高考达标检测(五十)几何概型命题3角度——长度(角度)、面积、体积
- 格式:docx
- 大小:74.34 KB
- 文档页数:5
几何概型的常见题型及典例分析一•几何概型的定义1. 定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或 体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型 .2. 特点:(1) 无限性,即一次试验中,所有可能出现的结果(基本事件)有无限 多个;(2) 等可能性,即每个基本事件发生的可能性均相等 . 构成事件A 的区域长度(面积或体 积) 试验的全部结果所构成的区域长度(面积或体积)说明:用几何概率公式计算概率时,关键是构造出随机事件所对应 的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系:(1) 联系:每个基本事件发生的都是等可能的.(2) 区别:①古典概型的基本事件是有限的, 几何概型的基本事件是无 限的;②两种概型的概率计算公式的含义不同..常见题型(一)、与长度有关的几何概型分析:在区间[1,1]上随机取任何一个数都是一个基本事件.所取的数是 区间[1,1]的任意一个数,基本事件是无限多个,而且每一个基本事件的 发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的3.计算公式:P (A )例1、在区间[1,1]上随机取一个数x 1X ,cos 2-的值介于0到2之间的概率为().A.- 3B.C.D.区间长度有关,符合几何概型的条件 解:在区间[1,1]上随机取一个数X ,即x [0到-之间,需使x或 x22 2 33 2 2 2••• 1 x 2或-x 1,区间长度为3 3由几何概型知使cos —x 的值介于0到1之间的概率为2 22符合条件的区间长度 J 1所有结果构成的区间长 度 2 3 .例2、如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间 再随意安装两盏路灯 C,D ,问A 与C,B 与D 之间的距离都不小于10米的 概率是多少?思路点拨从每一个位置安装都是一个基本事件,基本事件有无限 多个,但在每一处安装的可能性相等,故是几何概型.解 记E : “ A 与C,B 与D 之间的距离都不小于10米”,把AB1等分,由于中间长度为妙3=10米,方法技巧我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生 则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型 就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交 点在该直径上的位置是等可能的,求任意画的弦的长度不小于 R 的概率 思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以, 地分布在于平行弦垂直的直径上(如图1-1 ) O 也就是说,样本空间所对应的区域 G 是一维空 间(即直线)上的线段 MN 而有利场合所对 应的区域G 是长度不小于R 的平行弦的中点K 所在的区间。
几何概型1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率. 概念方法微思考1.古典概型与几何概型有什么区别?提示 古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型中线段的端点、图形的边框是否包含在内影响概率值吗? 提示 几何概型中线段的端点,图形的边框是否包含在内不会影响概率值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )题组二 教材改编2.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D.1 答案 B解析 坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.3.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4答案 D解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分(不包括AC )表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.题组三 易错自纠5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.故m =3.6.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为________. 答案 23解析 设AC =x cm(0<x <12),则CB =(12-x )cm ,则矩形的面积S =x (12-x )=12x -x 2(cm 2).由12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12. 在数轴上表示,如图所示.由几何概型概率计算公式,得所求概率为812=23.题型一 与长度、角度有关的几何概型例1 在等腰Rt △ABC 中,直角顶点为C . (1)在斜边AB 上任取一点M ,求|AM |<|AC |的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求|AM |<|AC |的概率.解 (1)如图所示,在AB 上取一点C ′,使|AC ′|=|AC |,连接CC ′.由题意,知|AB |=2|AC |.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以P (|AM |<|AC |)=|AC ′||AB |=|AC |2|AC |=22. (2)由于在∠ACB 内以C 为端点任作射线CM ,所以CM 等可能分布在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,所以P (|AM |<|AC |)=∠ACC ′∠ACB=π-π42π2=34.思维升华 求解与长度、角度有关的几何概型的概率的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同,解题的关键是构建事件的区域(长度或角度).跟踪训练1 (1)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为____________. 答案 23解析 方程x 2+2px +3p -2=0有两个负根, 则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案 13解析 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB ∠DAB =30°90°=13.题型二 与面积有关的几何概型命题点1 与面积有关的几何概型的计算例2 (1)(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4 答案 B解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.(2)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率为________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =⎝⎛⎭⎫4x -13x 3|21=53, 所以所求概率P =S S 矩形ABCD =531×4=512.命题点2 随机模拟例3 (1)如图所示,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据估计椭圆的面积为()A.7.68B.8.68C.16.32D.17.32答案 C解析 由随机模拟的思想方法,可得黄豆落在椭圆内的概率为300-96300=0.68.由几何概型的概率计算公式,可得S 椭圆S 矩形=0.68,而S 矩形=6×4=24,则S 椭圆=0.68×24=16.32.(2)若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为________. 答案 0.4解析 根据数据得该运动员射击4次至少击中3次的数据分别为7527 9857 8636 6947 4698 8045 9597 7424,共8个,所以该运动员射击4次至少击中3次的概率为820=0.4.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.跟踪训练2 (1)(2016·全国Ⅱ)从区间[0,1]内随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn,∴π=4mn,故选C.(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案2e 2解析 由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x )d x =2(e x -e x )|10=2[e -e -(0-1)]=2.又该正方形的面积为e 2,故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型例4 已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.答案2764解析 当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2, 所以PE P A =34,所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PE P A 3=⎝⎛⎭⎫343=2764.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.跟踪训练3 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3π D.233π 答案 D解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝⎛⎭⎫323=32π, 则此点落在正方体内部的概率P =V 1V 2=233π.1.已知函数f (x )=x 2-x -2,x ∈[-3,3],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A.13 B.23 C.12 D.16 答案 C解析 由f (x 0)≤0,可得-1≤x 0≤2,所以D =3-(-3)=6,d =2-(-1)=3,故由几何概型的概率计算公式可得所求概率为P =d D =12,故选C.2.在区间[-1,3]上随机取一个数x ,若x 满足|x |≤m 的概率为12,则实数m 为( )A.0B.1C.2D.3 答案 B解析 区间[-1,3]的区间长度为4. 不等式|x |≤m 的解集为[-m ,m ],当1<m ≤3时,由题意得m +14=12,解得m =1(舍),当0<m ≤1时,由2m 4=12,则m =1.故m =1.3.若正方形ABCD 的边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于( ) A.132 B.78 C.38 D.18 答案 D解析 设M ,N 分别为BC ,CD 靠近点C 的四等分点,则当E 在线段CM ,CN (不包括M ,N )上时,AE 的长度大于5,因为正方形的周长为16,CM +CN =2,所以AE 的长度大于5的概率为216=18,故选D.4.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A.2-33πB.4-63πC.-13-32πD.23答案 B解析 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B.5.如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A.1+2πB.1+22πC.1πD.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为ππππ44(sin cos )d (cos sin )|x x x x x ⎰-=--=1-⎝⎛⎭⎫-22-22=1+ 2.又矩形ABCD 的面积为2π,由几何概型概率计算公式得该点落在阴影区域内的概率是1+22π.故选B.6.(2018·郑州模拟)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图所示是赵爽的弦图.弦图是一个勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866B.500C.300D.134答案 D解析 设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32×1 000≈134. 