实验一-电阻应变片及电阻应变测试桥路连接试验PPT课件
- 格式:ppt
- 大小:734.50 KB
- 文档页数:14
金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝的电阻相对变化值、K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,Vo1=EKε/4。
(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模块(应变式传感器已安装在上面)、砝码(每只约20g)、数显表、±15V电源、±4V电源、如需要请自便万用表。
四、实验步骤:1、根据,应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端,“”、“”分别表示应变片的受力方向,应变片阻值R1=R2=R3=R4=350Ω;加热丝也接于模块上,加热丝阻值约为50Ω左右,可用万用表进行测量判别。
图(1-1)2、实验模块仪表放大器调零:方法为:①接入模块电源±15V和“⊥“(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块仪表放大器增益调节电位器Rw3顺时针调节最大位置,②将仪表放大器的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。
3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,仪表放大器增益电位器Rw3适中,接上桥路电源±4V(从主控箱引入),数字电压表置20V档,检查接线无误后,合上主控箱电源开关,先粗调Rw1,再细调R W4使数显表显示为零,并将数字电压表转换到2V档再调零,如数字显示不稳,可适当减小放大器增益。
一、电阻应变片粘贴技术一、实验目的1.了解电阻应变片的结构、规格、用途等。
2.学会设计布片方案。
3.掌握选片、打磨、粘贴、接线、固定、防护等操作工艺和技术。
二、实验设备及器材1.YD-88便携式超级应变仪。
2.QJ23型电桥。
3.试件、应变片、砂布、镊子、丙酮、药棉、502胶水、玻璃纸等。
4.试件见图1-5。
三、实验原理应变片的构造很简单。
把一条很细具有高电阻率的金属丝,在制片机上排绕后,用胶水粘在两片薄纸之间,再焊上较粗的引出线,就成了早期常用的丝绕式应变片。
应变片一般由敏感栅(即金属丝)、粘结剂、基底、引线及覆盖层五部分组成。
如将应变片固定在被测构件表面上,金属丝随构件一起变形,其电阻值也随之发生变化,而且,这电阻变化与构件应变有确定的线性关系。
应变片已有多种类型,若按敏感栅所用材料来分,有丝绕式应变片、箔式应变片和半导体应变片。
前两种的敏感栅是以金属丝或箔制成,可统称为金属式应变片,工作原理是基于金属丝的电阻应变效应;半导体应变片则是一类较新品种,具有一些独特的优点。
无论何类应变片,其构成不外基底、敏感栅和引线三大部分。
引线是从敏感栅到测量导线之间的过渡部分,用以将敏感栅接入测量电路。
基底用来保持敏感栅及其与引线接头部的几何形状,在应变片安装以后,由它将构件变形传递给敏感栅,并在金属构件与敏感栅之间起绝缘作用。
目前常见的电阻片有以下几种:(1)丝绕式用电阻丝盘绕电阻片称为丝绕式电阻片(见图1-1和图1-2a),目前广泛使用的有半圆弯头平绕式,这种电阻片多用纸底和纸盖,价格低廉,适于实验室广泛使用,缺点是精度较差,横肉向效应系数较大。
(2)短接式这种电阻片的制作比较容易,在一排拉直的电阻丝之间,在预定的标距上用较粗的导线相间地造成短路,这种电阻片有用纸底的,也有用胶底的(见图1-2b)。
短路接式电阻片的优点是几何形状比容易于保证,而且横向效应系数近于零。
图1-2(3)箔式电阻片它是在合金箔(康铜箔或镍铬箔)的一面涂胶形成胶底,然后在箔面上用照相腐蚀成形法制成的(见图1-2c),所以几何形状和尺寸非常精密,而且由于电阻丝部分是平而薄的矩形截面,所以粘贴牢固,丝的散热性能好,横向效应系数也较低,和丝绕式应变片相比,箔式片有下列优点:a.随着光刻技术的发展,箔式片能保证尺寸准确、线条均匀,故灵敏系数分散性小。
电阻应变片粘贴技术及测量电桥连接方发实验报告模板'篇一:电阻应变片粘贴与电桥电路实验一电阻应变片的粘贴技术与电桥电路学院:土木工程班级:小组成员:指导老师:实验报告(一)电阻应变片的粘贴技术与电桥电路一、实验目的:1.初步掌握常温用电阻应变片的粘贴技术;2.为后续电测实验做好在试件上粘贴应变片,接线、检查等准备工作。
3.比较全桥,半桥与单臂电桥的不同性能,了解其特点。
二、实验设备和器材:1、常温用电阻应变片,电阻应变花。
2、万用表(测量应变片电阻值等用)。
3、兆欧表(测量应变片绝缘电阻用)。
4、等强度梁试件,同质温度补偿块。
5、电烙铁,镊子,锉刀,502粘接剂等工具。
6、丙酮,脱酯棉等清洗器材。
7、测量导线,接线端子若干。
三、电阻应变片的工作原理:1、电阻应变片工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着所受机械变形(伸长或缩短)的变化而发生变化象。
2、当试件受力在该处沿电阻丝方向发生线变形时,电阻丝也随着一起变形(伸长或缩短),因而使电阻丝的电阻发生改变(增大或缩小)。
三、电桥电路工作原理:1、把不同受力方向的两只应变片接入电桥作为邻边,电桥输出有较高灵敏度和较好的非线性,当应变片阻值和应变量相同时,其桥路输出电压KUUBDAC =4(?1??2)。
(U均为电桥供电电压)。
2、全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始值:R1=R2=R3=R4,其变化值△R1=△R2=△R3=△R4时,其桥路输KUAC出电压△UBD=4(?1??2??3??4)。
3、 1/4桥电路,用于量测应力场里的单个应变,即只有R1变化,而R2、R3KUAC和R4不变化,则UBD=4?11/4桥电路四、温度补偿和温度补偿片贴有应变片的构件总是处于某一温度场中,当温度变化时,应变片敏感栅的电阻会发生变化。
另外,由于电阻丝栅的线膨胀系数与构件的线膨胀系数不一定相同,温度改变时,应变片也会产生附加应变。
实验一电阻式传感器的单臂电桥性能实验、实验目的1、了解电阻应变式传感器的基本结构与使用方法。
