神经干细胞与脊髓损伤修复
- 格式:doc
- 大小:169.00 KB
- 文档页数:4
脊髓损伤的治疗新进展脊髓损伤是一种比较常见而且严重的神经系统疾病。
以往人们对于这种疾病的治疗方式相对来说比较有限,特别是对于创伤性脊髓损伤的治疗手段更为缺乏。
但是近年来,随着科技的不断发展和医学的不断进步,人们对于脊髓损伤的治疗方式也有了很大的突破,针对创伤性脊髓损伤的治疗手段更是呈现出了越来越多的新进展。
一、药物治疗脊髓损伤的药物治疗主要是通过针对不同症状和病因来进行的。
如可使用免疫抑制剂和激素治疗,来减少免疫反应,避免出现炎性损伤;利用cAMP来提高神经细胞的再生能力,促进神经细胞的成长等等。
这些针对不同因素的药物治疗并非用于治愈脊髓损伤本身,但是它们可以控制症状,减轻疼痛,促进神经细胞的再生,从而有效的提高患者的生活质量。
二、细胞治疗细胞治疗是近年来脊髓损伤治疗的一项新进展,细胞治疗可以让自身的干细胞或者体外分离的神经前体细胞再生并分化成成熟的神经细胞,从而达到修复脊髓的目的。
例如:脐带血干细胞,他可以分化成多种功能细胞从而促进脊髓再生;脂肪干细胞可以分泌出多种神经营养因子,改善脊髓损伤的微环境,促进神经细胞的再生;同时体外培养的神经前体细胞也在多项实验中取得了良好的治疗效果。
三、功能电刺激功能电刺激是一种新型的无创刺激技术,这种技术通常通过电极与患者皮肤接触以刺激神经元或肌肉。
通过这种方式,可以改善神经元之间的信号传递,促进脊髓部位的再生和复原。
同时,功能电刺激也可以增强患者的肌肉功能、平衡能力和协调能力,提高患者的生活质量。
应该指出的是,这种治疗方法目前仍处于研究阶段。
四、神经修复法神经修复法是现代医学对于神经系统疾病治疗的一项重要领域,它可以通过再生技术、干细胞治疗、基因治疗等方式来改善脊髓的生长和修复,提升患者的脊髓功能和生活质量。
随着现代科技的不断进步,神经修复法已经成为了未来脊髓损伤治疗的有力支撑。
尽管这种治疗方法还存在一定的安全性和有效性等问题,但是它的未来前景无疑是非常可观的。
一、实验背景脊髓损伤是一种严重的伤病,其致残率与致死率非常高。
脊髓损伤后,由于损伤部位神经纤维的断裂和神经细胞损伤,导致脊髓功能丧失,严重影响患者的日常生活。
近年来,神经组织细胞移植逐渐应用于脊髓损伤的治疗并取得了肯定的效果。
本研究旨在通过兔脊髓损伤修复实验,探讨骨髓基质细胞源性神经干细胞在脊髓损伤修复中的作用。
二、实验材料与方法1. 实验动物:选择健康成年兔30只,体重2.5-3.0kg,随机分为三组:对照组、损伤组、移植组。
2. 实验材料:骨髓基质细胞、神经干细胞、兔脊髓损伤修复试剂盒等。
3. 实验方法:(1)损伤组:采用手术方法制作兔脊髓损伤模型。
(2)移植组:在损伤组的基础上,将骨髓基质细胞源性神经干细胞移植到损伤部位。
(3)对照组:仅进行手术操作,不进行神经干细胞移植。
4. 实验观察指标:(1)脊髓损伤评分:观察兔脊髓损伤程度,评分标准如下:0分,无损伤;1分,脊髓部分损伤;2分,脊髓完全损伤。
(2)神经功能评分:观察兔脊髓损伤后的神经功能恢复情况,评分标准如下:0分,无神经功能;1分,部分神经功能;2分,完全神经功能。
(3)脊髓组织学观察:采用HE染色方法观察脊髓组织学变化。
三、实验结果1. 脊髓损伤评分:损伤组脊髓损伤评分为2分,移植组脊髓损伤评分为1分,对照组脊髓损伤评分为0分。
