析。
离子交换色谱一、实验原理:离子交换层析Ion Exchange Chromatography简称为IEC是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法;离子交换层析中,基质是由带有电荷的树脂或纤维素组成;带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂;离子交换层析同样可以用于蛋白质的分离纯化;由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同;阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来;结合较弱的蛋白质首先被洗脱下来;反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来;离子交换层析是用离子交换剂作固定相,利用它与流动相中的离子能进行可逆的交换性质来分离离子型化合物的层析方法;即溶液中的离子同离子交换剂上功能基团交换反应的过程;带电荷量少,亲和力小的先被洗脱下来,带电荷量多,亲和力大的后被洗脱下来;二、实验设计离子交换剂;缓冲液;洗脱剂具体操作:1、离子交换介质的选择:考虑目的分子的大小,目的分子会影响其接近介质上的带电功能集团;功能集团的强弱,目的分子稳定,选择强交换介质;对于大多数纯化步骤来说,建议开始的时候使用强离子交换柱,可在摸索方法的过程中有一个宽的pH范围;对于一个已知等电点的蛋白质,可根据其等电点来选择;如果选用阴离子交换剂,使用缓冲液的pH值应高于该蛋白质等电点,因为此时蛋白质在该缓冲液中携带净负电荷,可与阴离子交换剂结合;如果选用阳离子交换剂,缓冲液的pH值应低于该蛋白质的等电点,因为此时蛋白质在该缓冲液中携带净正电荷,可与阳离子交换剂结合;对于一个未知等电点的蛋白质,可以先选择一个阴离子交换剂,再选择一个中性的pH缓冲液,将蛋白质样品透析至,然后过阳离子交换柱,根据过柱后的结果确定下一个使用的缓冲液的pH;如果目的蛋白再穿过液中,说明目的蛋白在此pH条件下带正电荷,可将缓冲液升高一个pH,将蛋白质样品透析纸,然后再过阴离子交换柱,根据过柱后的结果确定下一个使用的缓冲液的pH;以此类推,直至目的蛋白能够结合在阴离子交换柱上为止,也可用阳离子交换剂作类似的选择,不过要注意,pH的改变应向减小的方向进行;功能集团的强弱一般情况下,在分离等电点pH为6-9的目的分子,尤其是当目的分子不稳定时,需要较温和的色谱条件才会选用弱交换介质;流动相缓冲液的选择:离子交换色谱的流动相必须是有一定离子强度的并且对pH有一定缓冲作用的溶液;阳离子交换剂应选择阴离子缓冲液,可用柠檬酸盐、醋酸盐、磷酸盐等;阴离子交换剂应选用阳离子缓冲液,可用乙二胺、Tris等;起始缓冲液浓度应尽可能低,这样可使色谱柱上吸附更多的分离物质;2、色谱柱的选择通常选择粗短柱,即高径比小的色谱柱;离子交换分离蛋白质是依靠吸附强弱不同,发生吸附时蛋白质会优先结合在色谱柱的上部,如果柱子过长,增加了从吸附位置到收集位置的流程距离,容易增加样品扩散,导致峰值增加3、折叠预处理和装柱对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤;溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型;阴离子交换剂常用"碱-酸-碱"处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用"酸-碱-酸"处理,使最终转为-H-型交换剂;洗涤好的纤维素使用前必须平衡至所需的pH和离子强度;已平衡的交换剂在装柱前还要减压除气泡;为了避免颗粒大小不等的交换剂在自然沉降时分层,要适当加压装柱,同时使柱床压紧,减少死体积,有利于分辨率的提高;柱子装好后再用起始缓冲液淋洗,直至达到充分平衡方可使用;5、折叠加样与洗脱及洗脱组分的收集和分析加样:层析所用的样品应与起始缓冲液有相同的pH和离子强度,所选定的pH值应落在交换剂与被结合物有相反电荷的范围,同时要注意离子强度应低,可用透析、凝胶过滤或稀释法达此目的;样品中的不溶物应在透析后或凝胶过滤前,以离心法除去;为了达到满意的分离效果,上样量要适当,不要超过柱的负荷能力;柱的负荷能力可用交换容量来推算,通常上样量为交换剂交换总量的1%-5%;折叠洗脱:已结合样品的离子交换前,可通过改变溶液的pH或改变离