数据仓库(多维数据库模型).共30页文档
- 格式:ppt
- 大小:3.89 MB
- 文档页数:30
1、数据仓库基本概念1.1、主题(Subject)主题就是指我们所要分析的具体方面。
例如:某年某月某地区某机型某款App的安装情况。
主题有两个元素:一是各个分析角度(维度),如时间位置;二是要分析的具体量度,该量度一般通过数值体现,如App安装量。
1.2、维(Dimension)维是用于从不同角度描述事物特征的,一般维都会有多层(Level:级别),每个Level 都会包含一些共有的或特有的属性(Attribute),可以用下图来展示下维的结构和组成:以时间维为例,时间维一般会包含年、季、月、日这几个Level,每个Level一般都会有ID、NAME、DESCRIPTION这几个公共属性,这几个公共属性不仅适用于时间维,也同样表现在其它各种不同类型的维。
1.3、分层(Hierarchy)OLAP需要基于有层级的自上而下的钻取,或者自下而上地聚合。
所以我们一般会在维的基础上再次进行分层,维、分层、层级的关系如下图:每一级之间可能是附属关系(如市属于省、省属于国家),也可能是顺序关系(如天周年),如下图所示:1.4、量度量度就是我们要分析的具体的技术指标,诸如年销售额之类。
它们一般为数值型数据。
我们或者将该数据汇总,或者将该数据取次数、独立次数或取最大最小值等,这样的数据称为量度。
1.5、粒度数据的细分层度,例如按天分按小时分。
1.6、事实表和维表事实表是用来记录分析的内容的全量信息的,包含了每个事件的具体要素,以及具体发生的事情。
事实表中存储数字型ID以及度量信息。
维表则是对事实表中事件的要素的描述信息,就是你观察该事务的角度,是从哪个角度去观察这个内容的。
事实表和维表通过ID相关联,如图所示:1.7、星形/雪花形/事实星座这三者就是数据仓库多维数据模型建模的模式上图所示就是一个标准的星形模型。
雪花形就是在维度下面又细分出维度,这样切分是为了使表结构更加规范化。
雪花模式可以减少冗余,但是减少的那点空间和事实表的容量相比实在是微不足道,而且多个表联结操作会降低性能,所以一般不用雪花模式设计数据仓库。
数据仓库模型的设计数据仓库模型的设计大体上可以分为以下三个层面的设计151:.概念模型设计;.逻辑模型设计;.物理模型设计;下面就从这三个层面分别介绍数据仓库模型的设计。
2.5.1概念模型设计进行概念模型设计所要完成的工作是:<1>界定系统边界<2>确定主要的主题域及其内容概念模型设计的成果是,在原有的数据库的基础上建立了一个较为稳固的概念模型。
因为数据仓库是对原有数据库系统中的数据进行集成和重组而形成的数据集合,所以数据仓库的概念模型设计,首先要对原有数据库系统加以分析理解,看在原有的数据库系统中“有什么”、“怎样组织的”和“如何分布的”等,然后再来考虑应当如何建立数据仓库系统的概念模型。
一方面,通过原有的数据库的设计文档以及在数据字典中的数据库关系模式,可以对企业现有的数据库中的内容有一个完整而清晰的认识;另一方面,数据仓库的概念模型是面向企业全局建立的,它为集成来自各个面向应用的数据库的数据提供了统一的概念视图。
概念模型的设计是在较高的抽象层次上的设计,因此建立概念模型时不用考虑具体技术条件的限制。
1.界定系统的边界数据仓库是面向决策分析的数据库,我们无法在数据仓库设计的最初就得到详细而明确的需求,但是一些基本的方向性的需求还是摆在了设计人员的面前:. 要做的决策类型有哪些?. 决策者感兴趣的是什么问题?. 这些问题需要什么样的信息?. 要得到这些信息需要包含原有数据库系统的哪些部分的数据?这样,我们可以划定一个当前的大致的系统边界,集中精力进行最需要的部分的开发。
因而,从某种意义上讲,界定系统边界的工作也可以看作是数据仓库系统设计的需求分析,因为它将决策者的数据分析的需求用系统边界的定义形式反映出来。
2,确定主要的主题域在这一步中,要确定系统所包含的主题域,然后对每个主题域的内容进行较明确数据仓库建模技术在电信行业中的应用的描述,描述的内容包括:. 主题域的公共码键;. 主题域之间的联系:. 充分代表主题的属性组。
数据仓库的设计和构建数据仓库(Data Warehouse)是指将组织机构内部各种分散的、异构的数据整合起来,形成一个共享的、一致的、易于查询和分析的数据环境。