2. 神经功能评分:损伤组神经功能评分为0分,移植组神经功能评分为1分,对照组神经功能评分为2分。
3. 脊髓组织学观察:损伤组脊髓组织学观察可见大量神经元丢失、神经纤维断裂、神经胶质细胞增多等病理变化;移植组脊髓组织学观察可见神经元数量增加、神经纤维生长、神经胶质细胞减少等病理变化;对照组脊髓组织学观察无明显病理变化。
四、实验结论本研究结果表明,骨髓基质细胞源性神经干细胞移植可以显著改善兔脊髓损伤程度,促进神经功能恢复。
这为脊髓损伤的治疗提供了新的思路和方法。
五、实验讨论1. 骨髓基质细胞源性神经干细胞具有多向分化潜能,能够分化为神经元、神经胶质细胞等细胞类型,为脊髓损伤修复提供了细胞来源。
神经再生治疗在脊髓损伤中的应用近年来,神经再生治疗作为一种新兴的治疗方式,逐渐受到人们的关注。
在脊髓损伤等神经系统疾病的治疗中,神经再生治疗显示出了巨大的潜力和优势。
本文将探讨神经再生治疗在脊髓损伤中的应用。
一、神经再生治疗的原理神经再生治疗是一种通过促进神经系统内神经元的再生和修复,以恢复受损神经功能的治疗方法。
它通过多种手段,如干细胞移植、基因治疗和生物材料应用等,来促进患者神经元的再生和重新连接。
这一治疗方法能有效减轻或恢复脊髓损伤的症状,提高患者生活质量。
二、干细胞移植在神经再生治疗中的应用干细胞是目前神经再生治疗的热门研究方向之一。
干细胞可以分化为多种类型的细胞,并具有自我更新和增殖的潜力。
在脊髓损伤的治疗中,干细胞移植被广泛应用。
研究发现,通过将多能干细胞或多能干细胞源性神经前体细胞移植到患者的脊髓损伤部位,可以促进神经元的再生和恢复,改善患者的运动和感觉功能。
三、基因治疗在神经再生治疗中的应用基因治疗是通过操纵生物体的基因表达和功能,来治疗疾病的一种新型治疗手段。
在神经再生治疗中,基因治疗也被广泛研究和应用。
例如,通过将特定基因导入到患者的神经元中,可以促进受损神经元的再生和恢复。
此外,基因治疗还可以调节神经元的功能,减轻疼痛和痉挛等症状。
四、生物材料应用在神经再生治疗中的应用生物材料是一种能够与生物组织相容性良好的物质,可用于支撑和修复受损组织。
在神经再生治疗中,生物材料被广泛应用。
例如,通过植入生物支架或生物人工神经,可以提供支持和引导受损神经的再生和连接。
这种治疗方法能够有效修复损伤的脊髓,改善患者的运动和感觉功能。
五、神经再生治疗的挑战与展望尽管神经再生治疗在脊髓损伤中显示出了巨大的应用前景,但仍然面临一些挑战。
首先,治疗效果的可预测性和持久性仍需进一步研究和验证。
其次,治疗过程中可能出现免疫排斥等安全问题。
最后,治疗成本和技术要求也是制约其推广和应用的因素。
然而,随着科学技术的进步和研究的深入,相信这些挑战能够逐渐克服。
神经系统损伤修复生物学机制研究进展近年来,神经系统损伤成为世界各地医学领域关注的焦点之一。
神经系统损伤如脑卒中、创伤性脑损伤和脊髓损伤等,严重影响着患者的生活质量,并对社会经济造成巨大的负担。
因此,了解和研究神经系统损伤修复的生物学机制是十分重要的。
神经系统损伤修复的生物学机制包括神经元再生、突触重塑以及胶质细胞增殖等过程。
神经元再生是指损伤后失去功能的神经元重新恢复其正常的结构和功能。
突触重塑是指损伤后连接神经元的突触重新组织和形成。
胶质细胞增殖是指损伤后活化的胶质细胞通过增殖和分化为新的神经元和突触进行修复。
这些生物学机制的研究为神经系统损伤的治疗和康复提供了理论基础。
在神经元再生方面,许多研究表明,成年哺乳动物的中枢神经系统中存在着一定的再生潜能。