7.记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 答案 59解析 设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A , 由6+x -x 2≥0,解得-2≤x ≤3, ∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.8.在等腰直角三角形ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 因为点M 在直角边BC 上是等可能出现的,所以“区域”是长度.设BC =a ,则所求概率P =33a a =33.9.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.答案 16解析 因为11A A BD A ABD V V =--=13AA 1×S △ABD=16×AA 1×S 矩形ABCD =16V 长方体, 故所求概率为11.6A A BD V V =-长方体10.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入到正方形ABCD 中,则质点落在图中阴影区域的概率是______.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x=ʃ1-12x 2d x =23·x 3|1-1=23-⎝⎛⎭⎫-23=43, 阴影部分面积为2×2-43=83,所以所求概率为834=23.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为 Ω={(x ,y )|1≤x ≤6,1≤y ≤6}.满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图像如图所示,矩形的面积为S 矩形=25, 阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出, 当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上, 即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成的集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.13.在长为1的线段上任取两点,则这两点之间的距离小于12的概率为________.答案 34解析 设任取两点所表示的数分别为x ,y ,则0≤x ≤1,且0≤y ≤1,如图所示,则总事件所占的面积为 1.记这两点之间的距离小于12为事件A ,则A ={(x ,y )||x -y |<12,0≤x ≤1,0≤y ≤1},如图中阴影部分所示,空白部分所占的面积为2×12×12×12=14,所以所求两点之间的距离小于12的概率P (A )=1-141=34.14.向圆C :(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________. 答案 16-34π解析 如图所示,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以∠ACB =60°,所以S 圆C =π×22=4π,所以S 弓形ADB =60°×π×22360°-12×2×3=2π3-3,所以向圆C 内随机投掷一点,则该点落在x 轴下方的概率P =2π3-34π=16-34π.15.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥13”的概率,p 2为事件“|x -y |≤13”的概率,p 3为事件“xy ≤13”的概率,则( )A.p 1<p 2<p 3B.p 2<p 3<p 1C.p 3<p 1<p 2D.p 3<p 2<p 1答案 B解析 因为x ,y ∈[0,1],所以事件“x +y ≥13”表示的平面区域如图(1)阴影部分(含边界)S 1,事件“|x -y |≤13”表示的平面区域如图(2)阴影部分(含边界)S 2,事件“xy ≤13”表示的平面区域如图(3)阴影部分(含边界)S 3,由图知,阴影部分的面积满足S 2<S 3<S 1,正方形的面积为1×1=1,根据几何概型概率计算公式可得p 2<p 3<p 1.16.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,求此点取自空白部分的概率.解 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整个图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以P =2π.。
考点五十 几何概型知识梳理1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)3.几何概型的两个特点几何概型有两个特点:一是无限性;二是等可能性.4.几何概型与古典概型的区别古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,而几何概型则是无限个.典例剖析题型一 与长度有关的几何概型例1 (2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A. 45 B. 35 C. 25 D. 15变式训练 (2015山东文)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( )A. 34B. 23C. 13D. 14解题要点 基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.题型二 与面积有关的几何概型例2 (2014·高考辽宁卷) 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A. π2B. π4C. π6D. π8变式训练 (2015福建文)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A. 16B. 14C. 38D. 12解题要点 求解与面积有关的几何概型的注意点:求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解. 题型三 与体积有关的几何概型例3 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A. π12 B .1-π12 C. π6 D .1-π6变式训练 有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解题要点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.当堂练习1.(2015陕西文)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A. 34+12π B. 12+1π C. 14-12π D. 12-1π2.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A. 4π81B. 81-4π81C. 127D. 8273. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A. 13 B. 2π C. 12 D. 234.在[-2,3]上随机取一个数x ,则(x +1)(x -3)≤0的概率为( )A. 25B. 14C. 35D. 455.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为__________.课后作业一、 选择题1.在长为10cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与49cm 2之间的概率为( )A. 25 B .15、 C. 45 D .3102.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( ) A. 13 B .17 C. 310 D .7103.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( )A. 16 B .13 C. 23 D .454.如图,一个矩形的长为5,宽为2,在矩形内随机的撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约为( )A. 235 B .215 C. 195 D .1655.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率( )A. 334π B .2π C. 4π D .33π46.一只蚂蚁在一直角边长为1cm 的等腰直角三角形ABC (∠B =90°)的边上爬行,则蚂蚁距A 点不超过1cm 的概率为( )A .22B .23C .2- 3D .2- 2 7.(2015湖北文)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1 D .p 1<12<p 2 二、填空题8.在区间[20,80]内任取一个实数m ,则实数m 落在区间[50,75]内的概率为________.9.(2013·湖北卷)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.10. (2014·福建文)如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.11.取一个边长为2a 的正方形及其内切圆如图,随机向正方形内丢一粒豆子,豆子落入圆内的概率为______________________.三、解答题12.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.(1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;(2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率.13.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率.。
卜人入州八九几市潮王学校高考数学总复习:立几构造、三视图、体积知识网络目的认知考试大纲要求:1.认识柱、锥、台、球及其简单组合体的构造特征,并能运用这些特征描绘现实生活中简单物体的结构.2.能画出简单空间图形〔长方体、球、圆柱、圆锥、棱柱等的简易组合〕的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,理解空间图形的不同表示形式.4.会画某些建筑物的视图与直观图〔在不影响图形特征的根底上,尺寸、线条等不作严格要求〕.5.理解球、棱柱、棱锥、台的外表积和体积的计算公式〔不要求记忆公式〕.重点:能画出简单空间图形的三视图,掌握三视图是从三个不同方向观察几何体而得到的正投影.能将三视图转化为相应的直观图,计算出它们的外表积和体积.难点:三视图画法规那么的掌握以及将三视图转化为相应的直观图的才能.知识要点梳理知识点一:空间几何体的构造结构特征物例图例棱柱〔1〕两底面互相平行,其余各面都是平行四边形;〔2〕侧棱平行且相等.六角螺帽圆柱〔1〕是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体;〔2〕两底面互相平行;〔3〕侧面的母线平行于圆柱的轴;〔4〕侧面展开图是矩形.大厅的圆形柱棱锥〔1〕底面是多边形,各侧面均是三角形;〔2〕各侧面有一个公一共顶点.金字塔圆锥〔1〕是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体;〔2〕底面是圆;〔3〕侧面展开图是扇形.泥工用重心锤棱台〔1〕是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的局部;〔2〕两底面互相平行.大坝圆台〔1〕是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的局部;〔2〕两底面互相平行;〔3〕侧面展开图是扇环.酒杯球〔1〕是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体;〔2〕球心到球面上各点的间隔相等.篮球知识点二:三视图1、投影:〔1〕平行投影与中心投影〔其中的线与线的位置关系〕由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.把光线叫做投影线,把留下物体影子的屏幕叫做投影面.把光由点向外散射形成的投影,叫做中心投影,中心投影的投影线是由同一点发射出来的;把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投影线是平行的.