(最新)八年级下册数学期末试卷(含答案)
- 格式:docx
- 大小:204.65 KB
- 文档页数:11
洪山区2023—2024学年度第二学期期末质量检测八年级数学试卷2024.06.27亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效、4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.若式子a+1有意义,则a的取值范围是()A.a≥1B.a≤-1C.a≠-1D.a≥-12.下列各式计算正确的是()A.2+2=4B.6÷3=2C.35×25=65D.8―2=23.下表记录了甲、乙、丙、丁四位选手各10次射击成绩的数据信息.选手甲乙丙丁平均数(环)9.69.69.39.3方差(环²)0.0340.0320.0340.032请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁4.△ABC的三边分别为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.a=1,b=2,c=5B.a=3,b=4,c=5C.c²―a²=b²D.∠B:∠C:∠A=1:3:45.在Rt△ABC中,∠BAC=90°,∠B=60°,AC=3,则AB=()A.1B.2C.3D.236.若一次函数y=2x+b的图象不经过第二象限,则b的取值范围为()A.b<0B.b≤0C.b≥0D.b>07.已知四边形ABCD,下列条件能判定它是平行四边形的是()A.AB∥CD,AB=CDB.∠A=∠D,∠B=∠CC.AB∥CD,AD=BCD.AB=CD,∠A=∠C8.一个有进水管和出水管的容器,从某时刻开始3min内只进水不出水,在随后的5min内既进水又出水,最后的5min 只出水不进水,每分钟的进水量和出水量不变.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则在整个过程中,容器内水量最多有()L.A.9.5B.10C.11D.129.如图,函数y =|kx ―b |(k ≠0)的图像与x 、y 轴分别交于点B 和A (0,3)两点,与函数y =12x 交于点C 、D ,若D 点纵坐标为1,则|kx ―b |≤12x 的解集为()A .56≤x ≤52B .56≤x ≤2C .65≤x ≤2D .65≤x ≤5210.如图,有5块正方形连在一起的钢板余料,要求分割成若干小块后能拼接成与原图形面积相等的正方形,下列四种分割的方法符合要求的有()种?(沿虚线分割,忽略接缝不计)A.1B.2C.3D.4第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算9的结果为______12.某次比赛中,赵海的得分为:演讲内容90分,演讲能力91分,演讲效果93分,若演讲内容、演讲能力、演讲效果按照2:2:1的比确定,则赵海的最终成绩是______分.13.某水库的水位在最近5小时内持续下降,水库的初始水位高度为10米,水位以每小时0.2米的速度匀速下降,则该水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为______.14.如图,矩形ABCD的对角线AC、BD交于点O,过点O作OF⊥AC交BC于点F.若AB=12,AD=18,则FC长为______.15.已知直线l:y=kx―k+1,下列四个结论:①直线一定经过第一象限;②关于x、y的方程组{y=kx―k+1x+y=2的解为{x=1y=1;③若点A(x₁,y₁),B(x₂,y₂)在直线l上,当x₁<x₂时,y₁>y₂;④若直线l向下平移2个.其中正确的是______.(填写序号)单位后过点(2,m),且不等式kx―k+1<m的解集为x>5,则k=―2316.如图,在平行四边形ABCD中,AB=5,AD=4,∠B=60°,点E,F分别为AB,BC边上的一点,连接EF.点B关于EF的对称点P恰好落在CD上.当BE最小时,求PF的长为______.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(本题满分8分)计算:(1)(26―4)÷2;―48.(2)27+61318.(本题满分8分)如图,点P(x,y)在第一象限,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S.(1)当点P的横坐标为5时,△OPA的面积为多少?(2)若△OPA的面积大于9,请求出x的取值范围.19.(本题满分8分)某校对初中生进行综合素质评价,划分为A,B,C,D四个等级,现从全体学生中随机抽取部分学生,调查他们的等级评定情况,将收集的数据整理后,制作了如下不完整的统计表和统计图.等级结果人数A优秀24B良好18C合格aD待合格b请根据图中提供的信息解答下列问题:(1)本次抽取的学生共有______人,表中a的值为______;(2)所抽取学生等级的众数落在______等级(填“A”,“B”,“C”或“D”);(3)若该校共有900名学生,请估计其中B等级的学生人数.20.(本题满分8分)已知四边形ABCD,(1)如图(1),若AC=BD,点E、F、G、H分别为AB、BC、CD、DA的中点,判断四边形EFGH的形状,并说明理由.(2)如图(2),若AC⊥BD于O,AB=4,CD=6,求BC²+AD²的值.21.(本题满分8分)如图是由小正方形组成的5×7网格,每个小正方形顶点叫做格点.三角形ABC的三个顶点都在格点上.