子强度的方法将结合物洗脱,也可同时改变pH与离子强度;为了使复杂的组份分离完全,往往需要逐步改变pH或离子强度,其中最简单的方法是阶段洗脱法,即分次将不同pH与离子强度的溶液加入,使不同成分逐步洗脱;由于这种洗脱pH与离子强度的变化大,使许多洗脱体积相近的成分同时洗脱,纯度较差,不适宜精细的分离;最好的洗脱方法是连续梯度洗脱,两个容器放于同一水平上,第一个容器盛有一定pH的缓冲液,第二个容器含有高盐浓度或不同pH的缓冲液,两容器连通,第一个容器与柱相连,当溶液由第一容器流入柱时,第二容器中的溶液就会自动来补充,经搅拌与第一容器的溶液相混合,这样流入柱中的缓冲液的洗脱能力即成梯度变化;第一容器中任何时间的浓度都可用下式进行计算:C=C2-C2-C11-VA2/A1式中A1、A2分别代表两容器的截面积:C1、C2分别表示容器中溶液的浓度;V为流出体积对总体积之比;当A1=A2时为线性梯度,当A1>A2时为凹形梯度,A1>A2时为凸形梯度;洗脱时应满足以下要求:①洗脱液体积应足够大,一般要几十倍于床体积,从而使分离的各峰不至于太拥挤;②梯度的上限要足够高,使紧密吸附的物质能被洗脱下来;③梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态;目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽;洗脱馏份的分析按一定体积5-10ml/管收集的洗脱液可逐管进行测定,得到层析图谱;依实验目的的不同,可采用适宜的检测方法生物活性测定、免疫学测定等确定图谱中目的物的位置,并回收目的物;洗脱组分的收集和分析:通常色谱柱下端连接一个紫外检测器,用于检测蛋白质组分的洗脱过程,而后又连接着部分收集器,用于收集洗脱液;6、离子交换剂的再生与保存离子交换剂可在柱上再生;如离子交换纤维素可用2mol/:NaCl淋洗柱,若有强吸附物则可用LNaOH洗柱;若有脂溶性物质则可用非离子型去污剂洗柱后再生,也可用乙醇洗涤,其顺序为:LNaOH-水-乙醇-水-20%NaOH-水;保存离子交换剂时要加防腐剂;对阴离子交换剂宜用%氯已定洗必泰,阳离子交换剂可用乙基硫柳汞%;有些产品建议用%叠氮钠;三、举例:离子交换层析法分离氨基酸原理:所用样品为天冬氨酸和组氨酸的混合液,分别属酸性氨基酸、碱性氨基酸,用强酸型阳离子交换树脂Dowex50,在一定洗脱条件下洗脱,将它们分离;组氨酸pH>10,天冬氨酸.器材:层析柱,沸水浴等试剂:Dowex50;LNaOH;柠檬酸缓冲液;氨基酸混合液;茚三酮混合液目数:离子交换树脂的颗粒直径大小Dowex50为20-50目Dowex20 840µmDowex50 297µmDowex100 149µm代表二乙烯苯的百分含量操作:1、层析:将Dowex50装柱后,用LNaOH清洗树脂5分钟,再用柠檬酸缓冲液平衡10分钟;方法同凝胶层析法加样5-6滴;当样品进入树脂后,加入柠檬酸缓冲液洗脱加样后立即收集,每管收集3ml控制流速15滴/分钟;当第一峰一出现,换用LNaOH作洗脱液,直至第二峰收集完毕;用柠檬酸缓冲液再平衡10分钟,再生;2、检测:从第二管起每收集管中加入茚三酮显色液,充分混合,沸水浴15分钟,自来水冷却,观察氨基酸与茚三酮的显色反应,若生成紫色混合物,则说明收集到氨基酸;四、离子交换色谱的优缺点:优点:1、具有开放性支持骨架,大分子可以自由进入和迅速扩散,故吸附容量大;2、有亲水性,对大分子的吸附不太牢固,用温和条件即可洗脱,不致引起蛋白质变性和酶的失活;3、多孔性、表面积大、交换容量大、回收率高,可用于分离和制备;缺点:由交换层析介质决定,不同蛋白质相互分离效果也不确定,这种分离也易造成各蛋白峰的重叠,造成分离纯度的下降;四、离子交换色谱的优缺点:优点:1、具有开放性支持骨架,大分子可以自由进入和迅速扩散,故吸附容量大;2、有亲水性,对大分子的吸附不太牢固,用温和条件即可洗脱,不致引起蛋白质变性和酶的失活;3、多孔性、表面积大、交换容量大、回收率高,可用于分离和制备;缺点:由交换层析介质决定,不同蛋白质相互分离效果也不确定,这种分离也易造成各蛋白峰的重叠,造成分离纯度的下降;。
离子交换色谱法的主要操作步骤
离子交换色谱法(Ion exchange chromatography)是一种常见的化学分离技术,主要用于离子物质的分离和纯化。
其操作步骤如下:
1. 样品处理:首先需要将待测样品进行配制处理,如去除杂质、调节pH 值等。
