晶体物理性能 第1章 张量分析基础知识
- 格式:pdf
- 大小:251.16 KB
- 文档页数:32
01张量基础第一章张量基础晶体的物理性质一般是各向异性的,这些性质常常需要用与方向有关的两个可测量的量之间的关系来定义,而用张量来描述,张量是晶体物理的数学基础。
第一章张量基础张量的基本知识张量的变换定律张量的几何表示法晶体对称性对晶体性质的影响晶体物理性质的相互关系1.1 张量的基本知识(1)一、标量与矢量1、标量在物理学中,常遇到这样一些量,如物体的温度、密度等等,它们都与方向无关。
这些无方向的物理量,称为标量(也称零阶张量)。
它们完全由给定的某一数值来确定。
1.1 张量的基本知识(2)2、矢量与方向有关的物理量,称为矢量(也称一阶张量)。
它们不仅有大小,而且有一定的方向。
如电场强度、电位移、温度梯度等都是矢量。
矢量用上方带箭头的字母表示,如电场强度可表示为 E 。
矢量还可以用直角坐标系(x1,x2,x3 )中三个坐标轴上的分量来决定它的大小和方向,于是就可以 E 写成: E = [E , E , E ]1 2 3——字母的下标1、2、3分别代表x1, x2, x3轴。
这样,当坐标轴选定后,矢量就完全由其在这些轴上的分量来确定。
1.1 张量的基本知识(3)二、二阶张量在各向同性介质中,电场强度矢量 E 和电位移矢量 D 的方向永远保持一致,在电场强度不高的情况下,两者成线形关系,因此,它们间的关系可以直接表示为:D =εEε——介电常数在各向异性介质中,电场强度矢量 E 和电位移矢量 D 的 E 方向经常不一致,因此, D 在三个坐标轴上的分量都与的三个分量相关,此时,它们间的关系可表示为:D1 = ε 11 E1 + ε 12 E 2 + ε 13 E3 D2 = ε 21 E1 + ε 22 E 2 + ε 23 E3 D3 = ε 31 E1 + ε 32 E 2 + ε 33 E31.1 张量的基本知识(4)即D1 ? ? ε 11 ε 12 ? ? ? ? D2 ? = ? ε 21 ε 22 ? D ? ?ε ? 3 ? ? 31 ε 32ε 13 ?? E1 ? ?? ? ε 23 ?? E 2 ? ?E ? ε 33 ? ?? 3 ?ε 11 ε 12 ε 13 方形表ε 21 ε 22 ε 23 就是一个二阶张量。
固体物理第一章总结完全版第一章晶体的结构一、本章内容1、晶体的共性 ( crystal characters )2、晶格及其平移对称性(lattice and translation symmetry )3、晶列和晶面(crystal array and plane )4、晶体的宏观对称性(crystal symmetry )二、本章要求1、掌握晶体的特征。
晶格周期性的描述方法:基元、布拉菲格子、原胞、基矢的概念。
简单格子与复式格子,原胞、晶胞的概念与选取。
常见晶格结构及其代表晶体。
2、掌握晶列与晶面,晶向指数与晶面指数(密勒指数)的含义与确定方法。
3、熟悉晶体的对称操作、对称素的概念,晶体点群的基本知识。
七大晶系与十四种布拉菲格子。
三、本章知识框图s bcc fcc 定义:内部质点在三维空间呈周期性重复排列的固体长程有序性自限性和晶面角守恒定律晶体的共性各向异性固定熔点晶格定义:晶体中原子排列的具体形式简立方结构(c )体心立方结构()(Li,Na,K,Rb,Cs,Fe )六角密排结构(hcp )(Be,Mg,Zn,Cd )密堆积结构面心立方结构()(Cu,Ag,Au,Al )常见的晶体结构金刚石结构(Ge,Si )NaCl 晶体晶体的结构 C =ηη结构sCl 结构闪锌矿结构钙钛矿结构一个原子的周围最近邻的原子数配位数:配位数反映原子排列的紧密程度,粒子排列越紧密,配位数越大描述晶体紧密程度的物理量致密度,或堆积因子是指晶胞中所有原子的体积与晶胞体积之比;致密度:晶胞中原子的体积之和公式表示:晶胞体积在整体范围单晶体分类??内原子排列都是规则的晶带:在晶体中有一些晶面的交线(晶棱)互相平行,这些晶面称为一个晶带带轴:相互平行的晶棱的共同方向称为带轴多晶体:由许多单晶体构成,在个晶粒范围内,原子排列是有序的点阵:晶体的内部结构,可以概括为有一些相同的化学质点在空间有规律地作周期性的无限分布。
这些化学质点的分布总体称为点阵,也称为格子结点:点阵中的点子称为阵点、结点或格点布拉菲格子:格点的周期性阵列,即如果把晶体结构看做是三维空间无限延伸的,则任一点周围的情况都是完全相同的,通常把这种点的周期性阵列称为布拉菲格子基元:构成阵点的具基元和晶体结构晶体晶体的几何架构描述1?体原子、离子、分子或其集团简单格子:基元是一个原子,所有原子完全等价包含两种或两种以上的等价原子、不同原子或离子构成的晶体。
第一章晶体与非晶体★相当点(两个条件:1、性质相同,2、周围环境相同。
)★空间格子的要素:结点、行列、面网★晶体的基本性质:自限性: 晶体能够自发地生长成规则的几何多面体形态。
均一性:同一晶体的不同部分物理化学性质完全相同。
晶体是绝对均一性,非晶体是统计的、平均近似均一性。
异向性:同一晶体不同方向具有不同的物理性质。
例如:蓝晶石的不同方向上硬度不同。
对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。
最小内能性:晶体与同种物质的非晶体相比,内能最小。
稳定性:晶体比非晶体稳定。
■本章重点总结:本章包括3组重要的基本概念:1) 晶体、格子构造、空间格子、相当点;它们之间的关系。
2) 结点、行列、面网、平行六面体; 结点间距、面网间距与面网密度的关系.3) 晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。