〔2〕正投影与斜投影〔其中的线与面的位置关系〕在平行投影中,投影线正对着投影面〔即投影线垂直于投影面〕叫做正投影,否那么叫做斜投影.在平行投影之下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小是完全一样的.2、三视图“视图〞是将物体按正投影法向投影面投射时所得到的投影图,通常选择三种正投影来把握几何体的形状和大小.〔1〕光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图(有的书称为主视图);〔2〕光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图(有的书称为左视图);〔3〕光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图.几何体的正视图、侧视图、俯视图统称为几何体的三视图.3、三视图的画法规那么能看见的轮廓线和棱用实线表示;不能看见的轮廓线和棱用虚线表示.4、三视图的排列顺序先画正视图,将左视图画在主视图的右边,将俯视图画在主视图的下边.5、画三视图应遵循的原那么主视图、俯视图长对正;主视图、左视图齐;俯视图、左视图宽相等〔见以下图〕.知识点三:直观图“直观图〞最常用的画法是斜二测画法,程度放置的直观图的斜二测画法,可以归结为在坐标系中确定点的位置的画法.画法的关键是掌握根本步骤:〔1〕建系:在图形中取互相垂直的轴和轴,得到直角坐标系;画直观图时,它们分别在直观图中画成斜坐标系,两轴夹角为〔或者〕,它们确定的平面表示程度面;〔2〕平行位置不变:在图形中找或者画出平行于轴或者轴的线段,在直观图中分别画成平行于轴或者轴的线段;〔3〕长度规那么:图形中平行于轴的线段,在直观图中保持长度不变;平行于轴的线段,长度为原来的一半.知识点四:外表积与体积公式外表积相关公式体积公式棱柱圆柱〔r:底面半径,h:高〕棱锥圆锥〔r:底面半径,l:母线长〕棱台〔r:下底半径,r’:上底半径,l:圆台母线长〕球〔R:球的半径〕规律方法指导〔1〕三视图中,主视图、俯视图长对正;主视图、左视图齐;俯视图、左视图宽相等.〔〔2〕除球体外,柱、锥、台体等的外表积常常都是将其外表积展开,转化成平面图形的面积求得.〔3〕求几何体的体积时,有时i可对几何体进展适当的割补.。
专题52 几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个X围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A . 典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2, 由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】A则所求概率P=1-SS=1-,故选A.典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为 A 33B .3C .33.34.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)A.134 B.268C.402 D.536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83 m 2 B .2 m 2C .38m 2 D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4m n B .4nmC .2m n D .2nm5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB =3,BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120- 9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.(2017某某)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016某某理科)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 .1.【答案】 C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A变式拓展【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D.6.【答案】B【解析】连接AC,交圆弧DE于点M.在Rt△ABC中,AB3BC=1,所以tan∠BAC=3BCAB=即∠BAC=π6.要使直线AP与线段BC有公共点,则点P必须在圆弧EM上,于是所求概率为P=π16π32=.故选B.7.【答案】A【解析】由题意,区域F的面积为e;区域E的面积S=1e2011d dx x xx+⎰⎰=31e0114|ln|33x x+=,所以在区域F内任取一点,则该点落在区域E内的概率为43e.8.【答案】D【解析】由题意,直角三角形内切圆的半径r=8151732+-=,所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π211208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD ,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEF ABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.直通高考4.【答案】34【解析】直线y =kx 与圆22(5)9x y相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ,所以所求概率P =33224=.。
专题22 几何体的表面积与体积考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.几何体的表面积理解球、柱体、锥体、台体的表面积和体积的计算公式(不要求记忆公式) 理解2020课标全国Ⅱ,6;2020课标全国Ⅲ,9;2020浙江,11;2020课标Ⅰ,11;2020北京,5;2020大纲全国,8选择题填空题★★★2.几何体的体积理解2020课标全国Ⅱ,4;2020课标全国Ⅲ,8;2020浙江,3;2020江苏,6;2020天津,10;2020山东,13;2020山东,5;2020北京,6;2020课标Ⅰ,6;2020陕西,5选择题填空题解答题★★★柱、锥、台、球的表面积公式和体积公式.3.备考时关注以三视图、柱、锥与球的接切问题为命题背景,突出空间几何体的线面位置关系的命题.4.高考对本节内容的考查以计算几何体的表面积和体积为主,分值约为5分,属中档题.2020年高考全景展示1.【2020年浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.2.【2020年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B【解析】分析:作图,D为MO 与球的交点,点M为三角形ABC的重心,判断出当平面时,三棱锥体积最大,然后进行计算可得。
详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。
3.【2020年理数天津卷】已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为__________.【答案】点睛:本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力. 4.【2020年江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.5.【2020年理数全国卷II】已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.【答案】【解析】分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.详解:因为母线,所成角的余弦值为,所以母线,所成角的正弦值为,因为的面积为,设母线长为所以,因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为点睛:本题考查线面角,圆锥的侧面积,三角形面积等知识点,考查学生空间想象与运算能力2020年高考全景展示1.【2020高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C 【解析】试题分析:由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C.考点: 三视图,空间几何体的体积. 【名师点睛】由三视图还原几何体的方法:2.【2020年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1 【答案】A 【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.3.【2020课标3,理8】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【考点】圆柱的体积公式【名师点睛】(1)求解以空间几何体的体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.4.【2020课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π【答案】B【考点】 三视图;组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。
考点规范练55 几何概型基础巩固1.(2021全国Ⅰ,文7)在区间(0,12)随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案:B解析:所求事件的概率P=13-012-0=23.2.若将一个质点随机地投入到如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A.π2 B.π4C.π6D.π8答案:B 解析:所求概率为S 半圆S 长方形=12π·122×1=π4,故选B .3.“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一棵芦苇生长在池塘的正中央,露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深?芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A.1213 B.113C.314D.213答案:B解析:设水深为x 尺,根据勾股定理可得(x+1)2=x 2+52,解得x=12,则水深12尺,芦苇长13尺.根据几何概型概率公式可得,从该芦苇上随机取一点,该点取自水上的概率为P=113,故选B.4.某人从甲地去乙地共走了500 m,途经一条宽为x m的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品未掉在河里,则能找到,已知该物品能被找到的概率为45,则河宽大约为()A.80 mB.50 mC.40 mD.100 m答案:D解析:由长度型的几何概型公式结合题意可知,河宽大约为500×(1-45)=100(m).5.已知在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为()A.16B.13C.12D.23答案:C解析:如图,当BE=1时,∠AEB为直角,则点D在线段BE(不包含B,E点)上时,△ABD为钝角三角形;当BF=4时,∠BAF为直角,则点D在线段CF(不包含C,F点)上时,△ABD为钝角三角形.故△ABD为钝角三角形的概率为1+26=12.6.有一个长、宽分别为50 m,30 m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线的交点)处呼唤工作人员,其声音可传出15√2 m,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.34B.38C.3π16D.12+3π32答案:B解析:如图,工作人员在池边巡视的长度为160,工作人员能及时听到呼唤的长度为30+30=60,故所求的概率为60160=38.7.若在区间[-1,1]上随机取一个数x ,则sin πS 4的值介于-12与√22之间的概率为( )A.14 B.13C.23D.56答案:D解析:∵-1≤x ≤1,∴-π4≤πS 4≤π4.由-12≤sinπS 4≤√22, 得-π6≤πS 4≤π4,则-23≤x ≤1.故所求事件的概率为1-(-23)1-(-1)=56.8.记函数f (x )=√6+S -S 2的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 . 