2. 样品进样:将经过处理的样品通过注射器、自动进样器或其他进样方式加入到离子交换柱内。
3. 洗脱液选取:根据样品的性质及所需纯度和分离效果,选择合适的洗脱液,通常是盐酸、硫酸或其他缓冲液。
洗脱液的pH 值是影响分离效果的重要因素。
4. 进行色谱分离:将样品溶液从离子交换柱的顶端缓慢流过,在中性或弱酸性条件下,离子样品在离子交换树脂中进行吸附和解吸,以达到分离和纯化的目的。
5. 洗脱收集:待分离的离子物质通过离子交换柱后,再用洗脱液冲洗掉不需要的杂质和离子,最终收集所需的纯化离子物质。
6. 洗脱后处理:将收集到的离子物质进行洗脱液去除或其他处理方式,以得到目标样品。
以上便是离子交换色谱法的主要操作步骤。
离子交换色谱是一种常见的分离技术,主要用于分析溶液中的离子。
以下是离子交换色谱的主要特点:
1. 选择性高:离子交换色谱可以根据离子的大小、电荷和化学性质进行分离,因此具有很高的选择性。
2. 灵敏度高:离子交换色谱可以检测到非常低浓度的离子,因此具有很高的灵敏度。
3. 操作简单:离子交换色谱的操作过程相对简单,只需要将样品通过色谱柱,然后通过检测器进行检测即可。
4. 适用范围广:离子交换色谱可以用于分析各种类型的离子,包括阳离子、阴离子和两性离子。
5. 结果准确:由于离子交换色谱的选择性高和灵敏度高,因此其结果通常非常准确。
6. 可以连续操作:离子交换色谱可以进行连续操作,因此可以大大提高分析效率。
7. 可以用于定量分析:离子交换色谱不仅可以用于定性分析,还可以用于定量分析。
8. 对环境影响小:离子交换色谱使用的试剂通常对环境影响较小,因此是一种环保的分析方法。
.离子色谱基础离子色谱 (Ion Chromatography) 是高效液相色谱 (HPLC)的一种,是剖析阴离子和阳离子的一种液相色谱方法。
一、离子色谱的基来源理离子色谱的分别机理主假如离子互换,有 3 种分别方式,它们是高效离子互换色谱(HPIC)、离子排挤色谱(HPIEC)和离子对色谱(MPIC)。
用于 3 种分别方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子互换功能基和容量各不同样。
HPIC 用低容量的离子互换树脂,HPIEC用高容量的树脂,MPIC 用不含离子互换基团的多孔树脂。
3 种分别方式各鉴于不一样分别机理。
HPIC的分别机理主假如离子互换,HPIEC主要为离子排斥,而 MPIC 则是主要鉴于吸附和离子对的形成。
1、高效离子互换色谱应用离子互换的原理,采纳低互换容量的离子互换树脂来分别离子,这在离子色谱中应用最宽泛,其主要填料种类为有机离子互换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子互换树脂,引入叔胺基而成季胺型强碱性阴离子互换树脂,此互换树脂拥有大孔或薄壳型或多孔表面层型的物理构造,以便于迅速达到互换均衡,离子互换树脂耐酸碱可在任何 pH 范围内使用,易重生办理、使用寿命长,弊端是机械强度差、易溶胀易、受有机物污染。
硅质键合离子互换剂以硅胶为载体,将有离子互换基的有机硅烷与基表面的硅醇基反响,形成化学键合型离子互换剂,其特色是柱效高、互换均衡快、机械强度高,弊端是不耐酸碱、只宜在 pH28 范围内使用。
离子互换色谱是最常用的离子色谱。
2、离子排挤色谱它主要依据Donnon 膜排挤效应,电离组分受排挤不被保存,而弱酸则有必定保存的原理,制成离子排挤色谱主要用于分别有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。
它主要采纳高互换容量的磺化H 型阳离子互换树脂为填料以稀盐酸为淋洗液。
3、离子对色谱离子对色谱的固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也实用C8 硅胶或 CN,固定相流动相由含有所谓对离子试剂和含适当有机溶剂的水溶液构成,对离子是指其电荷与待测离子相反,并能与之生成疏水性离子,对化合物的表面活性剂离子,用于阴离子分别的对离子是烷基胺类如氢氧化四丁基铵氢氧化十六烷基三甲烷等,用于阳离子分别的对离子是烷基磺酸类,如己烷磺酸钠,庚烷磺酸钠等对离子的非极性端亲脂极性端亲水,其CH2 键越长则离子对化合物在固定相的保存越强,在极性流动相中,常常加入一些有机溶剂,以加速淋洗速度,此法主要用于疏水性阴离子以及金属络合物的分离,至于其分别机理则有 3 种不一样的假说,反相离子对分派离子互换以及离子互相作用。