视图与投影讲义
- 格式:doc
- 大小:701.00 KB
- 文档页数:10
专题27 投影与视图的核心知识点精讲1.掌握平行投影和中心投影的区别和性质;2.根据简单几何体或简单组合几何体判断其三视图;3.掌握立体图形的展开与折叠。
考点1:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.考点2:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.【题型1:平行投影与中心投影】【典例1】(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【变式1-1】(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【变式1-2】(2020•贵阳)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【题型2:三视图】【典例2】(2023•德州)如图所示几何体的俯视图为()A.B.C.D.【变式2-1】(2023•沈阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【变式2-2】(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【变式2-3】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.【变式2-4】(2023•金华)某物体如图所示,其俯视图是()A.B.C.D.【题型3:由三视图还原几何体】【典例3】(2023•淮安)如图是一个几何体的三视图,则该几何体的侧面积是()A.12πB.15πC.18πD.24π【典例3-1】(2023•河北)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【变式3-2】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A.B.C.D.【变式3-3】(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥一.选择题(共8小题)1.用3个同样的小正方体摆出的几何体,从正面看到的形状图如图所示,则这个几何体可能是()A.B.C.D.2.下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.3.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是()A.B.C.D.4.日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成.当太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定5.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()A.B.C.D.6.如图,在一间黑屋子的地面A处有一盏探照灯,当人从灯向墙运动时,他在墙上的影子的大小变化情况是()A.变大B.变小C.不变D.不能确定7.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A.①②③④B.①③④②C.②①④③D.④②①③8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC =1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m二.填空题(共1小题)9.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是.(填“图1”或“图2”)三.解答题(共1小题)10.如图,是由若干个完全相同的小正方体组成的一个几何体.从正面、左面、上面观察该几何体,在方格图中画出你所看到的几何体的形状图.(用阴影表示)一.选择题(共7小题)1.如图是一个正六棱柱的主视图和左视图,则图中a的值为()A.B.4C.2D.2.如图所示的是由两个长方体组成的几何体,这两个长方体的底面都是正方形,则该几何体的俯视图是()A.B.C.D.3.如图所示是一个由若干个相同的正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A.5个B.6个C.11个D.13个4.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm25.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.2cm C.297.9cm D.480cm6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.7.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.9πB.6πC.3πD.(3+)π二.填空题(共3小题)8.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为.9.如图,在直角坐标系中,点P(3,2)是一个点光源.木杆AB两端的坐标分别为(2,1),(5,1).则木杆AB在x轴上的投影长为.10.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为m.(忽略遥控器所在高度)三.解答题(共1小题)11.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?1.(2023•大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是()A.B.C.D.2.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.3.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm4.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.95.(2023•贵州)如图所示的几何体,从正面看,得到的平面图形是()A.B.C.D.6.(2023•自贡)如图中六棱柱的左视图是()A.B.C.D.7.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m 的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为m.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=m.9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.。