数据仓库的设计和构建是数据管理和分析的重要环节。
本文将结合实践经验,介绍数据仓库的设计与构建过程。
一、需求分析数据仓库的设计与构建首先需要进行需求分析。
在需求分析阶段,我们需要明确以下几个问题:1. 数据来源:确定数据仓库所需要的数据来源,包括内部系统和外部数据源。
2. 数据维度:确定数据仓库中需要关注的维度,如时间、地理位置、产品等。
3. 数据粒度:确定数据仓库中的数据粒度,即需要对数据进行何种程度的聚合。
4. 数据可用性:确定数据仓库中数据的更新频率和可用性要求。
5. 分析需求:明确数据仓库所需满足的分析需求,如报表查询、数据挖掘等。
二、数据模型设计在数据仓库设计过程中,数据模型的设计尤为重要。
常用的数据模型包括维度建模和星型模型。
维度建模是基于事实表和维度表构建的,通过定义事实和维度之间的关系,建立多维数据结构。
星型模型则将事实表和各个维度表之间的关系表示为星型结构,有助于提高查询效率。
根据具体需求和数据特点,选择合适的数据模型进行设计。
三、数据抽取与转换数据仓库的构建过程中,需要从各个数据源中抽取数据,并进行清洗和转换。
数据抽取常用的方法包括全量抽取和增量抽取。
全量抽取是指将数据源中的全部数据抽取到数据仓库中,适用于数据量较小或变动频率较低的情况。
增量抽取则是在全量抽取的基础上,只抽取发生变动的数据,提高了数据抽取的效率。
数据在抽取到数据仓库之前还需要进行清洗和转换。
清洗的目标是去除数据中的错误、冗余和不一致之处,保证数据的准确性和完整性。
转换的目标是将数据格式进行统一,并进行必要的计算和整合,以满足数据仓库的需求。
四、数据加载与存储数据加载是指将抽取、清洗和转换后的数据加载到数据仓库中的过程。
数据加载的方式可以分为批量加载和实时加载。
第1章数据仓库建设方案(DOC32页)1.1 数据仓库总体架构专家系统接收增购项目车辆TCMS或者其他子系统通过车地通信传输的实时或者离线数据,通过一系列综合诊断分析,以各类报表图形或者信息推送的形式向用户展示分析结果。
针对诊断出的车辆故障将给出专家建议处理措施,为车辆的故障根因修复提供必要的支持。
根据专家系统数据仓库建设目标,结合系统数据业务规范,包含数据采集频率、数据采集量等有关因素,设计专家系统数据仓库架构如下:数据仓库架构从层次结构上分为数据采集、数据存、数据分析、数据服务等几个方面的内容:数据采集:负责从各业务自系统中汇合信息数据,系统支撑Kafka、Storm、Flume 及传统的ETL采集工具。
数据存储:本系统提供Hdfs、Hbase及RDBMS相结合的存储模式,支持海量数据的分布式存储。
数据分析:数据仓库体系支持传统的OLAP分析及基于Spark常规机器学习算法。
数据服务总线:数据系统提供数据服务总线服务,实现对数据资源的统一管理与调度,并对外提供数据服务。
1.2 数据采集专家系统数据仓库数据采集包含两个部分内容:外部数据汇合、内部各层数据的提取与加载。
外部数据汇合是指从TCMS、车载子系统等外部信息系统汇合数据到专家数据仓库的操作型存储层(ODS);内部各层数据的提取与加载是指数据仓库各存储层间的数据提取、转换与加载。
1.2.1外部数据汇合专家数据仓库数据源包含列车监控与检测系统(TCMS)、车载子系统等有关子系统,数据采集的内容分为实时数据采集与定时数据采集两大类,实时数据采集要紧关于各项检测指标数据;非实时采集包含日检修数据等。
根据项目信息汇合要求,列车指标信息采集具有采集数据量大,采集频率高的特点,考虑到系统后期的扩展,因此在数据数据采集方面,要求采集体系支持高吞吐量、高频率、海量数据采集,同时系统应该灵活可配置,可根据业务的需要进行灵活配置横向扩展。
本方案在数据采集架构使用Flume+Kafka+Storm的组合架构,使用Flume与ETL 工具作为Kafka的Producer,使用Storm作为Kafka的Consumer,Storm可实现对海量数据的实时处理,及时对问题指标进行预警。
数据仓库建模方法每个行业有自己的模型,但是不同行业的数据模型,在数据建模的方法上,却都有着共通的基本特点。
什么是数据模型数据模型是抽象描述现实世界的一种工具和方法,是通过抽象的实体及实体之间联系的形式,来表示现实世界中事务的相互关系的一种映射。