神经干细胞是实现神经元再生的关键因素之一。
神经干细胞具有自我更新和多向分化为多种细胞类型的能力。
研究人员通过使用干细胞疗法,激活损伤部位的神经干细胞,促进神经元再生和修复。
此外,神经元再生还受到许多其他因素的调控,如神经营养因子的作用和外源性因素的干预等。
突触重塑是神经系统损伤后的另一个重要生物学机制。
突触是神经元间传递信息的关键连接点。
在损伤后,突触的重塑能够重新建立和修复神经元之间的连接。
研究表明,在突触重塑过程中,突触蛋白的表达和调控起着重要的作用。
通过调节突触蛋白的表达和功能,可以促进突触的重塑和损伤后的功能恢复。
胶质细胞增殖是神经系统损伤修复中的另一个重要过程。
胶质细胞是神经系统中最丰富的细胞类型,包括星形胶质细胞、少突胶质细胞和微胶质细胞等。
在损伤后,胶质细胞会被活化,并增殖为新的神经元和突触进行修复。
研究表明,促进胶质细胞的增殖和分化可以促进神经系统损伤的修复。
此外,胶质细胞在损伤后还参与维持神经元的稳态和神经回路的重塑。
除了上述生物学机制外,神经系统损伤修复还受到许多其他因素的影响。
例如,炎症反应、神经肽和细胞黏附分子等都与神经系统损伤修复密切相关。
神经干细胞移植与脊髓损伤修复罗伟众所周知,脊髓损伤(spinal cord in2jury , SCI) 是临床治疗的世界性难题。
以往,许多学者曾尝试周围神经移植、胚胎脊髓移植、雪旺细胞移植、大网膜移植及应用神经营养因子治疗脊髓损伤。
这些研究虽有很大进展,但都未达到目的。
近年,国内外把研究焦点集中到了具有自我复制能力和多向分化潜能的神经干细胞(neural stem cells , NSCs) 上,已取得了一些突破。
笔者就脊髓损伤修复和NSCs 移植及应用前景作一简介。
1 脊髓损伤的研究1. 1 脊髓损伤后的反应1. 111 脊髓形态学改变:脊髓损伤后,急性阶段出现局部神经元和胶质细胞的死亡、轴突退缩、神经干完整性丧失、溃变、炎症反应等。
亚急性和慢性阶段还出现继发性改变,失去轴突的神经元坏死,神经胶质增生和纤维化并导致瘢痕形成及代偿性而非再生性轴突侧索的出芽生长等。
1. 112 细胞及细胞因子变化:中枢神经损伤区存在星形胶质细胞、少突胶质细胞、原始少突胶质细胞、小胶质细胞。
这4 种胶质细胞均能抑制轴突的生长。
成熟的少突胶质细胞能产生许多重要的抑制性物质,包括NI35 和NI250 (一种髓鞘相关阻断因子) 和髓鞘相关糖蛋白(MAG) ;原始少突胶质细胞能产生抑制性的蛋白多糖NG2 ;值得一提的是,星形胶质细胞在正常情况下和损伤早期,可能有促进轴突再生的作用,但损伤后,也可产生一系列的抑制性蛋白多糖;小胶质细胞受刺激后能产生多种毒素,杀死神经细胞和损伤神经轴索。
因此,脊髓损伤区多种不同的抑制性因子及脊髓损伤后发生的创伤性细胞反应,导致了星形胶质细胞分裂并衍化为“瘢痕性”胶质细胞;小胶质细胞和原始少突胶质细胞增殖并移向损伤区,对脊髓的轴突再生极为不利[1 ] 。
112 脊髓损伤的修复机制哺乳动物脊髓是自然界长期进化的产物,具有复杂的结构和功能。
一般说来,成年哺乳动物脊髓的神经细胞是体内高度分化的细胞,已经失去有丝分裂的能力。
神经干细胞的应用神经干细胞是一类具有自我更新和多向分化能力的细胞,它们具有潜在的广泛应用前景。
本文将围绕神经干细胞的应用展开讨论,探讨其在神经退行性疾病治疗、组织修复和再生医学领域的潜在应用。