答案:59解析:由6+x-x 2≥0,即x 2-x-6≤0得-2≤x ≤3,所以D=[-2,3]⊆[-4,5].由几何概型的概率公式得x ∈D 的概率P=3-(-2)5-(-4)=59,答案为59.9.记集合A={(x ,y )|x 2+y 2≤4}和集合B={(x ,y )|x+y-2≤0,x ≥0,y ≥0}表示的平面区域分别为Ω1和Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2的概率为 .答案:12π解析:作圆O :x 2+y 2=4,区域Ω1就是圆O 内部(含边界),其面积为4π,区域Ω2就是图中△AOB 内部(含边界),其面积为2,因此所求概率为24π=12π.10.在圆C :(x-3)2+y 2=3上任取一点P ,则锐角∠COP<π6(O 为坐标原点)的概率是 .答案:23解析:当∠COP=π6时,直线OP 的方程为x ±√3y=0,圆心C 到直线OP 的距离d=32.又圆C 的半径为√3,此时弦所对的圆心角为π3,所以所求概率P=1-π3×22π=23.能力提升11.在区间[-1,1]上随机取一个数k ,使直线y=kx+√52与圆x 2+y 2=1不相交的概率为( ) A.34 B.23C.12D.13答案:C 解析:要使直线y=kx+√52与圆x 2+y 2=1相交,应满足√52√≥1,解得-12≤k ≤12,所以在区间[-1,1]上随机取一个数k ,使直线y=kx+√52与圆x 2+y 2=1不相交的概率为P=12+121+1=12.故选C .12.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形.若在大正方形内随机取一点,该点落在小正方形的概率为15,则图中直角三角形较大锐角的正弦值为( )A.√55B.2√55C.15D.√33答案:B解析:设小正方形的边长为1,直角三角形的直角边长分别为x ,1+x ,√S 2+(1+S )2. 由几何概型可得12S 2+(1+S )2=15,解得x=1(x=-2(舍)),所以直角三角形的边长分别为1,2,√5,直角三角形较大锐角的正弦值为√5=2√55,故选B .13.已知函数f (x )=x 2+bx+c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足条件{S (2)≤12,S (-2)≤4为事件A ,则事件A 发生的概率为( ) A.14 B.58 C.12 D.38答案:C 解析:由题意, 得{4+2S +S ≤12,4-2S +S ≤4,0≤S ≤4,0≤S ≤4,即{2S +S -8≤0,2S -S ≥0,0≤S ≤4,0≤S ≤4,表示的区域(阴影部分)如图所示,可知阴影部分的面积为8, 所以所求概率为12,故选C .14.设点(a ,b )是区域{S +S -4≤0,S >0,S >0内的任意一点,则使函数f (x )=ax 2-2bx+3在区间[12,+∞)内是增函数的概率为 . 答案:13解析:作出不等式组{S +S -4≤0,S >0,S >0所对应的平面区域如图△AOB 区域,可知符合条件的点所构成的区域面积为S △AOB =12×4×4=8. 若f (x )=ax 2-2bx+3在区间[12,+∞)内是增函数,则{S >0,--2S 2S=S S ≤12,即{S >0,S -2S ≥0.则A (0,4),B (4,0), 由{S +S -4=0,S -2S =0得{S =83,S =43.即C (83,43). 则使函数f (x )=ax 2-2bx+3在区间[12,+∞)内为增函数的点(a ,b )所构成的区域为△OBC ,其面积为12×4×43=83.故所求的概率为838=13.15.如图,在Rt △ABC 中,∠BAC=90°,AB=1,BC=2.在边BC 上任取一点M ,则∠AMB ≥90°的概率为 .答案:14解析:如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD=12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率为SSSS=122=14.16.张先生订了一份报纸,送报人在早上6:30~7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00~8:00之间,则张先生在离开家之前能得到报纸的概率是 . 答案:78解析:以横坐标x 表示报纸送到时间,纵坐标y 表示张先生离家时间,建立如图所示的平面直角坐标系.因为随机试验落在正方形区域内任何一点是等可能的,所以符合几何概型.根据题意只要点落到阴影部分,就表示张先生在离开家前能得到报纸,故所求的概率为1×1-12×12×121×1=78.高考预测17.若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组{S -S ≥0,S +S ≥0,S ≥2S -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为 . 答案:π24解析:分别作出平面区域M 和平面区域N 如图所示,可知平面区域M 与平面区域N 重叠部分的面积为14π(√2)2=π2,平面区域N 的面积为12×3×2+12×3×6=12,故所求的概率为12π12=π24.。
高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。
解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。
侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。
所以表面积S=2S_{底}+S_{侧}=2√(3)+6。
2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。
解析:该几何体是一个四棱台。
上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。
根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。
2025届山东省莱芜一中高考临考冲刺数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知公差不为0的等差数列{}n a 的前n 项的和为n S ,12a =,且139,,a a a 成等比数列,则8S =( ) A .56B .72C .88D .402.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a << A .1B .2C .3D .43.已知直线22y x a =-是曲线ln y x a =-的切线,则a =( ) A .2-或1B .1-或2C .1-或12D .12-或1 4.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .5.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .6.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln27.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( ).A .2B .3C .1D .68.已知函数()12xf x e -=,()ln 12xg x =+,若()()f m g n =成立,则n m -的最小值为( )A .0B .4C .132e -D .5+ln 629.已知函数2()4ln f x ax ax x =--,则()f x 在(1,4)上不单调的一个充分不必要条件可以是( )A .12a >-B .1016a <<C .116a >或102a -<< D .116a >10.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .11.已知复数()()2019311i i z i--=(i 为虚数单位),则下列说法正确的是( ) A .z 的虚部为4B .复数z 在复平面内对应的点位于第三象限C .z 的共轭复数42z i =-D .25z =12.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .45二、填空题:本题共4小题,每小题5分,共20分。
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
2018年高考数学总复习高考达标检测(五十)几何概型命题3角度-长度(角度)、面积、体积理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学总复习高考达标检测(五十)几何概型命题3角度-长度(角度)、面积、体积理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学总复习高考达标检测(五十)几何概型命题3角度-长度(角度)、面积、体积理的全部内容。
高考达标检测(五十)几何概型命题3角度——长度(角度)、面积、体积一、选择题1.如图所示,A是圆上一定点,在圆上其他位置任取一点A′,连接AA′,得到一条弦,则此弦的长度小于或等于半径长度的概率为()A。
错误!ﻩB。
错误!C.13D.错误!解析:选C 当AA′的长度等于半径长度时,∠AOA′=错误!,A′点在A点左右都可取得,故由几何概型的概率计算公式得P=错误!=错误!。
2.在区间[0,1]上随意选择两个实数x,y,则使错误!≤1成立的概率为( )A。
错误! B。
错误!C.错误! D。
错误!解析:选B 如图所示,试验的全部结果构成正方形区域,使得错误!≤1成立的平面区域为以坐标原点O为圆心,1为半径的圆的错误!与x轴正半轴,y轴正半轴围成的区域,由几何概型的概率计算公式得,所求概率P=错误!=错误!。
故选B。
3.(2017·湖南师大附中检测)利用计算机产生0~1之间的均匀随机数a,b,则事件“错误!”发生的概率为( )A.错误!ﻩB。
错误!C。
\f(2,3) ﻩD.错误!解析:选A由题意可知错误!该不等式组表示的区域为一个边长为1的正方形,其面积是1。
第3讲 几何概型,[同学用书P179])1.几何概型假如每个大事发生的概率只与构成该大事区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成大事A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)1.辨明两个易误点(1)几何概型中,线段的端点、图形的边框是否包含在大事之内不影响所求结果.(2)易混淆几何概型与古典概型,两者共同点是基本大事的发生是等可能的,不同之处是几何概型中基本大事的个数是无限的,古典概型中基本大事的个数是有限的.2.会解三种常见的几何概型(1)与长度有关的几何概型,其基本大事只与一个连续的变量有关;(2)与面积有关的几何概型,其基本大事与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本大事就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.1. 教材习题改编 如图,转盘的指针落在A 区域的概率为( )A .16B .19C .112D .118[答案] C2.教材习题改编 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,则某人到达路口时观察的是红灯的概率是( )A .15B .25C .35D .45B [解析] P =3030+5+40=25,故选B.3.教材习题改编 如图,在一边长为2的正方形ABCD 内有一曲线L 围成的不规章图形.往正方形内随机撒一把豆子(共m 颗).落在曲线L 围成的区域内的豆子有n 颗(n <m ),则L 围成的区域面积(阴影部分)为( )A .2nmB .4n mC .n 2mD .n 4mB [解析]S 阴影S 正方形=落在L 围成的区域的豆子数n 落在正方形中的豆子数m,所以S 阴影=n m ×22=4nm.4.教材习题改编 如图,圆中有一内接等腰三角形.假设你在图中随机投掷一点,则它落在阴影部分的概率为________.[解析] 设圆的半径为R ,由题意知圆内接三角形为等腰直角三角形,其直角边长为2R , 则所求大事的概率为P =S 阴S 圆=12×2R ×2R πR 2=1π.[答案]1π5.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.[解析] 在正方体ABCD -A 1B 1C 1D 1中,设M -ABCD 的高为h ,则13×S 四边形ABCD ×h =16.又S 四边形ABCD =1,所以h =12.若体积小于16,则h <12,即点M 在正方体的下半部分,所以P =12V正方体V 正方体=12.