在这里,数据模型表现的抽象的是实体和实体之间的关系,通过对实体和实体之间关系的定义和描述,来表达实际的业务中具体的业务关系。
数据仓库模型是数据模型中针对特定的数据仓库应用系统的一种特定的数据模型,一般的来说,我们数据仓库模型分为几下几个层次。
图 2. 数据仓库模型通过上面的图形,我们能够很容易的看出在整个数据仓库得建模过程中,我们需要经历一般四个过程: ?业务建模,生成业务模型,主要解决业务层面的分解和程序化。
?领域建模,生成领域模型,主要是对业务模型进行抽象处理,生成领域概念模型。
?逻辑建模,生成逻辑模型,主要是将领域模型的概念实体以及实体之间的关系进行数据库层次的逻辑化。
?物理建模,生成物理模型,主要解决,逻辑模型针对不同关系型数据库的物理化以及性能等一些具体的技术问题。
因此,在整个数据仓库的模型的设计和架构中,既涉及到业务知识,也涉及到了具体的技术,我们既需要了解丰富的行业经验,同时,也需要一定的信息技术来帮助我们实现我们的数据模型,最重要的是,我们还需要一个非常适用的方法论,来指导我们自己针对我们的业务进行抽象,处理,生成各个阶段的模型。
为什么需要数据模型在数据仓库的建设中,我们一再强调需要数据模型,那么数据模型究竟为什么这么重要呢?首先我们需要了解整个数据仓库的建设的发展史。
数据仓库的发展大致经历了这样的三个过程:?简单报表阶段:这个阶段,系统的主要目标是解决一些日常的工作中业务人员需要的报表,?以及生成一些简单的能够帮助领导进行决策所需要的汇总数据。
这个阶段的大部分表现形式为数据库和前端报表工具。
?数据集市阶段:这个阶段,主要是根据某个业务部门的需要,进行一定的数据的采集,整理,按照业务人员的需要,进行多维报表的展现,能够提供对特定业务指导的数据,并且能够提供特定的领导决策数据。
中心数据仓库项目技术标书共30页在当今数字化时代,数据储存、管理、分析等方面已经成为了企业竞争的重要因素,因此,建设一套适合企业的中心数据仓库系统也就显得尤为重要。
技术标书是一份在项目招标、投标和竞标过程中被关注的重要文件,它不仅仅提供了关于项目的大体划分,还具体说明该项目的计划、设计和实施细节。
在中心数据仓库项目技术标书中,可以从以下几个方面进行分析:一、项目的背景分析在中心数据仓库项目技术标书开篇中,可以对该项目的背景以及项目目的进行描述,如其中的关键需求、数据分析业务场景等。
同时,需要考虑到相似的产品或者方案,为何自己的方案更有优势。
二、技术方案设计在中心数据仓库项目技术标书中,设计方案是最为重要的部分,它通常包括以下五个方面:1、数据管理解决方案:数据管理方案需要考虑到数据存储、数据集成和数据查询等方面,需要设计一套数据的存储结构,最好写出数据结构的图,并且清楚的对数据架构进行梳理。
2、数据集成方案:数据集成方案需要明确ETL流程、数据迁移和数据同步的设计以及变量等处理规则,包括了开发工具的选择以及API配置等。
3、数据存储方案:需要考虑到大数据量、多种数据类型以及数据冗余与安全。
最好提供具体的存储方案图。
4、数据处理方案:需要梳理出数据处理的整个过程包括处理的工具以及流程等等。
5、数据架构设计:整个数据管理方案的核心是数据架构设计,架构设计应当体现出数据来源以及数据在处理和分析过程中的流动以及分布,如分析过程、处理过程以及存储方案等方面的设计。
三、实施计划中心数据仓库项目技术标书中需要明确实施计划,时间表和时间节点,同时也需要明确每次实施过程中需要完成的要求。
四、技术支持和维护企业对于一套中心数据仓库系统的技术支持以及日常维护保障是十分关心的,因此,对于技术支持以及维护规划与措施进行说明是必不可少的。
综上所述,在中心数据仓库项目技术标书当中,设计、实施计划以及技术支持方面均需要进行详细的说明,而在说明过程中需要体现出专业性、可行性以及实用性,并且也要注意到易读性和可理解性,让读者更好的读懂该方案。
·数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
·数据仓库的特点–面向主题–集成–相对稳定–反映历史变化数据仓库是一个面向主题的、集成的、不可更新的、随时间不断变化的数据集合,它用于支持企业或组织的决策分析处理。
数据仓库,Data Warehouse,可简写为DW。
