高中数学 第三章 统计案例 3.1 回归分析 3.1.1 回归分析 北师大版选修2-3
- 格式:ppt
- 大小:700.00 KB
- 文档页数:5
3.1回归分析的基本思想及其应用教材分析本节内容是数学选修2-3 第三章 统计案例 的起始课,是在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容《教师用书》共计4课时,第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第二课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用. 本节课是第一课时的内容.本节课的重点是回归分析的基本方法、随机误差e 的认识、残差,难点是回归分析的基本方法.课时分配本节内容用1课时的时间完成,主要介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果.教学目标重点: 回归分析的基本方法、随机误差e 的认识、残差. 难点:回归分析的基本方法.知识点:回归分析的基本方法、随机误差e 、残差.能力点:如何探寻回归分析的基本方法,数形结合的数学思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何运用最小二乘法求回归直线方程.考试点:求解线性回归方程,从残差的角度讨论回归模型的拟合效果. 易错易混点:随机误差e 与残差之间的区别与联系.拓展点:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.教具准备 多媒体课件 课堂模式 学案导学 一、引入新课对于一组具有线性相关关系的数据112233(,),(,),(,),,(,).n n x y x y x y x y 其回归直线方程的截距和斜率的最小二乘法估计公式分别为:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑11n i i x x n ==∑ 11ni i y y n ==∑ (,)x y 称为样本点的中心. 如何推导这两个计算公式?【设计意图】由学生所熟悉的最小二乘法引入新课,消除了学生对新知的恐惧感,引出最小二乘法的中的系数,a b ∧∧的计算公式的推导过程.二、探究新知从已经学过的知识,截距a 和斜率b 分别是使21(,)()niii Q y x αββα==--∑取最小值时,αβ的值,由于212212211(,)[((]{[(2[([(][(]}[(2[([(](ni i i ni i i i i nni i i i i i Q y x y x y x y x y x y x y x y x y x y x y x y x y x y x n y x αββββαβββββαβαβββββαβα=====-----=---+---⋅--+--=---+---⋅--+--∑∑∑∑)+))])])))])]))因为1111[((([(([(]([(]0,nniiiii i n ni i i i y x y x y x y x y x y x y x y x n y x y x ny n x n y x βββαβαβββαβββαββ====-----=-----=-----=-----=∑∑∑∑)])))]))))所以2212222111222221122111[([(]()2()()()(()()[()()](()[]()()()ni i i n n ni i ii i i i nniii i ni i i i nni i iii i Q y x y x n y x x x x x y y y y n y x x x y y x x y y n y x x x y y x x x x αββββαβββαβαβ==========---+--=----+-+------=--+---+---∑∑∑∑∑∑∑∑∑(,))])))1n=∑在上式中,后两项和,αβ无关,而前两项为非负数,因此要使Q 取得最小值,当且仅当前两项的值均为0.,既有121()()()niii nii x x y y x x β==--=-∑∑y x αβ=-通过上式推导,可以训练学生的计算能力,观察分析能力,能够很好训练学生数学能力,必须在老师引导下让学生自己推出.所以:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑这正是我们所要推导的公式.三、理解新知准确理解最小二乘法中系数,a b ∧∧的计算公式,以及回归方程的求解过程. 【设计意图】为准确地运用新知,作必要的铺垫.四、运用新知例1、 从某大学中随机选取8名女大学生,其身高和体重的数据如图所示:(1) 画出以身高为自变量x,体重为因变量y 的散点图;(2) 求根据女大学生的身高预报体重的回归方程;(3) 求预报一名身高为172cm 的女大学生的体重. 解:(1)由于问题中要求根据身高预报体重,因此选取身高为自变量x ,体重为因变量y 作散点图:(2)0.849,85.712:0.84985.712.b a y x ==-∴=-回归方程(3)对于身高172cm 的女大学生,由回归方程可以预报体重为:0.84917285.71260.316()y kg =⨯-=ˆ0.849b=是斜率的估计值,说明身高x 每增加1个单位时,体重y 就增加0.849 个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱?【设计意图】通过具体例子让学生感受回归分析思想的应用.最后的问题为接下来引入残差做了铺垫.在必修 3 中,我们介绍了用相关系数;来衡量两个变量之间线性相关关系的方法.本相关系数的具体计算公式为()()niix x y y r --=∑当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常,当r 的绝对值大于0. 75 时认为两个变量有很强的线性相关关系.165在本例中,可以计算出r =0. 798.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的.显然,身高172cm 的女大学生的体重不一定是60. 316 kg ,但一般可以认为她的体重接近于60 . 316 kg .图3 . 1- 2 中的样本点和回归直线的相互位置说明了这一点.由于所有的样本点不共线,而只是散布在某一条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示:y bx a e =++, ( 3 )这里a 和b 为模型的未知参数,e 是y 与y bx a =+之间的误差.通常e 为随机变量,称为随机误差,它的均值 E (e )=0,方差D (e )=2()D e σ=>0 .这样线性回归模型的完整表达式为:2,()0,().y bx a e E e D e σ=++⎧⎨==⎩ (4) 在线性回归模型(4)中,随机误差e 的方差越小,通过回归直线y bx a =+ (5)预报真实值y 的精度越高.随机误差是引起预报值y 与真实值y 之间的误差的原因之一,大小取决于随机误差的方差.