[答案] 12与长度、角度有关的几何概型[同学用书P180][典例引领](1)(2022·高考全国卷乙)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13B .12C .23D .34(2)(2021·烟台模拟)在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,则cos x 的值介于0到12之间的概率为________.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,则BM <1的概率为________.【解析】 (1)由题意得图:由图得等车时间不超过10分钟的概率为12.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,依据几何概型概率公式得所求概率为13.(3)由于∠B =60°,∠C =45°, 所以∠BAC =75°.在Rt △ABD 中,AD =3,∠B =60°, 所以BD =ADtan 60°=1,∠BAD =30°.记大事N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时大事N 发生. 由几何概型的概率公式,得: P (N )=30°75°=25.【答案】 (1)B (2)13 (3)251.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?[解] 当-π2≤x ≤π2时,由0≤cos x ≤32, 得-π2≤x ≤-π6或π6≤x ≤π2,依据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,则BM <1的概率是多少?[解] 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12.与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将全部基本大事及大事A 包含的基本大事转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特殊留意“长度型”与“角度型”的不同.解题的关键是构建大事的区域(长度或角度).[通关练习]1.在区间[0,2]上随机地取出一个数x ,则大事“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( ) A .34B .23C .13D .14A [解析] 不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.2.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.[解析] 如题图,由于射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60360=16.[答案] 16与面积有关的几何概型(高频考点)[同学用书P181]与面积有关的几何概型是高考命题的热点,多以选择题或填空题的形式呈现,多为简洁题或中档题. 高考对与面积有关的几何概型的考查主要有以下两个命题角度: (1)与平面图形面积有关的几何概型; (2)与线性规划学问交汇命题的几何概型. [典例引领](1)(2022·高考全国卷甲)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4nmB .2nmC .4mnD .2m n(2)(2021·湖北华师附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( )A .14B .316C .916D .34【解析】 (1)设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4mn,故选C. (2) (x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分,易知A (4,2),所以P =12×(2+4)×44×4=34.选D.【答案】 (1)C (2)D与面积有关的几何概型的求法求解与面积有关的几何概型时,关键是弄清某大事对应的面积以求面积,必要时可依据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.[题点通关]角度一 与平面图形面积有关的几何概型1. 如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A .4π-1B .1πC .1-1πD .2πA [解析] 顺次连接星形的四个顶点,则星形区域的面积等于(2)2-4⎝⎛⎭⎫14×π×12-12×12=4-π,又由于圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1. 角度二 与线性规划学问交汇命题的几何概型2.在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为________. [解析] 要使该函数无零点,只需a 2-4b 2<0,即(a +2b )(a -2b )<0.由于a ,b ∈[0,1],a +2b >0,所以a -2b <0.作出⎩⎨⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域(如图阴影部分所示),易得该函数无零点的概率P =1-12×1×121×1=34.[答案] 34与体积有关的几何概型[同学用书P181][典例引领](1)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.(2)(2021·黑龙江五校联考)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.【解析】 (1)正方体的体积为:2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为:12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为:1-23π8=1-π12. (2)由题意可知V S -APC V S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM ,BN 分别为△APC 与△ABC 的高,所以V S -APC V S -ABC =S △APC S △ABC =PM BN >13,又PM BN =AP AB ,所以AP AB >13,故所求的概率为23(即为长度之比).【答案】 (1)1-π12 (2)23与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及大事的体积(大事空间),对于某些较简单的也可利用其对立大事求解.(2021·长春其次次调研) 如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1,过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .设AB =2AA 1=2a ,EF =a ,B 1E =2B 1F .在长方体ABCD -A 1B 1C 1D 1内随机选取一点,则该点取自于几何体A 1ABFE -D 1DCGH 内的概率为________.[解析] 由于EH ∥A 1D 1,所以EH ∥B 1C 1,所以EH ∥平面BCC 1B 1.过EH 的平面与平面BCC 1B 1交于FG ,则EH ∥FG ,所以易证明几何体A 1ABFE -D 1DCGH 和EB 1F -HC 1G 分别是等高的五棱柱和三棱柱,由几何概型可知,所求概率为:P =1-V 三棱柱V 长方体=1-S △EB 1F S 矩形ABB 1A 1=1-12×55a ×255a 2a 2=910.[答案]910,[同学用书P182])——转化与化归思想在几何概型中的应用某校早上8:00开头上课,假设该校同学小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为__________.(用数字作答)【解析】 设小王到校时间为x ,小张到校时间为y ,则小张比小王至少早到5分钟时满足x -y ≥5.如图,原点O 表示7:30,在平面直角坐标系中画出小王和小张到校的时间构成的平面区域(图中正方形区域),该正方形区域的面积为400,小张比小王至少早到5分钟对应的图形(图中阴影部分)的面积为12×15×15=2252,故所求概率为P =2252400=932.【答案】932本题通过设置小张、小王两人到校的时间这两个变量x ,y ,将已知转化为x ,y 所满足的不等式,进而转化为坐标平面内的点(x ,y )的相关约束条件,从而把时间这个长度问题转化为平面图形的二维面积问题,进而转化为面积型的几何概型问题求解.若题中涉及三个相互独立的变量,则需将其转化为空间几何体的体积问题加以求解.甲、乙两位同学商定周日上午在某电影院旁见面,并商定先到达者等10分钟后另一人还没有到就离开.假如甲是8:30到达,假设乙在8:00~9:00之间到达,且乙在8:00~9:00之间何时到达是等可能的,则两人见面的概率是( )A .16B .14C .13D .12C [解析] 由题意知,若以8:00为起点,则乙在8:00~9:00之间到达这一大事对应的集合是Ω={x |0<x <60},而满足条件的大事对应的集合是A ={x |20≤x ≤40},所以两人见面的概率是40-2060-0=13., [同学用书P349(独立成册)])1.设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( ) A .15B .25C .35D .45C [解析] 方程x 2+px +1=0有实根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去).由几何概型的概率计算公式可知所求的概率为5-25-0=35.2.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A .16B .13C .23D .45C [解析] 设AC =x ,则CB =12-x ,所以x (12-x )<32,解得x <4或x >8. 所以P =4+412=23.3.已知ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .π4B .1-π4C .π8D .1-π8B [解析] 如图,依题意可知所求概率为图中阴影部分与长方形的面积比,即所求概率P =S 阴影S 长方形ABCD=2-π22=1-π4.4. 如图所示,A 是圆上肯定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12B .32C .13D .14C [解析] 当AA ′的长度等于半径长度时,∠AOA ′=π3,A ′点在A 点左右都可取得,故由几何概型的概率计算公式得P =2π32π=13,故选C.5.(2021·商丘模拟)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .12D .23C [解析] 如图所示,设点M 是BC 边的中点,由于PB →+PC →+2P A →=0,所以点P 是中线AM 的中点,所以黄豆落在△PBC 内的概率P =S △PBC S △ABC =12,故选C.6.任取实数a 、b ∈[-1,1],则a 、b 满足|a -2b |≤2的概率为( ) A .18B .14C .34D .78D [解析] 建立如图所示的坐标系,由于|a -2b |≤2,所以-2≤a -2b ≤2表示的平面区域为图中阴影部分,所以|a -2b |≤2的概率为S 阴影S 正方形=78.7. 如图,在一不规章区域内,有一边长为1米的正方形,向区域内随机地撒1 000 颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此试验数据为依据,可以估量出该不规章图形的面积为________平方米.[解析] 设该不规章图形的面积为x 平方米,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375,所以依据几何概型的概率计算公式可知3751 000=1x ,解得x =83.[答案] 838.已知函数f (x )=x 2-x -2,x ∈[-5,5],若从区间[-5,5]内随机抽取一个实数x 0,则所取的x 0满足f (x 0)≤0的概率为________.[解析] 令x 2-x -2≤0,解得-1≤x ≤2,由几何概型的概率计算公式得P =2-(-1)5-(-5)=310=0.3.[答案] 0.39.如图,长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.[解析] 设大事M =“动点在三棱锥A -A 1BD 内”, 则P (M )=V 三棱锥A -A 1BDV 长方体ABCD -A 1B 1C 1D1=V 三棱锥A 1-ABDV 长方体ABCD -A 1B 1C 1D1=13AA 1·S △ABD V 长方体ABCD -A 1B 1C 1D1=13AA 1·12S 矩形ABCD AA 1·S 矩形ABCD=16.