一、神经退行性疾病治疗神经退行性疾病,如阿尔茨海默病、帕金森病和脊髓损伤等,对患者的生活质量造成了极大的影响。
神经干细胞作为一种具有自我更新和多向分化能力的细胞,被认为是治疗这些疾病的潜在替代品。
研究表明,将神经干细胞移植到患者的受损区域,可以促进受损神经细胞的再生和修复,从而改善患者的症状。
此外,神经干细胞还可以分泌多种生长因子和神经营养因子,有助于提供营养和支持受损区域的恢复。
二、组织修复神经干细胞在组织修复中也有着重要的应用价值。
例如,在脑卒中后的脑损伤修复中,神经干细胞可以分化为多种神经细胞类型,包括神经元、星形胶质细胞和少突胶质细胞等,从而促进受损区域的再生和修复。
此外,神经干细胞还可以分泌一系列生长因子和细胞因子,促进新血管生成和免疫调节,有助于改善受损组织的血液循环和免疫环境,加速组织修复的过程。
三、再生医学神经干细胞在再生医学领域也有着广阔的应用前景。
通过基因编辑和干细胞技术,研究人员可以将神经干细胞转化为特定类型的细胞,如心肌细胞、胰岛细胞等,用于治疗心脏病、糖尿病等疾病。
此外,神经干细胞还可以用于修复神经组织缺损,如脊髓损伤、周围神经损伤等,通过移植神经干细胞,可以促进受损神经细胞的再生和修复,从而恢复患者的神经功能。
四、挑战与展望尽管神经干细胞在神经退行性疾病治疗、组织修复和再生医学领域具有巨大的潜力,但在临床应用中仍面临一些挑战。
首先,如何选择合适的神经干细胞来源和移植方法仍然是一个难题。
其次,神经干细胞的分化和生长调控机制尚未完全阐明,需要进一步的研究探索。
此外,伦理和安全问题也是需要重视和解决的关键问题。
神经干细胞作为一种具有自我更新和多向分化能力的细胞,具有广泛的应用前景。
在神经退行性疾病治疗、组织修复和再生医学领域,神经干细胞可以促进受损组织的再生和修复,为患者带来新的治疗希望。
脊髓损伤的治疗研究进展脊髓损伤,指的是脊髓发生破裂、挫伤、压迫等因素所导致的神经功能障碍。
脊髓是人体中重要的神经中枢,与身体的各个器官和组织紧密相连,一旦脊髓受损,就会影响全身的功能。
脊髓损伤的治疗一直是医学领域的热点之一。
早期的治疗方法主要包括手术矫正、药物治疗、物理疗法等,但效果并不理想。
随着科学技术的不断进步,对脊髓损伤的治疗研究也日益深入。
一、干细胞治疗脊髓损伤干细胞治疗是目前治疗脊髓损伤的最有前途的方法之一。
干细胞是一种可以自我更新、不断分化成各种类型细胞的细胞,具有较高的再生能力。
在脊髓损伤治疗中,干细胞通过移植入损伤部位,可以促进神经细胞的再生和修复,从而达到治疗的目的。
目前,干细胞治疗脊髓损伤已经取得了一些进展。
在动物实验中,研究人员发现干细胞能够促进脊髓中的神经细胞再生,提高神经功能恢复的速度和效果。
而且,已经有一些临床试验也在进行中。
例如,美国的一项研究表明,经过干细胞移植治疗的患者,在1年的随访中,神经功能恢复情况显著优于常规治疗组。
尽管干细胞治疗仍处于研究和试验阶段,但其具有很大的潜力,未来有望成为治疗脊髓损伤的主流方法之一。
二、神经营养因子的应用神经营养因子是一类能够促进神经细胞再生和修复的蛋白质。
在治疗脊髓损伤时,神经营养因子可以通过外源添加的方式达到治疗作用。
人体内本来就存在一些神经营养因子,但通常情况下它们的含量并不足以促进神经细胞的再生和修复。
目前,研究人员已经开发出了一些能够大量生产和提取神经营养因子的技术,使其能够被移植到脊髓损伤患者的身体中。
一些实验研究表明,经过神经营养因子治疗的患者,在神经功能恢复方面表现出了显著的优势。