另一方面,由于公式(1)和(2)中a 和b 为截距和斜率的估计值,它们与真实值a 和b 之间也存在误差,这种误差是引起预报值y 与真实值y 之间误差的另一个原因.【设计意图】引入随机误差e 后,将回归方程推广到回归模型. 思考:产生随机误差项e 的原因是什么?一个人的体重值除了受身高的影响外,还受许多其他因素的影响.例如饮食习惯、是否喜欢运动、度量误差等.事实上,我们无法知道身高和体重之间的确切关系是什么,这里只是利用线性回归方程来近似这种关系.这种近似以及上面提到的影响因素都是产生随机误差 e 的原因.因为随机误差是随机变量,所以可以通过这个随机变量的数字特征来刻画它的一些总体特征.均值是反映随机变量取值平均水平的数字特征,方差是反映随机变量集中于均值程度的数字特征,而随机误差的均值为0,因此可以用方差2σ来衡量随机误差的大小.为了衡量预报的精度,需要估计护的值.一个自然的想法是通过样本方差来估计总体方差.如何得到随机变量e 的样本呢?由于模型(3)或(4)中的e 隐含在预报变量y 中,我们无法精确地把它从y 中分离出来,因此也就无法得到随机变量e 的样本.解决问题的途径是通过样本的估计值来估计2σ.根据截距和斜率的估计公式(1)和(2 ) , 可以建立回归方程y bx a =+,因此y 是(5)中y 的估计量.由于随机误差e y y =-,所以e y y =-是e 的估计量.对于样本点(11,x y ) , (22,x y ) ,…, (,n n x y ) 而言,相应于它们的随机误差为,1,2,,i i i i i e y y y bx a i n =-=--=,其估计值为,1,2,,i i i i i e y y y b x a i n ∧∧∧∧=-=--=,i e ∧称为相应于点(,)i i x y 的残差(residual ).类比样本方差估计总体方差的思想,可以用22111(,)(2)22n i i e Q a b n n n σ∧∧∧∧===>--∑ 作为2σ的估计量, 其中a 和b 由公式(1) (2)给出,Q (a ,b )称为残差平方和(residual sum of squares ).可以用2σ∧衡量回归方程的预报精度.通常,2σ∧越小,预报精度越高.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差12,,,n e e e ∧∧∧来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析. 【设计意图】引入残差的概念,使学生会运用残差分析的思想分析模型的拟合效果. 表3- 2 列出了女大学生身高和体重的原始数据以及相应的残差数据.e -6.373 的估计值等,这样作出的图形称为残差图.【设计意图】通过例1的具体数据让学生感受残差分析的应用. 【变式练习】观察两相关变量得如下数据:求两个变量的回归方程. 解:10102110,0,110,110,i i i i i x y x x y ======∑∑10110221101101001,000.11010010i ii i i x y x yb a y b x b x x∧∧∧∧==--⨯∴====-=-⋅=-⨯-∑∑ 所以所求回归直线方程为y x =【设计意图】让学生自己动手解决求回归方程的问题,加深对回归分析思想的印象.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.回归直线方程,随机误差及残差.2.思想:回归分析的思想、数形结合的思想、残差分析的思想.教师总结: 公式的证明过程用到了前面两章学过的知识,提醒学生: 在学习新知时,也要经常复习前面学过的内容,“温故而知新”.在应用中增强对知识(如本节的随机误差和残差)的理解,及时查缺补漏,从而更好地运用知识,解题要有目的性,加强对数学知识、思想方法的认识与自觉运用. 【设计意图】 加强对学生学习方法的指导,做到“授人以渔”.六、布置作业1.阅读教材P80—84;2.书面作业 P89 习题3.1 1.(1)、(2)、(4).3.课外思考:如何运用回归分析的思想对未知量进行预报轨迹呢?【设计意图】设计作业1,2,是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用回归分析的思想,解决简单的数学问题;课外思考的安排,是让学生理解回归分析的思想,从而让学生深刻地体会随机误差,残差分析的思想,培养学生回归分析的基本思想,起到承上启下的作用.七、教后反思1.由于各校的情况不同,建议教师在使用本教案时灵活掌握,但必须在公式的证明思路的探寻上下足功夫.2.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊断与分析.八、板书设计1i nb ==∑bx。
高中数学课本内容及其重难点北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算(重点)(2课时)·第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性(重点)· 4、二次函数性质的再研究(重点)· 5、简单的幂函数(5课时)·第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用· 1、函数与方程· 2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步· 1、简单几何体· 2、三视图(重点)· 3、直观图(1课时)· 4、空间图形的基本关系与公理(重点)· 5、平行关系(重点)· 6、垂直关系(重点)· 7、简单几何体的面积和体积(重点)· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征(重点)· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法(3课时)·第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计(重点)· 3、排序问题(重点)· 4、几种基本语句(2课时)·第三章概率· 1、随机事件的概率(重点)· 2、古典概型(重点)· 3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)· 7、函数的图像(重点)· 8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法(重点)· 3、从速度的倍数到数乘向量(重点)· 4、平面向量的坐标(重点)· 5、从力做的功到向量的数量积(重点)· 6、平面向量数量积的坐标表示(重点)· 7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列(重点)· 4、等差数列的前n项和(重点)· 5、等比数列(重点)· 6、等比数列的前n项和(重点)· 7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算(难点)· 5、解三角形的实际应用举例(6课时)·第三章不等式· 1、不等关系· 1。