第五章投影与视图第4讲投影与视图一.知识梳理(一)投影【一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面】1.中心投影(1)定义:由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.【在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化;固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化】(2)中心投影具有以下特点:①中心投影的投影线交于一点;②一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影;③平面为投影面,各射线为投影线;④空间图形经过中心投影后,直线变成直线,但平行线可能变成了可以相交的直线;⑤中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致;⑥如果一个平面图形所在的平面与投射面平行,那么中心投影后得到的图形与原图形也是平行的,并且中心投影后得到的图形与原图形相似.名师点金:中心投影的三个特点:(1)等高物体垂直地面放置:①离点光源越近,影子越短;②离点光源越远,影子越长.(2)等长物体平行地面放置:①离点光源越近,影子越长;②离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及其在物体的影子上的对应点在同一条直线上.2.平行投影(1)定义:在一束平行光线(如阳光)照射下形成的投影叫做平行投影。
【在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化】(2)分类平行投影法又分为斜投影法和正投影法。
①斜投影法:投射线倾斜于(<90°)投影面,所得投影称为斜投影,如图所示.②正投影法:投射线垂直于投影面,所得投影称为正投影,如图所示.(3)性质①不垂直于投影面的直线或线段的正投影仍是直线或线段;②垂直于投影面的直线或线段的正投影是点;倾斜于投影面的线段,其正投影仍为线段,但比实际长度要短.③垂直于投影面的平面图形的正投影是直线或线段的一部分.(4)特点①平行直线的投影仍是平行或重合直线.②平行于投射面的线段,它的投影与这条线段平行且相等.③与投影面平行的图形,它的投影与这个图形全等;倾斜于投影面的平面图形,其投影仍为一平面图形.④在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.名师点金:平行投影的特征及画法:(1)特征:①平行投影中,形成影子的光线是平行的,平行物体在地面上形成的影子平行或在同一直线上;②同一时刻,太阳光下,物高与影长成正比例;(2)画法:连接物体顶端与影子顶端得到形成影子的光线,过物体顶端作已知光线的平行线得到物体的影子.补充:在北半球,太阳一天中的朝向变化:东→东南→南→西南→西;在北半球,影子一天中的朝向变化和长短变化:朝向变化:西→西北→北→东北→东;长短变化:长→较长→短→较长→长.(二)三视图【能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图】•主视图—从正面看到的图左视图—从左面看到的图俯视图—从上面看到的图•画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.•虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.二.实战演练考点一中心投影与平行投影(一)中心投影例1:(1)小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮(2)如图,一球吊在空中,当发光的手电筒由远及近时,落在竖直木板上的影子会逐渐______.例2:某公司的外墙壁贴的是反光玻璃,晚上两根木棒的影子如图(短木棒的影子是玻璃反光形成的),请确定图中路灯灯泡所在的位置.例3:如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.求路灯A的高度AB.典例分析(二)平行投影例1:如图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为______.例2:已知两个电线杆在太阳光下形成两条不同的线段,那么这两条线段可能______,也可能______.例3:春分这一天,小彬上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为______小时.例4:某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米(如图),求旗杆的高度.例5:如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:2≈1.4,3≈1.7)例6:如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为____m.考点二视图例1:(1)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()(2)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则下列选项图是图2的俯视图是()例2:画出如图所示几何体的三视图.例3:根据如图所示的三种视图,画出相应的几何体.例4:如图,给出的是一个由若干相同的小正体搭成的立体图形的主视图和左视图,则图中最少有___个小正方体,最多有___个小正方体.1.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长2.某一同学在上午上学路上和下午放学路上都看不到自己的影子,则该同学的家在学校的() A.东边 B.南边 C.西边 D.北边3.正方形纸片在阳光下的投影不可能是下列那些?①正方形②矩形③菱形④梯形⑤线段⑥平行四边形4.下列图中是在太阳光下形成的影子的是()5.如图,是由三个相同的小正方体组成的几何体,该几何体的俯视图是()课后作业6.