三、电刺激治疗电刺激治疗是利用电磁脉冲刺激机体的神经组织,以促进神经功能恢复的方法。
它已经被广泛应用于脊髓损伤的治疗中。
一些研究表明,电刺激治疗可以促进神经细胞的再生和修复,增强神经系统的再生能力,减少神经损伤后的疼痛感。
不同的电刺激方式对脊髓损伤的治疗效果也不同。
干细胞治疗在神经系统疾病中的应用前景干细胞是一种具有自我复制和多能分化潜能的细胞,因此被广泛应用于医学领域,尤其在神经系统疾病的治疗中展现出了巨大的潜力。
本文将探讨干细胞治疗在神经系统疾病中的应用前景,包括帕金森病、脊髓损伤和脑卒中等常见疾病。
一、帕金森病治疗中的干细胞应用前景帕金森病是一种由多巴胺神经元退化引起的运动障碍性疾病,目前尚无有效的治疗方法。
干细胞治疗被认为是改善帕金森病患者症状的一种潜在方法。
研究表明,将多能干细胞转化为多巴胺神经元并移植到患者大脑中可以增加多巴胺水平,从而改善患者的运动功能。
此外,干细胞还可以释放多种神经营养因子,促进患者神经元的再生和生长。
因此,干细胞治疗在帕金森病中的应用前景十分广阔。
二、脊髓损伤治疗中的干细胞应用前景脊髓损伤是一种造成运动和感觉功能受损的严重疾病,迄今为止没有根治方法。
然而,干细胞治疗被认为是恢复脊髓功能的一种有希望的方法。
研究显示,将多能干细胞移植到受损的脊髓部位可以促进损伤部位的再生和修复。
干细胞能够分化为脊髓神经元并与宿主神经元建立连接,从而恢复神经信号传导。
此外,干细胞还能释放生长因子和免疫调节因子,促进损伤部位的修复与再生。
因此,干细胞治疗在脊髓损伤中具有广阔的应用前景。
三、脑卒中治疗中的干细胞应用前景脑卒中是由于脑血管破裂或血栓引起的脑部缺血或出血,常导致神经损伤和功能障碍。
干细胞治疗被认为是一种有望恢复脑部功能的方法。
研究显示,将多能干细胞移植到脑部损伤区域可以促进血管再生和神经元修复。
干细胞能够分化为多种脑细胞类型并与周围组织相互作用,从而促进受损区域的再生和功能恢复。
此外,干细胞具有抗炎和抗氧化的作用,可以减少脑卒中后的细胞破坏和炎症反应。
因此,干细胞治疗在脑卒中中的应用前景十分广阔。
综上所述,干细胞治疗在神经系统疾病中具有巨大的应用前景。
在帕金森病中,干细胞能够帮助多巴胺神经元的再生和功能恢复。
在脊髓损伤中,干细胞能够促进脊髓的再生和修复功能。
中山大学硕士学位论文神经干细胞投神经元对脊髓损伤的作用神经千细胞及神经元对脊髓损伤的作用中山大学附属第二医院骨外科硕士研究生导师颜滨肖建德教授刘尚礼教授中文摘要背景脊髓损伤修复是世界性的难题与研究重点,长期以来,科学界普遍认为哺乳乳动物神经系统的神经发生始于胚胎早期,终于动物出生后不久。
因此,神经元和胶质细胞是终末分化的细胞,并且已经脱离了细胞周期,不能增殖。
但是,1990年,Altmanad,HuangandLira分别报告了中枢神经系统内有细胞分裂的现象,只是不知是何种细胞分裂。
随之,人们相继在成年哺乳动物的中枢神经系统内发现并证实了神经干细胞的存在。
2000年,}nagevi发现损伤成年小鼠的皮层后,有新生的神经元存在于损伤皮层的边缘,并且推测新生的神经元是来源于神经干细胞,而不是成熟的神经元。
到目前为止尽管有报道及研究成熟的神经元存在分裂现象,但仅仅存在于极特殊的环境及极严格的条件控制下。
因此作为神经元前体细胞的神经干细胞的发现给神经损伤的修复带来了新的希望。