第二章晶体生长简介2.1 晶体形成的方式★液-固结晶过程:⑴溶液结晶: ①降温法②蒸发溶剂法③沉淀反应法⑵熔融结晶: ①熔融提拉②干锅沉降③激光熔铸④区域熔融★固-固结晶过程:①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化2.2 晶核的形成●思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。
★均匀成核:在体系内任何部位成核率是相等的。
★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。
●思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶?2.3 晶体生长★层生长理论模型(科塞尔理论模型)层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。
★螺旋生长理论模型(BCF理论模型)●思考:这两个模型有什么联系与区别?联系:都是层层外推生长;区别:生长新的一层的成核机理不同。
●思考:有什么现象可证明这两个生长模型?环状构造、砂钟构造、晶面的层状阶梯、螺旋纹2.4 晶面发育规律★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。
第一章晶体结构和X射线衍射1.1晶体的特征微观特征固体分类(按结构)晶体长程有序分为单晶体和多晶体准晶体有长程取向性,而没有长程的平移对称性。
非晶体不具有长程序的特点,短程有序。
长程有序:至少在微米量级范围内原子排列具有周期性。
宏观特征自限性、晶面角守恒、解理性、均匀性、晶体的各向异性、对称性、固定的熔点。
晶体的宏观特性是由晶体内部结构的周期性决定的,即晶体的宏观特性是微观特性的反映。
晶体结构及其描述一、晶体结构一个理想的晶体是由完全相同的结构单元在空间周期性重复排列而成的。
所有晶体结构可以用晶格来描述,这种晶格的每个格点上附有一群原子,这样的一个原子群称为基元,基元在空间周期性重复排列就形成晶体结构。
1.晶格+基元=晶体结构(1)晶格晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限分布,这些点子的总体称为晶格。
用矢量表示为:),,(321332211取整数nnnnnn++=所对应的点的排列。
晶格是晶体结构周期性的数学抽象。
(2)基元在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。
基元在空间周期性重复排列就形成晶体结构。
(3)格点晶格中的点子代表着晶体结构中相同的位置,称为格点。
一个格点代表一个基元,它可以代表基元重心的位置,也可以代表基元中任意的点子。
晶格+基元=晶体结构二、原胞的分类1.固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。
特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。
它反映了晶体结构的周期性。
基矢:固体物理学原胞基矢通常用表示。
体积:()321aaaΩ⨯⋅=2.结晶学原胞(单胞、晶胞、惯用晶胞)构造:使三个基矢的主轴尽可能地沿空间对称轴的方向。
它具有明显的对称性和周期性。
特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。
晶体光学简介一 晶体的介电常数张量由电磁场理论已知,介电常数是表征介质电学特性的参量。
在各向同性介质中,电位移矢量D 与电场矢量E满足如下关系: E E D rεεε0== (1)由于介电常数r εεε0=是标量,所以电位移矢量D 与电场矢量E 的方向相同,即D矢量的每个分量只与E矢量的相应分量线性相关。
对于各向异性晶体,D 和E间的关系为E E D r⋅=⋅=εεε0 (2) 介量常数r εεε0=是二阶张量,该关系的分量形式为 ),,,(0z y x j i E D jjji i ==∑εε (3)这里的j i ε是相对介电常数张量元素。
由该式可见,电位移矢量D 的每个分量与电场矢量E的各个分量均线性相关,在一般情况下,D 与E的方向不同。
因此,晶体的相对介电常数张量可以写为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)1()1()1()1()1()1()1()1()1(111z z y z x z z y y y x y zx y x x x zz zy zx yz yy yx xz xy xx ji χχχχχχχχχεεεεεεεεεε (4)由于[])1(ji χ是对称张量,因而晶体的相对介电张量[]ji ε是一个对称张量,因此它有六个独立分量,经过主轴变换后的介电常数张量是对角张量,只有三个非零的对角元素,为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz yy xx ji εεεε000000(5)式中,xx ε、yy ε、zz ε称为相对主介电常数。
由麦克斯韦关系式r n ε=,还可以相应地定义三个主折射率xx x n ε=,yy y n ε=,zz z n ε= (6)在主轴坐标系中,电位移矢量与电场强度矢量的分量关系可表示为 ),,(0z y x i E D ii i i ==εε (7)对于自然界中存在的七大晶系:立方晶系、四方晶系、六方晶系、三方晶系、正交晶系、单斜晶系、三斜晶系,由于它们的空间对称性不同,其相对介电常数张量的形式也不同。