[答案] 1610.(2021·郑州模拟)若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.[解析] 作出不等式组与不等式表示的可行域如图所示,平面区域N 的面积为12×3×(6+2)=12,区域M在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.[答案]π2411. 如图所示,圆O 的方程为x 2+y 2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. [解] (1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记大事M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.12.(2021·广东七校联考) 如图,已知圆的半径为10,其内接三角形ABC 的内角A ,B 分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC 内的概率为( )A .3+316πB .3+34πC .4π3+3D .16π3+3B [解析] 由正弦定理BC sin A =ACsin B=2R (R 为圆的半径)⇒⎩⎪⎨⎪⎧BC =20sin 60°,AC =20sin 45°⇒⎩⎪⎨⎪⎧BC =103,AC =10 2.那么S △ABC =12×103×102sin 75°=12×103×102×6+24=25(3+3). 于是,豆子落在三角形ABC 内的概率为S △ABC 圆的面积=25(3+3)102π=3+34π. 13.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. [解] (1)集合M 内的点形成的区域面积S =8.由于x 2+y 2=1的面积S 1=π, 故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22,即-1≤x +y ≤1,形成的区域如图中阴影部分所示,面积S 2=4,故所求概率为P 2=S 2S =12.14.已知袋子中放有大小和外形相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,其次次取出的小球标号为b . ①记“a +b =2”为大事A ,求大事A 的概率;②在区间[0,2]内任取2个实数x ,y ,求大事“x 2+y 2>(a -b )2恒成立”的概率.[解] (1)依题意n n +2=12,得n =2.(2)①记标号为0的小球为s ,标号为1的小球为t ,标号为2的小球为k ,h ,则取出2个小球的可能状况有:(s ,t ),(s ,k ),(s ,h ),(t ,s ),(t ,k ),(t ,h ),(k ,s ),(k ,t ),(k ,h ),(h ,s ),(h ,t ),(h ,k ),共12种,其中满足“a +b =2”的有4种:(s ,k ),(s ,h ),(k ,s ),(h ,s ).所以所求概率为P (A )=412=13.②记“x 2+y 2>(a -b )2恒成立”为大事B ,则大事B 等价于“x 2+y 2>4恒成立”,(x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R },而大事B 构成的区域为B={(x ,y )|x 2+y 2>4,(x ,y )∈Ω}.所以所求的概率为P (B )=1-π4.。
专题55 立体几何 空间几何体的表面积和体积【考点讲解】一、具本目标:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). 二、知识概述: 1.体积公式:柱体:h S V ⋅=,圆柱体:h r V ⋅=2π。
斜棱柱体积:l S V ⋅'=(其中,S '是直截面面积,l 是侧棱长);锥体:h S V ⋅=31, 圆锥体:, 台体:圆台体:, 球体:334r V π=。
正方体的体积 3a V = ;正方体的体积 abc V =. 2.侧面积:直棱柱侧面积:h c S ⋅=,斜棱柱侧面积:l c S ⋅'=;正棱锥侧面积:h c S '⋅=21,正棱台侧面积:;圆柱侧面积:,圆锥侧面积:,圆台侧面积:,球的表面积:24r S π=。
3.几个基本公式:弧长公式:r l ⋅=α(α是圆心角的弧度数,α>0);扇形面积公式:r l S ⋅=21; 圆锥侧面展开图(扇形)的圆心角公式:πθ2⋅=lr; 圆台侧面展开图(扇环)的圆心角公式:;球面上两点间的距离公式:r l θ=。
4.几何体的表面积:圆柱的表面积;圆锥的表面积;圆台的表面积球体的表面积 24R S π=.柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和. 把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.【温馨提示】1.多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.2.圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(1)已知几何体的三视图求其体积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表体积公式求其体积.(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.4.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.【常考题型】以结合三视图、几何体的结构特征考查几何体的面积体积计算为主,题型基本稳定为选择题或填空题,难度中等以下;也有几何体的面积或体积在解答题中与平行关系、垂直关系等相结合考查的情况. 以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【真题分析】1.【2015高考课标2】已知A,B 是球O 的球面上两点,∠AOB=900,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A .36π B.64π C.144π D.256π 【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时,故6R =,则球O 的表面积为,故选C .【答案】C2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π 【解析】由题意可知,圆柱的侧面积为,圆锥的侧面积为,圆柱的底面面积为,故该几何体的表面积为,故选C.【答案】C3.【2016高考新课标3】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )A.18+B.54+【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积是:,故选B .【答案】B4.【2017浙江,3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .12+πB .32+πC .123+πD .323+π【解析】本题的考点是根据三视图还原立体图形后求体积的问题,由三视图可知,原立体图形是一个组合体,是圆锥的一半与一个三棱锥的组合,圆锥的底面半径是1,三棱锥的底面是以2为底边的等腰直角三角形,两锥体的高是3.体积为.【答案】A5.【2017山东,理13】由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【解析】由三视图可知长方体的长为2,宽为1,高为1,圆柱的底面半径是,高也为1.长方体的体积为,圆柱一半的体积为:.几体的体积为:【答案】22π+6.【2018年天津卷】已知正方体的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为__________.【解析】根据题中给出的条件,要求四棱锥的体积,首先要求出四棱锥的底面积,然后求出四棱锥的高.观察图形可得底面四边形EFGH 的正方形,面积为.顶点M 到底面四边形EFGH 的距离为12d =,所以四棱锥M EFGH -的体积为.【答案】1127.【2018年江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【解析】先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,所以该多面体的体积为.【答案】438.【2018年全国卷II 】已知圆锥的顶点为S ,母线,SA SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为__________.【解析】本题先要根据三角形的面积公式求出母线的长,再根据母线与底面所成角求出圆锥的底面半径,最后求出圆锥的侧面积.由母线,SA SB 所成角的余弦值为78,可求得母线,SA SB 所成角的正弦值8,由SAB ∆的面积为l ,可知l SA SB ==,由三角形的面积公式可得,所以可得2=80l ,又因为SA 与圆锥底面所成角为45°,底面半径为,圆锥的侧面积为.【答案】【模拟考场】1. 【2015高考新课标2】一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【解析】由三视图得,在正方体中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为51,故选D . 【答案】D2.2,且三棱柱的顶点都在同一个球面上,则该球的表面积为( ) A .4πB .8πC .12πD .16π【解析】因底面边长为3,故底面中心到顶点的距离是1,即球的截面圆的半径为1,所以,其表面积为,故应选B.【答案】B3.【2015高考课标1】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( )A.1B.2C.4D.8【解析】由正视图与俯视图可以看出,此几何体是半球与半个圆柱的组合体,圆柱与球的半径都是r,圆柱的高为2r,表面积为.可得=2r.【答案】B4.【原题】(必修2第28页习题1.3第3题)如图将一个长方体沿相邻三个面的对角线截出一个棱锥,求棱锥的体积与剩下的几何体体积的比。
高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
几何概型试题汇编一、单选题(共27题;共54分)1.在区间上随机取一个数x,则事件“ ”不发生的概率为()A. B. C. D.2.在区间内的所有实数中随机取一个实数,则这个实数满足的概率是()A. B. C. D.3.在由不等式组所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( )A. B. C. D.4.设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.5.如图,矩形中,点的坐标为.点的坐标为.直线的方程为:且四边形为正方形,若在五边形内随机取一点,则该点取自三角形 (阴影部分)的概率等于()A. B. C. D.6.如图,六边形是一个正六边形,若在正六边形内任取一点,则恰好取在图中阴影部分的概率是()A. B. C. D.7.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影)。