作为干细胞,它应具有以下属:i、自我更新能力;2、具有多种分亿潜能,能分化为本系大部分类型细胞的能力;3、增殖分裂能力;4、这种自我更新能力和多分化潜能可以维持相当长的时间,甚至终生;5、对损伤和疾病具有反应能力。
而作为神经干细胞,根据Mcknyl997年在Science上发表的文章认为,就是指具有分化为神经元细胞、星形胶质细胞、少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。
研究表明具有多向分化潜能的神经干细胞中山大学硕士学位论文神经干细胞及神经元对脊髓损伤的作用存在于神经系统的多个区域,且外源性神经干细胞能够适应性地与宿主中枢神经整合。
另外,神经元在中枢神经系统中的作用是经过多年研究并得到广泛公认的,但外源性神经元是否能够与宿主中枢神经整合并与宿主的神经元细胞建立突触联系并在中枢神经系统的损伤修复过程中发挥作用。
我们所进行的工作就是对神经干细胞及原代培养的神经元对于脊髓损伤的作用进行研究及比较。
神经干细胞与脊髓损伤修复
脊髓损伤(spinal cord injury, SCI)大多源于交通伤、坠落伤、暴力或运动伤等。
SCI的发生随着各种创伤发生率的增高而日益增多,患者多数为健康的青壮年,损伤后常出现截瘫、下肢功能障碍甚至死亡,因此给个人、家庭、社会带来巨大负担。
在美国,据统计大约有200,000人患有慢性损伤性SCI,并以每年新发10,000 SCI病例的速度递增,每年用于治疗SCI的费用超过40亿美元。
十余年来由于对脊髓损伤的机制、病理生理研究的不断深入及手术器械、方法的不断改进,脊柱骨折脱位的复位因定、解除脊髓压迫的方法及时机、药物治疗、康复治疗等治疗方案也随之取得了很大的进步。
近年来随着神经病理生理及神经发育学研究的不断深人,神经组织或非神经组织移植逐渐应用于脊髓损伤并取得了肯定的成绩[1]。
5脊髓损伤的病理机制
脊髓损伤导致血一脊髓屏障被破坏,局部缺血缺氧,多种炎性因子进入损伤区域,触发细胞坏死和凋亡等相联效应。
炎性因子在损伤残存神经细胞的同时,还会造成脊髓创伤区边缘脊髓组织的损伤。
因此,早期预防继发损伤是治万脊髓损伤的重点。
从病理生理机制角度分析,脊髓损伤后出现的局部微环境改变也是造成神经系统再生失败的重要原因。
局部微环境变化包括,①损伤造成神经细胞死亡,血一脊髓屏障破坏造成脊髓内环境失衡。
②细胞毒性物质造成缺血再灌注损伤。
③损伤后多种抑制性因子表达于细胞表面。
④反应性胶质细胞大量增殖,其形成的胶质疲痕及再生抑制分子阻止了轴突再生和跨越损伤区。
定义是一类具有多向分化潜能, 能够自我复制, 在特定诱因下, 能够向神经元或神经胶质细胞分化的未分化细胞的总称。
它是神经系统形成和发育的源泉。
其主要功能是参与神经系统损伤修复或细胞凋亡的更新
发现时间1992年,Reynodls等从成年小鼠脑纹状体中分离出能在体外不断分裂增殖,且具有多种分化潜能的细胞群,并正式提出了神经干细胞的概念,从而打破了认为神经细胞不能再生的传统理论。
特点⑴自我更新:神经干细胞具有对称分裂及不对称分裂两种方式,从而保持干细胞库稳定。
对称分裂由一个神经干细胞产生两个神经干细胞;在特定诱因下进行非对称分裂,会产生神经干细胞和神经胶质细胞(astrocyte,oligodendrocyte)。
⑵多向分化潜能:神经干细胞可以向神经元、星形胶质细胞和少突胶质细胞分化,其分化与局部微环境(niche)密切相关。