仅用无刻度的直尺在给定网格中完成画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,作△ABC的高AD;在AB边上找一点E,使得DE=BE;(2)在图(2)中,P是边AB上一点,∠ABC=α.先将线段AB绕点B顺时针旋转2α,得到线段BH,画出线段BH;再画点Q,使P,Q两点关于直线BC对称.22.(本题满分10分)为响应节能减排的号召,某品牌汽车4S店准备购进A型和B型两种不同型号电动汽车共30辆进行销售.两种型号汽车的进价和售价如下表:进价(万元/辆)售价(万元/辆)A型1617.8B型2729.6(1)如果该4S店购进30辆两种型号电动汽车共花费612万元,那么购进A和B型号电动汽车各多少辆?(2)为保证A型电动汽车购进量不少于B型电动汽车购进量的2倍但不超过B型电动汽车购进量的4倍,那么30辆车全部售出后,求购进多少辆A型电动汽车可使销售利润最大,最大利润是多少?(3)在(2)的条件下,实际销售时,政府大力补贴,A型电动汽车的进价下调a万元(0<a<1),请你设计出销售利润最大的进货方案.23.(本题满分10分)在矩形ABCD中,AD=4,E为BC边上一点,将ΔCDE沿DE折叠得△FDE,(1)如图(1),若CD=42,点F在AB边上,求AF长度;(2)如图(2),若点F在矩形ABCD外部,DF,EF分别与AB于点P、T,且CD=2EC,PF=BE,求CE 长度;(3)如图(3),若CD=AD=4,取AD中点K,作KQ⊥KF且KQ=KF,当AQ取最小值时,直接写出BF 长度.24.(本题满分12分)如图,平面直角坐标系中,点A,B的坐标分别为(0,2),(-4,0),以AB为边作菱形ABCD,菱形中心为坐标原点,点C在y轴负半轴上,点D在x轴正半轴上.(1)直接写出D点坐标______;直线AD的函数解析式______;(2)①在直线AB上找一点E,连CE,若∠ECO+∠ODC=45°,求点E的坐标;②点E为AB边上的任一点,将点E绕原点O顺时针旋转90°得到点Q,试证明点Q在一条定直线上运动,若EQ中点为T,求出O T最小值.答案一、选择题1.A 2.B 3.A 4.D 5.D 6.C 7.C 8.B 9.C 10.A二、填空题11.12.13.8814.2915.①③④16.三、解答题17.(1)解:原式(2)解:原式18.(1)解:四边形为菱形.理由如下:如图,连接,交于点,四边形是菱形,,又,又,四边形为平行四边形,平行四边形为菱形.(2)已知,,在中,由勾股定理得,,19.解:(1)由题意得,(名),答:一共抽取了200名学生;(2)(名),2321y x =+72=+-===AECF AC BD O Q ABCD ,,AC BD AO OC BO OD ∴⊥==BE FD =Q ,BE BO FD DO EO OF ∴-=-∴=AO OC =Q ∴AECF Q AC BD ⊥∴AECF 5,12AD EF ==1,2ED BD ED FB ==Q 1112344OD EF ∴==⨯=Rt ADO △4AO ==8AC ∴=1242ABCD S BD AC ∴=⋅=菱形4020%200÷=20030%60⨯=补全条形统计图如下:(3)(名),答:全校喜欢篮球的大约有1050名学生.20.解:(1)把代入中,得解得:,与的函数关系式为:;(2)当弹簧长度为时,即,解得:,当弹簧长度为时,所挂物体的质量为.21.解:(1)(2)(3)(每小题2分)(4.22.解:(1)由题意可知:(2)由题意得,解之得又,为整数,300070/2001050⨯=0,15;2,19x y x y ====y kx b =+219,15k b b +=⎧⎨=⎩215k b =⎧⎨=⎩∴y x 215y x =+20cm 21520y x =+=2.5x =∴20cm 2.5kg 400200(12)300(2)250(8)W x x x x =+⨯-+⨯-+⨯-2503800.W x ∴=+25038005000x +≤ 4.8x ≤20,2 4.8x x -≥∴≤≤Q x可取,共有三种调运方案.(3)中,是的一次函数,又,则随的值增大而增大,当时,的值最小,最小值是元.此时的调运方案是:市运往市0台,运往市6台;市运往市10台,运往市2台23.解:(1)(2)①②结论:.理由如下:如图,过点作,交与点.由轴对称知,,在正方形中,,又,为等腰直角三角形,,在Rt 中,由勾股定理得,,.24.解:(1)由得,即,,设的解析式为,将的坐标代入解析式,得∴x 2,3,4Q 2503800W x =+W x 2500≥W x 2x =W 250238004300W =⨯+=B C D A C D 45AGD ∠=︒135AGD ∠=︒FG DG -=A AM AG ⊥FD M ,,AE BF AB AF AFB ABF ⊥=∠=∠Q ABCD ,90AB AD BAD =∠=︒AD AF ∴=AFD ADF∴∠=∠90AFB ABF AFD ADF ∠+∠+∠+∠=︒45BFD ∴∠=︒9045AGF BFD ∴∠=︒-∠=︒AMG ∴△,135AM AG AGD AMF ∴=∠=∠=︒(AAS)AMF AGD ∴△≌△FM DG∴=FG DG MG∴-=AMG △222AM AG MG +=AM AG =Q MG ∴=FG DG ∴-=2(2)0a -=2,6a b ==(2,2)A -(0,6)B 21y kx b =+,A B解得的解析式为(2)作,则到的距离等于到的距离,,过,的解析式为,又在直线上,点的坐标为,当在的左侧时,求得点的坐标为,点的坐标为或.(3)存在.如图,若直线与轴交于点,过点作,交轴于点,过点作,交于点,过点作轴,作点关于轴的对称点,连接交于点.