催化剂比表面积和孔结构测定
- 格式:ppt
- 大小:2.48 MB
- 文档页数:63
实验十六流动吸附色谱法测定催化剂的比表面积实验十六流动吸附色谱法测定催化剂的比表面积一( 实验目的1(明确固体催化剂比表面积测试的意义。
2(熟悉装置,了解吸附原理,掌握测试方法。
3(掌握流动吸附色谱法计算面积的方法——B?E?T计算法。
二(实验原理测定表面积是根据气体吸附理论来进行的,吸附量的测定方法有静态的BET法(重量法、容量法)和流动的气相色谱法,色谱法的特点是不需要真空装置,方法简单、迅速、安全。
该法所用的流动气体是一种吸附质与一种惰性气体的混合物,通常采用氮气作为吸附质,氦气作载气。
由于条件限制,本实验采用氮气作吸附质,氢气作载气,氮气、氢气以一定比例混合,达到一定的相对压力,然后流经样品,当样品放入盛有液氮的保温瓶里冷却时,样品对混合气中的氮气发生物理吸附,而不吸附氢气,吸附气体量与试样表面积成正比,当吸附达到平衡时,除去液氮,温度升高。
氮气又从样品声脱附而出,混合气体的浓度变化用热导池检测器记录下来,由脱附峰与已知的一定氮气量出的标准峰面积比(直接标定),即可计算出此氮气分压下的吸附量。
按照B?E?T式计算单分子层饱和吸附量,从而求出催化剂表面积。
三( 实验装置实验装置如图16-1所示:图16-1 流动吸附色谱法测定催化剂比表面积流程示意图1—氮气、氢气钢瓶;2—减压阀;3—净化器;4—稳流阀;5—转子流量计;6—混合器;7—1号冷阱;8—热导池;9—恒温箱;10—标准六通阀;11—2号冷阱;12—皂沫流量计;13—平衡电桥;14—XWC—100型电子电位差计;四( 操作步骤1(样品称量样品经110?干燥后,装入样品管,精确称取0.0300~0.0800克(根据样品表面积大小而异),然后把它装到测定仪的样品管接口上(为防止药品进入仪器,管口用药棉堵上)。
2(测试液氮的饱和蒸汽压Ps。
由于每次实验时温度和大气压都是不同的,加上液氮在存放和使用过程中不断地挥发和空气的冷凝,温度有所变化,导致液氮饱和蒸汽压Ps的改变,因此,每次实验都必须测定当时的液氮饱和蒸汽压,本实验用氧蒸汽温度计测定液氮的实际温度,然后再利用蒸汽压和温度的关系曲线,查得液氮的饱和蒸汽压Ps。
催化剂常用制备方法固体催化剂的构成●载体(Al2O3 )●主催化剂(合成NH3中的Fe)●助催化剂(合成NH3中的K2O)●共催化剂(石油裂解SiO2-Al2O3催化剂制备的要点●多种化学组成的匹配–各组分一起协调作用的多功能催化剂●一定物理结构的控制–粒度、比表面、孔体积基本制备方法:⏹浸渍法(impregnating)⏹沉淀法(depositing)⏹沥滤法(leaching)⏹热熔融法(melting)⏹电解法(electrolyzing)⏹离子交换法(ion exchanging)⏹其它方法固体催化剂的孔结构(1)比表面积Sg比表面积:每克催化剂或吸附剂的总面积。
测定方法:根据多层吸附理论和BET方程进行测定和计算注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。
内表面积越大,活性位越多,反应面越大。
(2)催化剂的孔结构参数密度:堆密度、真密度、颗粒密度、视密度比孔容(Vg):1克催化剂中颗粒内部细孔的总体积.孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数.(一) 浸渍法⏹通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进行浸渍,然后干燥和焙烧。
⏹由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。
浸渍法的原理●活性组份在载体表面上的吸附●毛细管压力使液体渗透到载体空隙内部●提高浸渍量(可抽真空或提高浸渍液温度)●活性组份在载体上的不均匀分布浸渍法的优点⏹第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。
(如氧化铝,氧化硅,活性炭,浮石,活性白土等)⏹第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强度等。
⏹第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵稀材料尤为重要。
⏹第四,所负载的量可直接由制备条件计算而得。
浸渍的方法⏹过量浸渍法⏹等量浸渍法⏹喷涂浸渍法⏹流动浸渍法1.1、过量浸渍法⏹即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。