2、掌握电阻应变式传感器放大电路的调试方法。
3、掌握单臂电桥电路的工作原理和性能。
二、实验说明1'电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:△R/R=Kf,AR为电阻丝变化值,K为应变灵敏系数,&为电阻丝长度的相对变化量△L/L。
通过测量电路将电阻变化转换为电流或电压输出。
2、电阻应变式传感如图1-1所示。
传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为土3mm°+5V1\1—外壳2—电阻应变片3—测杆4—等截面悬臂梁5—面板接线图图1-1电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R2、R3为固定,R为电阻应变片,输出电压U。
=EK&,E为电桥转换系数。
R3差动放大器图1-2电阻式传感器单臂电桥实验电路图三、实验内容1'固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm左右。
将测微器装入位移台架上部的开口处,旋转测微器测杆使其与电阻应变式传感器的测杆适度旋紧,然后调节两个滚花螺母使电阻式应变传感器上的两个悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。
2、将实验箱(实验台内部已连接)面板上的土15V和地端,用导线接到差动放大器上;将放大器放大倍数电位器RPi旋钮(实验台为增益旋钮)逆时针旋到终端位置。
3、用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V 档);接通电源开关,旋动放大器的调零电位器RB旋钮,使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP,旋钮使电压表指示为零;此后调零电位器於旋钮不再调节,根据实验适当调节增益电位4、按图1・2接线,R、R2、R3(电阻传感器部分固定电阻)与一个的应变片构成单臂电桥形式。
实验一金属箔式应变片——单臂、半桥、全桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。
对单臂电桥输出电压U01=EKε/4。
当两片应变片阻值和应变量相同时,其桥路输出电压U02=EK/ε2。
全桥测量电路中其桥路输出电压U03=KEε。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。
图1-1 应变式传感安装示意图2、接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器R w3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。
关闭主控箱电源。
3、将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好),接好电桥调零电位器R w1,接上桥路电源±4V(从主控箱引入)如图1-2所示。
表一:应变计的连接(老式接法)序号用途现场实例与采集箱的连接输入参数方式一1/4桥(多通道共用补偿片)适用于测量简单拉伸压缩或弯曲应变灵敏度系数导线电阻应变计电阻方式二半桥(1片工作片, 1片补偿片)适用于测量简单拉伸压缩或弯曲应变,环境较恶劣灵敏度系数导线电阻应变计电阻方式三半桥(2片工作片)适用于测量简单拉伸压缩或弯曲应变,环境温度变化较大灵敏度系数导线电阻应变计电阻泊松比方式四半桥(2片工作片)适用于只测弯曲应变,消除了拉伸和压缩应变灵敏度系数导线电阻应变计电阻方式五全桥(4片工作片)适用于只测拉伸压缩的应变灵敏度系数导线电阻应变计电阻泊松比方式六全桥(4片工作片)适用于只测弯曲应变灵敏度系数导线电阻应变计电阻表二:应变计的连接(新式接法)序号用途现场实例与采集箱的连接输入参数方式一1/4桥(多通道共用补偿片)适用于测量简单拉伸压缩或弯曲应变灵敏度系数导线电阻应变计电阻方式二半桥(1片工作片, 1片补偿片)适用于测量简单拉伸压缩或弯曲应变,环境较恶劣灵敏度系数导线电阻应变计电阻方式三半桥(2片工作片)适用于测量简单拉伸压缩或弯曲应变,环境温度变化较大灵敏度系数导线电阻应变计电阻泊松比方式四半桥(2片工作片)适用于只测弯曲应变,消除了拉伸和压缩应变灵敏度系数导线电阻应变计电阻方式五全桥(4片工作片)适用于只测拉伸压缩的应变灵敏度系数导线电阻应变计电阻泊松比方式六全桥(4片工作片)适用于只测弯曲应变灵敏度系数导线电阻应变计电阻。
实验一、二 电阻应变片传感器特性实验一、 实验目的:1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
2.比较半桥,全桥测量电路与单臂电桥的不同性能、了解各自的特点。
二、 基本原理:敏感元件—金属箔在外力作用下,其电阻值会发生变化。
即金属的电阻应变效应。
根据推导可以得出:l lk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ“应变效应”的表达式。
k 0称金属电阻的灵敏系数,从式(3)可见,k 0受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数k 0=2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。
通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4)式中 ζ——测试的应力; E ——材料弹性模量。
可以测得应力值ζ。
通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。
电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。
单臂电桥:即应变片电阻接入电桥的一臂,测出其电阻变化值,结构比较简单,但是灵敏度较差;半桥:把不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压UO2=EG ε/2。
式中E 为电桥供电电压。
全桥:测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U 03=KE ε。