数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。
◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
数据仓库第⼀章数据仓库概念数据仓库(英语:Data Warehouse,简称数仓、DW),是⼀个⽤于存储、分析、报告的数据系统。
数据仓库的⽬的是构建⾯向分析的集成化数据环境,为企业提供决策⽀持(Decision Support)。
数据仓库本⾝并不“⽣产”任何数据,其数据来源于不同外部系统;同时数据仓库⾃⾝也不需要“消费”任何的数据,其结果开放给各个外部应⽤使⽤,这也是为什么叫“仓库”,⽽不叫“⼯⼚”的原因。
第⼆章场景案例数据仓库为何⽽来?先下结论:为了分析数据⽽来,分析结果给企业决策提供⽀撑。
信息总是⽤作两个⽬的:操作型记录的保存和分析型决策的制定。
数据仓库是信息技术长期发展的产物。
下⾯以中国⼈寿保险公司(chinalife)发展为例,阐述数据仓库为何⽽来?2.1 操作型记录的保存中国⼈寿保险(集团)公司下辖多条业务线,包括:⼈寿险、财险、车险,养⽼险等。
各业务线的业务正常运营需要记录维护包括客户、保单、收付费、核保、理赔等信息。
联机事务处理系统(OLTP)正好可以满⾜上述业务需求开展, 其主要任务是执⾏联机事务和查询处理。
其基本特征是前台接收的⽤户数据可以⽴即传送到后台进⾏处理,并在很短的时间内给出处理结果。
关系型数据库是OLTP典型应⽤,⽐如:Oracle、Mysql、SQL Server等。
2.2 分析型决策的制定随着集团业务的持续运营,业务数据将会越来越多。
由此也产⽣出许多运营相关的困惑:能够确定哪些险种正在恶化或已成为不良险种?能够⽤有效的⽅式制定新增和续保的政策吗?理赔过程有欺诈的可能吗?现在得到的报表是否只是某条业务线的?集团整体层⾯数据如何?为了能够正确认识这些问题,制定相关的解决措施,瞎拍桌⼦是肯定不⾏的。
最稳妥办法就是:基于业务数据开展数据分析,基于分析的结果给决策提供⽀撑。
也就是所谓的数据驱动决策的制定。
然后,⾯临下⼀个问题:在哪⾥进⾏数据分析?数据库可以吗?2.3 OLTP环境开展分析可⾏吗?结论:可以,但是没必要。
一、选择题1、数据仓库是随时间变化的,下面的描述不正确的是:A、数据仓库随时间变化不断增加新的数据内容。
B、捕捉到的新数据会覆盖原来的快照。
C、数据仓库随时间变化不断删去旧的数据内容。
D、数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合。
答案: B2、关于基本数据的元数据是指:A、基本元数据包括与数据源、数据仓库、数据集市和应用程序等结构相关的信息。
B、基本元数据包括与企业相关的管理方面的数据和信息。
C、基本元数据包括日志文件和建立执行处理的时序调度信息。
D、基本元数据包括关于装载和更新处理、分析处理以及管理方面的信息。
答案: A3、下面有关数据粒度的描述不正确的是:A、粒度是指数据仓库小数据单元的详细程度和级别。
B、数据越详细,粒度就越小,级别也就越高。
C、数据综合度越高,粒度就越大,级别也就越高。
D、粒度的具体划分将直接影响数据仓库中的数据量以及查询质量。
答案: B4、有关数据仓库的开发特点,不正确的描述是:A、数据仓库开发要从数据出发。
B、数据仓库使用的需求在开发出去就要明确。
C、数据仓库的开发是一个不断循环的过程,是启发式的开发。
D、在数据仓库环境中,并不存在操作型环境中所固定的和较确切的处理流,数据仓库中数据的分析和处理更灵活,且没有固定的模式。
答案: B5、RAID技术具有容错能力,能够满足对存储能力、性能和可靠性不断提高的要求。
其实,实现原理是将数据写入多张磁盘中,如果—张磁盘发生故障,就从其他存放冗余数据的磁盘上访问数据。
有关RAID不同级别的描述不正确的是:A、在RAID 0这一级别上,数据记录通过在多组驱动器的扇区上交错地分布着实现,没有奇偶校验,不提供任何冗余。
B、RAID 1称为镜像。
在这一级别上,数据被冗余地写入成对的驱动器中,可以独立地从每个驱动器提取该数据。
这种方法没有什么缺点,是备份时候经常用到的技术。
C、RAID 3数据记录在成组驱动器上,位交错,只有一个驱动器仍有奇偶校验信息。