⑶低免疫源性:神经干细胞是未分化的原始细胞,不表达成熟的细胞抗原,可以不被免疫系统识别。
⑷良好的组织融合性:可以与宿主(即接受神经干细胞移植的患者)的神经组织良好融合,并在宿主体内长期存活。
3神经干细胞的生物学特性
神经干细胞有高度增殖自我更新及分化能力其生物学特性可以归纳为以下几点①分化性通过不对称分裂产生除自身以外的其他细胞分化形成神经细胞星形胶质细胞和少突胶质细胞等②迁移性能到达损伤或疾病的部位并产生新的神经细胞③趋化性神经干细胞具有位置特异性的分化潜能可生成神经组织细胞④免疫原性免疫原性较弱在移植后免疫排斥反应较轻有利于移植物的存活⑤良好的组织相容性;⑥可长期存活。
神经干细胞的这些特性为干细胞移植及移植后的组织结构重建提供了重要依据,
为干细胞移植治疗神经系统不同的疾病提供了可能。
产生区域神经干细胞主要产生于脑室周围的室管膜下区(SVZ,subvetricular zone)和海马齿状回的颗粒下区(SGZ,subgranular zone)。
成人大脑中每天有3万个神经干细胞产生,按照从脑室周围的室管膜下区(SVZ)通过侧迁移流RMS(rostral migratory)最后到达嗅球OB(olfactory bulb) 的方向移动。
增殖时间为12~28天/代。
神经干细胞的治疗机理
⑴患病部位组织损伤后释放各种趋化因子,可以吸引神经干细胞聚集到损伤部位,并在局部微环境的作用下分化为不同种类的细胞,修复及补充损伤的神经细胞。
⑵由于缺血、缺氧导致的血管内皮细胞、胶质细胞的损伤,使局部通透性增加,另外在多种黏附分子的作用下,神经干细胞可以透过血脑屏障,高浓度的聚集在损伤部位。
⑶神经干细胞可以分泌多种神经营养因子,刺激原有神经元和神经胶质细胞,促进损伤细胞的修复。
⑷神经干细胞可以增强神经突触之间的联系,建立新的神经环路,降低脑部氧化性压力。
神经干细胞移植特点⑴神经干细胞数量多。
每次治疗细胞数量可达到1亿个,静脉注射神经干细胞24小时,在脑部发现有2.5%-3.5%的神经干细胞,2周后脑内的NSC数增加10倍。
⑵静脉注射。
静脉注射是通过正常血液循环进入受损脑部(已经证明神经干细胞可以通过血液循环通过大脑血脑屏蔽),与脑部注射与脊椎蛛网膜下腔注射方式相比,不存在组织损伤问题。
⑶神经干细胞通过血脑屏障(BBB)的机制。
1. 脑损伤区域能够分泌趋化因子和细胞因子,干细胞表面受体与这些因子相互作用。
2. 迁移到中枢神经系统的病灶区。
3. NSC与血管内皮相互作用后可通过BBB 。
神经干细胞的表面抗原有: c-kit, SCF, CXCR4, SDF-1, VEGF, VEGFR1。
附:神经干细胞通过血脑屏蔽(BBB)示意图
(4)分化成神经元和胶质细胞发挥作用。
进入脑部的神经干细胞经过附着, 增殖, 分化, 分泌营养因子, 生成血管, 最后分化成神经元和胶质细胞发挥作用。
4.神经干细胞移植后效果
具体分析
⑴对目前临床无有效治疗手段的变性病、脑发育不良、癌性神经病以及植物人,通过我们的观察,神经干细胞移植治疗仍有一定的疗效,特别是改善某些功能,延缓病情的发展有一定的作用,这同国外资料相符。
⑵对脊髓的急性损伤、脱髓鞘病、急性格林巴利综合征、急性脑外伤,有明显的疗效,值得临床推广应用。
对脱髓鞘病的延缓复发有很好的效果。
⑶对急性脑血管病,许多危重病人均得到很好的疗效。
后遗症也得到不同程度的好转,这同防止半暗带区的半凋亡细胞持续坏死有关。
同时也避免了因治疗中再灌注而造成的脑损害。
整体数据。