设直角三角形有一内角为,若向弦图内随机抛掷1000颗米粒(大小忽略不计),则落在小正方形(阴影)内的米粒数大约为()A. 134B. 866C. 300D. 5008.我们可以用计算机产生随机数的方法估计的近似值,如图所示的程序框图表示其基本步骤(中用函数来产生的均匀随机数),若输出的结果为524,则由此可估计的近似值为()A. 3.144B. 3.154C. 3.141D. 3.1429.如图,在矩形区域的两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域和扇形区域(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A. B. C. D.10.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为()A. B. C. D.11.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.12.在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为()A. B. C. D.13.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A. +B. +C. ﹣D. ﹣14.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为()A. B. C. D.15.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.16.圆O内有一内接正三角形,向圆O内随机投一点,则该点落在正三角形内的概率为()A. B. C. D.17.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. 1﹣B.C. 1﹣D. 与a的取值有关18.不等式6﹣5x﹣x2≥0的解集为D,在区间[﹣7,2]上随机取一个数x,则x∈D的概率为()A. B. C. D.19.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于的概率为()A. B. C. D.20.如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为()A. B. C. D.21.如图,在圆心角为90°的扇形中以圆心O为起点作射线OC,则使得∠AOC与∠BOC都不小于30°的概率是()A. B. C. D.22.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A. B. C. D.23.某人从甲地去乙地共走了500m,途经一条宽为xm的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为()A. 80mB. 100mC. 40mD. 50m24.在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为,则k的值为()A. B. C. D.25.在半径为1的圆O内任取一点M,过M且垂直OM与直线l与圆O交于圆A,B两点,则AB长度大于的概率为()A. B. C. D.26.在长为16cm的线段MN上任取一点P,以MP,NP为邻边作一矩形,则该矩形的面积大于60cm2的概率为()A. B. C. D.27.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A. B. C. D.二、填空题(共7题;共7分)28.已知Ω1是集合{(x,y)|x2+y2≤1}所表示的区域,Ω2是集合{(x,y)|y≤|x|}所表示的区域,向区域Ω1内随机的投一个点,则该点落在区域Ω2内的概率为________.29.在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a的值为________.30.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段任何的时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________31.上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为________32.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率________.33.如图所示,为了求出一个边长为10的正方形内的不规则图形的面积,小明设计模拟实验:向这个正方形内均匀的抛洒20粒芝麻,结果有8粒落在了不规则图形内,则不规则图形的面积为________.34.矩形区域ABCD 中,AB 长为2 千米,BC 长为1 千米,在A 点和C 点处各有一个通信基站,其覆盖范围均为方圆1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为________.三、解答题(共8题;共65分)35.遂宁市观音湖港口船舶停靠的方案是先到先停.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率36.如图,为圆柱的母线,是底面圆的直径,是的中点.(Ⅰ)问:上是否存在点使得平面?请说明理由;(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.37.某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是、、,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.38.设关于x的一元二次方程x2+ax﹣+1=0.(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程中有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.39.设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数.(Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.40.已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.41.已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).42.某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.答案解析部分一、单选题1.【答案】D【考点】几何概型【解析】【解答】解:区间上随机取一个数x,对应区间长度为,满足事件“ ”的x范围为x+1≤3,即≤x≤2,对应区间长度为2+ ,所以事件不发生的概率为1﹣= ;故选D.【分析】由题意,本题是几何概型,首先求出事件对应的区间长度,利用长度比求概率.2.【答案】C【考点】几何概型【解析】【解答】由题意可得,该问题为长度型几何概型,则所求问题的概率值为:.故答案为:C.【分析】根据题目中所给的条件的特点,分别计算出区间(15,25]的长度,区间(17,20)的长度,代入几何概型概率计算公式,即可得到答案.考查几何概型的概率计算.其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键.3.【答案】D【考点】几何概型【解析】【解答】画出关于的不等式组所构成的三角形区域,如图所示.的面积为离三个顶点距离都不大于1的地方的面积为∴其恰在离三个顶点距离都不小于1的地方的概率为故答案为:D.【分析】画出关于x,y的不等式组所构成的三角形区域,求出三角形的面积;再求出距三角形的三顶点距离小于等于1的区域为三个扇形,三个扇形的和是半圆,求出半圆的面积;利用对立事件的概率公式及几何概型概率公式求出恰在离三个顶点距离都不小于1的地方的概率.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=称为事件A的几何概率.4.【答案】D【考点】二元一次不等式(组)与平面区域,几何概型【解析】【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.【分析】本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.5.【答案】D【考点】几何概型【解析】【解答】在中,令,得,即,则,所以,,由几何概型的概率公式,得在五边形内随机取一点,该点取自三角形 (阴影部分)的概率.故答案为:D.【分析】根据题意求出点D的坐标,再由两点间的距离公式代入数值求出结果,结合四边形的面积代入数值求出结果把数值代入到几何概型的概率公式求出结果即可。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知二面角l αβ--的大小为060,,m n 为异面直线,且,m n αβ⊥⊥,则,m n 所成的角为(A )030 (B )060 (C )090 (D )0120(2006四川理)2.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个(2008江西理)3.如图所示的直观图,其平面图形的面积是_______________4.设有两条直线m 、n 和两个平面α、β,下列四个命题中,正确的是 ▲ . ①若m ∥α,n ∥α,则m n //; ②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α⊥β,m ⊂α,则m ⊥β;④若α⊥β,m ⊥β,m ⊄α,则m ∥α.5. 已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②整个平面;③一个点;④空集.其中正确命题的序号是 .6.如图,已知长方体中1111D C B A ABCD -,1AB BC AA ===,则异面直线11AB BC 与所成的角是 .7.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 位线段PB 的中点。
有以下四个命题: ① PA //平面MOB ; ② MO //平面PAC ; ③ OC ⊥平面PAC ; ④ 平面PAC ⊥平面PBC . 其中正确的是 .(填上所有正确命题的序号)8.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面 上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为________. 解析:∵正六棱柱的底面周长为3, ∴正六棱柱的底面边长为12.又正六棱柱的高为3,∴正六棱柱的过中心的对角线长为(3)2+1=2. ∴正六棱柱的外接球半径为1.∴V 球=43π.9.如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 。
湖南省长沙市一中、湖南师大附中2025届高考数学三模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643 C .16 D .322.已知函数2()ln(1)f x x x -=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .3.已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( )A .2i -B .2i +C .12i +D .12i -4.已知点()11,A x y ,()22,B x y 是函数()2f x a x bx =+的函数图像上的任意两点,且()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB 平行,则( ) A .0a =,b 为任意非零实数 B .0b =,a 为任意非零实数C .a 、b 均为任意实数D .不存在满足条件的实数a ,b 5.已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则()A B C ⋃=( )A .{2,3,4,5}B .{2,3,4,5,6}C .{1,2,3,4,5,6}D .{1,3,4,5,6,7} 6.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( ) A . B . C . D .7.已知平面α和直线a ,b ,则下列命题正确的是( )A .若a ∥b ,b ∥α,则a ∥αB .若a b ⊥,b α⊥,则a ∥αC .若a ∥b ,b α⊥,则a α⊥D .若a b ⊥,b ∥α,则a α⊥ 8.使得()3n x n N x x +⎛+∈ ⎝的展开式中含有常数项的最小的n 为( ) A .4 B .5 C .6 D .79.已知函数()()()1sin ,13222,3100x x f x f x x π⎧-≤≤⎪=⎨⎪-<≤⎩,若函数()f x 的极大值点从小到大依次记为12,?··n a a a ,并记相应的极大值为12,,?··n b b b ,则()1n i i i a b =+∑的值为( ) A .5022449+ B .5022549+ C .4922449+ D .4922549+10.已知,,,m n l αβαβαβ⊥⊂⊂=,则“m ⊥n”是“m ⊥l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.函数()()ln 12f x x x =+-的定义域为( ) A .()2,+∞ B .()()1,22,-⋃+∞ C .()1,2- D .1,212.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A .17种B .27种C .37种D .47种二、填空题:本题共4小题,每小题5分,共20分。
表示的区域为一个边长为 2的正方形,面积是4,所以所求概率
3 9
高考达标检测(五十)几何概型命题 3角度一一长度(角度)、面积、体积
、选择题 1.如图所示,A 是圆上一定点,在圆上其他位置任取一点 AA ',得到一条弦,则此弦的长度小于或等于半径长度的概率为 B 二 2 A.1 (
A ' Cl
1 D.1
解析:选C 当AA '的长度等于半径长度时,/ AOA ' , A '点在A 点左右都可
2n
3 1
取得,故由几何概型的概率计算公式得 P =3=1.