由若干个小正方体构成的几何体的主视图和左视图都是如图所示,则该几何体最多有_____个小正方体,最少有_____个小正方体.7.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.5米 B.11.75米C.11.8米D.12.25米8.画出如图所示几何体的三视图.9.根据如图所示的三种视图,你能想象出相应几何体的形状吗?(画出几何体的草图)10.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到0.01米)11.“未爱广场”旗杆AB旁边有一个半圆的时钟模型,如图,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2米,旗杆的底端A到钟面9点刻度C的距离为5米,一天小明观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得一米长的标杆的影长1.6米,求旗杆AB的高度?1.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是()A.两竿都垂直于地面 B.两竿平行斜插在地上C.两根竿子不平行D.一根竿倒在地上2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.(1)如图,是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是()(2)如图,正四棱锥的俯视图是选项中的()直击中考4.一个几何体的三视图如图所示,它的俯视图为菱形,,该几何体的侧面积是____cm².5.画出下列几何体的三视图6.已知某立体图形的三视图如下,请你画出这个立体图形.7.一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D高度,如图,当李明走到点A 处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD的长.(结果精确到0.1m)。
九年级上册数学讲义——视图与投影知识点本章精要知识点归纳1. 主要概念:(1)圆柱的主视图是矩形,左视图是矩形,俯视图是圆。
(2)圆锥的主视图是三角形;左视图是三角形;俯视图是圆,还要画上圆心。
(3)球的主视图是圆;左视图是圆;俯视图是圆。
(4)投影:物体在光线的照射下,会在地面或墙上留下它的影子,这就是投影现象。
(5)平行投影:太阳光线可以看成是平行光线,像这样的光线所形成的投影称为平行投影。
(6)中心投影:由一点发出的光线形成的投影是中心投影。
(7)视点:眼睛的位置称为视点。
(8)视线:由视点出发的线称为视线。
(9)盲区:视线看不到的地方称为盲区。
2. 主要原理:(1)画视图时,看得见的部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线。
(2)我们在画三视图时,主、左视图的高要相等;俯、左视图的宽要相等。
(3)在同一时刻,不同物体的影子与它们的高度是成比例的。
(4)在同一天中,由早晨到傍晚,物体的影子由正西、北偏西、正北、北偏东、正东的方向移动。
(5)当投影光线与投影面垂直时,形成的投影就是物体的正投影。
第一节视图知识剖析:1、画圆柱、圆锥、球的三视图还记得一个物体的主视图、左视图和俯视图吗,你能画出下面物体的主视图、左视图和俯视图吗?圆柱圆锥球图中物体从正面、侧面、上面看这些儿何体,它们的形状各是什么样的?上面我们研究的是三种有代表性的几何体,生活中还有更多几何体及物体.2、画直三棱柱与直四棱柱的三种视图:先想象出图中各几何体的三种视图,然后互相讨论结果的正确性。
根据想象和讨论,可以基本确定直三棱柱和直四棱柱的三种视图:直三棱柱直四棱柱从上面的直棱柱的三种视图中,能否总结一下,在画视图时应注意什么?(在画视图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.应注意主视图和左视图是否同样宽.)典型例题例1. 如图,画出正三棱柱在这两种位置时的视图。
位置(一)位置(二)解:图中正三棱柱在位置(一)时的三视图如下图所示。
主视图左视图俯视图图中正三棱柱在位置(二)时的三视图如下图所示:主视图左视图俯视图例2. 如图所示,画出下列物体的三视图。
(1) (2)答:两个物体的三视图如图(a )(b )主视图 左视图 俯视图(a )主视图 左视图 俯视图(b )例3. 图1是底面为等腰直角三角形的三棱柱俯视图,画出它们主视图和左视图。
dAB CDEFa b c (1)(2)图1解:如图2。
主视图 左视图 主视图 左视图a b c d(1) (2)课堂练习已知某四棱柱的俯视图如下图所示,尝试画出它的主视图和左视图.本节知识点归纳:1.画三视图的原则画三视图时,应注意主、俯视图要“”,主、左视图要“”,左、俯视图要“宽相等”.[注意] 在画圆锥的俯视图时,要注意不要漏掉圆心处的实点.2.三视图的画法首先观察物体的几何构成,确定主视图的位置,依次画出视图的外轮廓线,然后将视图补充完整,看得见的轮廓线用实线,看不见的轮廓线用虚线.[总结] 三视图中的方位与物体上的方位的对应关系:(1)主视图中的上、下、左、右对应物体的上、下、左、右;(2)俯视图中的上、下、左、右对应物体的后、前、左、右;(3)左视图中的上、下、左、右对应物体的上、下、后、前.3.画三视图的顺序三种视图中首先应确定主视图的位置,画出主视图,然后在主视图下面画出俯视图,在主视图右面画出左视图.典型例题►考点一确定物体的三视图例1 如图S4-1(a)所示几何体的主(正)视图是( )[分析] B容易看出主视图有两层组成,最上层一个正方形,第二层三个正方形.方法技巧三个视图是分别从正面、左面、上面三个方向看同一个物体所得到的平面图形,要注意用平行光去看.画三个视图时应注意尺寸的大小,即三个视图的特征:主视图(从正面看)体现物体的长和高,左视图体现物体的高和宽,俯视图体现物体的长和宽.►考点二由视图确定物体例2 由若干个相同的小立方体搭成的几何体的三视图如图S4-2所示,则搭成这个几何体的小立方体的个数是( )A.3 B.4 C.5 D.6[分析] B由主视图可以看出几何体有两层,由俯视图可以看出第一层有3个小立方体,由左视图可以看出第二层有1个小正方体.方法技巧从俯视图可以看出行数与列数,再由各个位置上小正方体的个数确定每行每列的最高层数,从而确定出小正方体的个数.另外,在根据三个视图确定立体图形时,一定要充分发挥自己的空间想象力,并且要注意由三个视图想象实物时可能不唯一.建议同学们在俯视图的各个位置上写上该位置上小正方体的个数,然后把各个位置上的小正方体的个数相加即可.第二节太阳光与影子(平行投影)知识剖析:实践:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。
