第九章理论力学解析
- 格式:ppt
- 大小:1.28 MB
- 文档页数:13
9-10 在瓦特行星传动机构中,平衡杆O 1A 绕O 1轴转动,并借连杆AB 带动曲柄OB ;而曲柄OB 活动地装置在O 轴上,如图所示。
在O 轴上装有齿轮Ⅰ,齿轮Ⅱ与连杆AB 固连于一体。
已知:r 1=r 2=0.33m ,O 1A =0.75m ,AB =1.5m ;又平衡杆的角速度O 1=6rad/s 。
求当=60°且=90°时,曲柄OB 和齿轮Ⅰ的角速度。
题9-10图【知识要点】 Ⅰ、Ⅱ两轮运动相关性。
【解题分析】 本题已知平衡杆的角速度,利用两轮边缘切向线速度相等,找出ωAB ,ωOB 之间的关系,从而得到Ⅰ轮运动的相关参数。
【解答】 A 、B 、M 三点的速度分析如图所示,点C 为AB 杆的瞬心,故有 ABA O CA v A AB ⋅⋅==21ωω ωω⋅=⋅=A O CD v AB B 123所以 s rad r r v BOB /75.321=+=ωs rad r v CM v MAB M /6,1==⋅=I ωω 9-12 图示小型精压机的传动机构,OA =O 1B =r =0.1m ,EB =BD =AD =l =0.4m 。
在图示瞬时,OA ⊥AD ,O 1B ⊥ED ,O 1D 在水平位置,OD 和EF 在铅直位置。
已知曲柄OA 的转速n =120r/min ,求此时压头F 的速度。
题9-12图【知识要点】 速度投影定理。
【解题分析】 由速度投影定理找到A 、D 两点速度的关系。
再由D 、E 、F 三者关系,求F 速度。
【解答】 速度分析如图,杆ED 与AD 均为平面运动,点P 为杆ED 的速度瞬心,故 v F = v E = v D由速度投影定理,有A D v v =⋅θcos可得 s ll r n r v v A F /30.1602cos 22m =+⋅⋅==πθ 9-16 曲柄OA 以恒定的角速度=2rad/s 绕轴O 转动,并借助连杆AB 驱动半径为r 的轮子在半径为R 的圆弧槽中作无滑动的滚动。
第九章平衡问题——能量方法 习题解答9-1质量为3 kg 的质点以5 m/s 的速度沿水平直线向左运动。
今对其施以水平向右的的常力,此力的作用经30 s 而停止,这时质点的速度水平向右,大小为55 m/s 。
求此力的大小及其所做的功。
解:取质点m 为研究对象。
由质点动量定理;()12v v F -=m t :()12v v m Ft +=,解得:()())N (630555312=+=+=t v v m F .由质点动能定理; ()())J (450055532121222122=-⨯⨯=-==v v m Fs W .9-2如图所示,一弹簧振子沿倾角为ϑ的斜面滑动,已知物块重G ,弹簧刚度系数为k ,动摩擦因数为f ;求从弹簧原长压缩s 的路程中所有力的功及从压缩s 再回弹λ的过程中所有力的功。
解:取物块为研究对象。
物块受到重力G ,弹簧力F ,斜面摩擦力m ax F 和法向反力N F 作用,其中仅法向反力N F 不作功。
在弹簧压缩过程中,所有力的功为 ()221cos sin ks s f G W --=ϑϑ 在弹簧压缩s 再回弹λ的过程中,所有力的功为 ()()[]2221cos sin λλϑϑ--+--=s s k f G W 。
9-3弹簧原长l ,刚度系数为k ,一端固定在O 点,此点在半径为r = l 的圆周上。
如弹簧的另一端由图示的B 点拉至A 点,求弹簧力所做的功。
AC ⊥BC ,OA 为直径。
解:在B 点弹簧的变形为()l 121-=λ,在A 点弹簧的变形为l =2λ。
弹簧力所做的功为()()222211221kl k W --=-=λλ。
9-4图示机构在力F 1和F 2作用下在图示位置平衡,不计各构件自重和各处摩擦,OD=BD=l 1,AD=l 2。
求F 1/F 2的值。
解:用解析法解题。
()j i F ϑϑcos sin 11-=F , i F 22F = 点A 和B 的坐标及其变分为()()j i r ϑϑsin cos 2121l l l l A ++--= ,i r ϑcos 21l B -=题9-2图题9-3图质点的受力图()()j i r δϑϑδϑϑ⋅++⋅-=cos sin δ2121l l l l A ,i r δϑϑ⋅=sin 2δ1l B 。
第九章刚体的平面运动刚体的平面运动是工程机械中较为常见的一种刚体运动,它可以看作为平移与转动的合成,也可以看作为绕不断运动的轴的转动。
在运动中,刚体上的任意一点与某一固定平面始终保持相等的距离。
平面运动刚体上的各点都在平行于某一固定平面的平面内运动。
注意与平移区别()Oϕ'--基点,转角,Oxy--定系用一个平面图形代表作平面运动的刚体;用平面内的任意线段的位置来确定平面图形的位置;用线段上任意点0′的坐标和一个夹角来确定该线段的位置。
平面图形的运动方程对于任意的平面运动,可在平面图形上任取一点O′,称为基点。
在这一点假想地安上一个平移参考系O’x’y’,平面图形运动时,动坐标轴方向始终保持不变,可令其分别平行于定坐标轴Ox和Oy,平面的平面运动可看成为随同基点的平移和绕基点转动这两部分运动的合成。
平移坐标系-'''y x O平移-----牵连运动转动-----相对运动四、重要结论:平面运动可取任意基点而分解为平移和转动。
其中平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关.任何平面图形的运动可分解为两个运动(1)牵连运动,即随同基点O′的平移;(2)相对运动,即绕基点O′的转动。
平面图形内任一点M的运动也是两个运动的合成,因此可用速度合成定理来求它的速度,这种方法称为基点法。
注意:此处动点、动系、基点在同一个刚体上。
但属于刚体上的不同点。
点M 的牵连速度v v点M的相对速度v vω'M O v v v v 'ωv v AB v v ω结论:平面图形内任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和。
平面图形内任意两点A 和B 的速度确定基点A ,一般应使V A 为已知条件。
O’M 上速度分布图角速度与相对速度有关AABAABBAvlABvωϕ=v v v应使V B位于平行四边形的对角线上V BA=AB·ω,此处ω是尺AB的角速度3、角速度分析例9-2图所示平面机构中,AB=BD=DE=l=300mm。