2 n 3
2•在区间[0,1]上随意选择两个实数 x , y ,则使 x 2+ y 2w 1成立的概率为(
n A 一
A. 2 n
D.5 解析:选B 如图所示,试验的全部结果构成正方形区域, 成立的平面区域为以坐标原点 0为圆心,1为半径的圆的1与 4
正半轴围成的区域,由几何概型的概率计算公式得,所求概率 B. 3. (2018湖南师大附中检测)利用计算机产生 0〜1之间的均匀随机数 a , b 则事件
“F a-1>0 ”发生的概率为() 3b - 1> 0 A.f 2
C.2 解析:选A 由题意可知
0 w a w 1, 0 w b w 1,
该不等式组表示的区域为一个边长为 1的正方形,
r3a - 1 > 0,
1
3b - 1>0,
其面积是1.
0 w a W 1
0 w b w 1
为9.
4. (2018 •宁五校联考)若实数k € [ —3,3],则k的值使得过点A(1,1)可以作两条直
线
- - 5
与圆x + y2+ kx—2y—4k = 0相切的概率等于(
) 1 A
—A.
2
C.1
解析:选D 由点A在圆外可得k v 0,由题中方程表示圆可得k> —1或k v—4,所
1
以-1v k v0,故所求概率为1,故选D.
5. (2018长沙三模)如图,矩形OABC内的阴影部分由曲线f(x)= sin
x(x€ (0, n及直线x= a(a€ 0, n )与x轴围成,向矩形OABC内随机
投掷一点,若该点落在阴影部分的概率为佥,则a的值为(
7 n
A —
12
AU 0) 1
3 n
C.3T 5 n DE
解析:选B由题意知,阴影部分的面积为J 0sin xdx= (—cosx)=—cosa + cos
1 cosa 3
0= 1 —cosa,根据几何概型的概率计算公式知8 —= 16 即cosa
a a 1
2,而a€ (0, n
故a =竽,故选B.
6. (2018伊春模拟)在区
间
随机取一个数x,贝U sin x+ cosx € [1, 2 ]的概率是(
) 1
A.1
吐3
3 C.3
5 D.5
解析:选B 因为x €£, 3
n,由sin x + cosx= 2sin x+
€ [1, 2 ],得 < sinx+ 戶1,所以x€ 0,
n—0
2 3 故要求的概率为- =■".
n i' —n ■ 4
2 —I 6丿
-- > --- > ---- >
7. (2018商丘模拟)已知P是厶ABC所在平面内一点,PB + PC + 2 PA = 0,现将
粒豆随机撒在△ ABC 内,则黄豆落在△ PBC 内的概率是(
)
A.1
Cl
8. (2018烟台模拟)在区间[0,1]
上任取两个数 a , b ,则函数f (x )= x 2+ ax + b 2无零点的 概率为(
)
A"1 3 C.3
解析:选C 要使该函数无零点,只需 a 2— 4b 2v0, 即(a + 2b)(a — 2b)<0. •/ a , b € [0,1] , a + 2b>0,
二
a — 2b<0.
:
o -26=0
0w a w 1,
作出丿 0< b < 1, 的可行域(如阴影部分所示),
r
2b < 0
1 1
2 — x 1 x 1
2 2 3
易得该函数无零点的概率 P =一2 2
= 3.
1 X 1 4
二、填空题
9 .已知线段 AC = 16 cm ,先截取AB = 4 cm 作为长方体的高,再将线段 BC 任意分成
两段作为长方体的长和宽,则长方体的体积超过
128 cm 3的概率为 _________ .
解析:依题意,设长方体的长为 x cm ,则相应的宽为(12 — x )cm ,由4x (12 — x )>
128
得x 2— 12x + 32< 0,4< x <8,因此所求的概率等于
答案:1
10. (2018湖北七市联考)AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点 M 作垂直于直径 AB 的弦,则弦长大于 73的概率是 __________ .
解析:依题意知,当相应的弦长大于
3时,圆心到弦的距离小于
解析:选C 如图所示,设点M 是BC 边的中点,因为苗+ "PC
+ 2~P A =0,所以点P
是中线AM 的中点,所以黄豆落在厶
的概率P = △竺=
ABC
2,故选C .
1 D.1
8 — 4 _
1
12 =
3.
PBC 内
1 1
因此相应的点M 应位于线段AB 上与圆心的距离小于-的地方,所求的概率等于2.
x —y + 1 > 0,
11.(2018重庆检测)在不等式组丿x + y — 2< 0, 尸0
则点P 恰好落在第二象限的概率为 __________
x —y + 1 > 0,
解析:画出不等式组 x + y — 2< 0,
表示的平面区域(如图中阴影部分所示),
y > 2
13 9 1
1
因为 S^BC =2 x 3X 2= 4,SW D =1 x 1X 1 =
2,
1
S ^AOD = 2 = 2
S ^ ABC 9 9.
4
答案:2
12.在底和高等长度的锐角三角形中有一个内接矩形
ABCD ,矩形
的一边BC 在三角形的底边上,如图,在三角形内任取一点,则该 点取自矩形内的最大概率为 __________ .
解析:设AD = x , AB = y ,则由三角形相似可得 x =,解得y = a — x ,所以矩形的
a a
2
a_ 4 1
1 =
2 x a x a 2
1
答案:1 三、解答题
13•设关于x 的一元二次方程 x 2+ 2ax + b 2= 0•若a 是从区间[0,3]任取的一个数,b 是 从区间[0,2]任取的一个数,求方程有实根的概率.
所表示的平面区域内随机地取一点
P ,
所以点P 恰好落在第二象限的概率为
面积 S = xy = x(a — x) <
x + a — x 2= a 2
= 1, 当且仅当 2
x = a — x ,即x =学时,S 取得最大值专
所以该点取自矩形内的最大概率为
解:设事件A 为“方程x 2 + 2ax +圧=0有实根”.当a >0, b > 0时,方程x 2 + 2ax +
b 2= 0有实根的充要条件为 a > b.试验的全部结果所构成的区域为 {(a , b)|0w a w 3,0w b w 2},
构成事件 A 的区域为{(a , b)|O w a < 3,0< b < 2, a > b},
根据条件画出构成的区域,可得所求的概率为
1 2 3 x 2-x
2
2
P (A )=
3X 2
= 3.
14.已知向量 a = (- 2,1), b = (x , y).
(1)若x, y 分别表示将一枚质地均匀的正方体骰子 (六个面的点数分别为 1,2,3,4,5,6)先后
抛掷两次时第一次、第二次出现的点数,求满足
a b =-1的概率;
⑵若x , y 在连续区间[1,6]上取值,求满足 a b<0的概率.
解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为 36(个).
由a b =- 1有一2x + y =- 1,所以满足 a b =- 1的基本事件为(1,1), 3 个. 故满足a b =- 1的概率为36=吉.
(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为 y)|1w x w 6,1 w y w 6};满足 a b<0的基本事件的结果为 y)|1< x < 6,K y w 6且一2x + y<0};画出图形如图,矩形的面积为 25,阴影部
分的面积为 S 阴影=25- 2X
2X 4 = 21,
21
故满足a b<0的概率为--.
25
(2,3), (3,5),共。