问题:如果改变小棒或纸片的位置和方向,它们的影子发生了什么变化?概念:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
思索:在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴交流。
议议:物体的主视图实际上就是说物体在某一平行光线下的投影(如图4-13),左视图和俯视图也是如此,你同意这种看法吗?先想一想,再与同伴交流。
典型例题►考点三平行投影问题例3 小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶( )A.0.5 m B.0.55 m C.0.6 m D.2.2 m[分析] A本题是平行投影问题,可借助相似三角形的有关知识来解决.设小刚举起的手臂超出头顶x m,则0.851.7= 1.11.7+x,解之得x=0.5 m.方法技巧物体在太阳光下所形成的影子大小和形状随着物体与投影面的位置关系的改变而改变.特别地,当物体与投影面平行时,所形成的影子与物体全等;同一物体在不同时刻的影长和方向不同;同一时刻物高与影长成比例.例4. 某校墙边有甲、乙两根木杆。
(1)某一时刻甲木杆在阳光下的影子如图(1)所示,你能画出此时乙木杆的影子吗?(2)当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在你所画的图形中有相似的三角形吗?为什么?解:(1)如图(2),作直线DD',过E作DD'的平行线,交AD'所在直线于E',则BE'就是乙木杆的影子;(2)平移由乙杆、乙杆的影子和太阳光线所构成的图形(即△BE E'),直到其影子的顶端E'抵达墙角为止;(3)△ADD'与△BEE'相似。
本节知识点归纳:1.平行投影太阳光线可以看成是的光线,像这样的光线所形成的投影称为平行投影.[点拨] 平行投影与视图的联系:事实上,在特殊位置下(投影线与投影面垂直时)物体的平行投影就是物体的三种视图.物体的主视图是一束平行光线从正前方照射时形成的平行投影;左视图是一束平行光线从左前方照射形成的平行投影;俯视图是一束平行光线从正上方照射形成的平行投影.第三节灯光与影子(中心投影)知识剖析:概念:探照灯、手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。
思索:当你乘车沿一条平坦的大道向前行驶时.你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了.这是为什么?概念:视点、视线、盲区:人眼的位置称为视点;由视点发出的光线称为视线;人眼看不到的地方称为盲区.[点拨]中心投影与平行投影的区别:太阳光线是平行的光线,灯光的光线是从一点发出的.典型例题例5. (山西省中考题)如图,小明想测量电线杆AB的高度,他发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_____________米(结果保留两位有效数字,,)。
..≈≈21413173解:延长BC、AD,二线交于点E,过点D作DF⊥BE于点F,则BE为旗杆AB的影子。
∵∠DCF=30°,CD=4m∴DF=122CD m=,∴CF CD DF=-=2223∵∠ABC=∠DFE=90°,∠E=∠E,∴△ABE∽△DFE,∴ABBEDF FE =∵在同一时刻两物体的物高与影长成比例,∴ABBE = 1 2设AB=x米,则BE=2x米∴DFEFDFBE BC CF x=--=--=22102312∴x=+≈+≈73717387..(米)答:电线杆的高度约为8.7米。
例6. 如图所示,路灯下某公路护栏AB的影子为AB',某果树CD的影子为CD',请画出电线杆EF的影子。
解:如图所示,作直线B B D D''、,交于点O,连结OF并延长交AE于F',EF'即为EF 的影子。
例7. 同一时刻,一棵树和一竿旗的影子如图所示,这是白天还是夜晚,请画出小明此刻的影子。
解:是夜晚,分别过小树及其影子顶端,旗杆及其影子顶端作直线交点为O,过O点及小明头部顶点作直线,此直线与地面交于点B,设小明立足点为A,则AB是小明的影子。
例8. 与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树。
晚上,幕墙反射路灯灯光形成了那盆花的影子,树影是路灯灯光形成的,如下图所示,你能确定此时路灯光源的位置吗?解:过盆花及其影子顶端作直线,作反射面法线,作∠2=∠1,得光线l1,过树及其影子顶端作直线l2,两线交点O,则O处为灯光位置。
例9. 小明、小刚在同一座楼的四层、六层。
他们楼前有一商店,他们的同学小江在下面喊,小明说,小江在哪儿呢?小刚说我看到小江啦!请问此时小江在什么位置?解:将六楼处设为点A,四楼处设为点A',商店顶部一点设为点B,过A、B,A'、B分别作直线交地面于C、D两点,如图所示。
小江在CD区域内。
跟进练习:一、选择题1. 如图(1)所示,所对应的物体还是图(2)所示中的()图(1)图(2)2. 如图(3)所示的空心几何体的俯视图是图(4)中的()图(3)图(4)3. 物体在太阳光的照射下,不同的时刻会发生的现象是()A. 影子的大小不变,方向在变B. 影子的大小在变,方向不变C. 影子的大小、方向都在变D. 影子的大小、方向都不变4. 强强和亮亮在路灯下走,本来很高的强强的影长却比矮的亮亮的影子短,因为()A. 强强离路灯近B. 亮亮离路灯近C. 强强和亮亮分别在路灯的两旁D. 路灯比强强高5. 货车司机的驾驶室一般都设计得较高,而且尽量靠前,这是为了()A. 接触到更好的阳光B. 看得更远C. 减小因车头挡住视线产生的盲区D. 空气更新鲜6. 下列投影中,不属于中心投影的是()A. 晚上路灯下小孩的影子B. 汽车灯光照射下行人的影子C. 阳光下沙滩上人的影子D. 舞台上一束灯光下演员的影子7. 小明拿了一张正方形卡片,使卡片面与墙面平行,这时发现墙面上形成了卡片的影子,则下列关于其影子的叙述正确的是()A. 墙上形成的影子的形状和大小一定与卡片相同B. 墙上形成的影子有可能比卡片小C. 墙上形成的影子比卡片大或小都有可能D. 墙上形成的影子有可能比卡片大二、填空题1. 明明和亮亮为了踢好足球,练习追逐跑,于是他们两人决定玩踩影子的游戏,即踩到对方影子为获胜,你认为在阳光下练习还是在路灯下练习更有意义?_____________。