轴,,,,22,6k b b -+=⎧⎨=⎩26k b =⎧⎨=⎩∴2126y x =+BP AO ∥P AO B AO AOP AOBS S ∆∆∴=Q PB AO ∥PB (0,6)B ∴PB 6y x =-+P 8y =2,x ∴=-∴P (2,8)-P AO P (14,8)-∴P (2,8)-(14,8)-21x C B 45ABN ∠=︒x N C DC CB ⊥BN D D DE x ⊥N y F BF AO M BO x ⊥Q 90BOC CED BCD ∴∠=∠=∠=︒90CBO BCO ECD BCO ∠+∠=∠+∠=︒CBO ECD∴∠=∠45,ABN DC CB ∠=︒⊥Q CB CD∴=(AAS)CBO DCE ∴△≌△6,3CE OB DE CO ∴====(3,3)D ∴-设的解析式为,将代入解析式可得.解得直线的解析式为,当时,,点关于轴的对称点的坐标为.设的解析式为,将代入解析式可得.解得直线的解析式为,联立,解得BD 11y k x b =+(0,6),(3,3)B D -111336k b b +=-⎧⎨=⎩113,6k b =-=∴BD 36y x =-+0y =2,(2,0)x N =∴∴N y F (2,0)-BF 22y k x b =+(0,6),(2,0)B F -222206k b b -+=⎧⎨=⎩223,6k b ==∴BF 36y x =+36y x y x=+⎧⎨=-⎩33,22x y =-=33,.22M ⎛⎫∴- ⎪⎝⎭。
八年级下册数学期末考试试卷一、选择题。
1、若为实数,且,则2020x y )﹣(的值为( ) A .1B .C .2D .2、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( )A 、3B 、C 、3或D 、3或3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .,,C .3,4,5D .4,,4、如下图,在中,分别是边的中点,已知,则DE的长为()A.3B.4C.5D.65、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y26、一次函数与的图像如下图,则下列结论:①k<0;②>0;③当<3时,中,正确的个数是( )A.0B.1C.2D.37、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A.23,25 B.23,23 C.25,23 D.25,25二、填空题。
8、函数中,自变x的取值范,是_________9、计算:(+1)2000(﹣1)2000= .10、若的三边a、b、c满足0,则△ABC的面积为____.11、请写出定理:“等腰三角形的两个底角相等”的逆定理:.12、如图,在□ABCD中,对角线AC,BD相交于O,AC+BD=16,BC=6,则△AOD的周长为_________。
13、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长________.14、如图所示:在正方形ABCD的边BC延长线上取一点E,使CE=AC,连接AE交CD于F,则∠AFC为度.15、是一次函数,则m=____,且随的增大而____.16、已知直线y=2x+8与x轴和y轴的交点的坐标分别是______________;与两条坐标轴围成的三角形的面积是__________.17、一组有三个不同的数:3、8、7,它们的频数分别是3、5、2,这组数据的平均数是_______.18、若一组数据的平均数是,方差是,则的平均数是,方差是.三、计算题(19、5,20、5,21、6共16分)19、(-+2+)÷.20、:.21、先化简后求值.22、(7分)如图,中,于D,若求的长。
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
新人教版八年级数学下册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 3.4的平方根是 .4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、A6、C7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、±2.4、(-4,2)或(-4,3)5、46、40°三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、1 23、(1)12,32-;(2)略.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。
2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C.cm D.5cm或cm 3、为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数B.中位数C.众数D.方差4、以下列各组数为边长,能构成直角三角形的是()A.1、2、3B.3、4、5C.4、5、6D.、、5、P1(x1,y1),P2(x2,y2)是一次函数y=2x﹣3图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y26、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 7、已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD8、勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a,b(a>b)表示直角三角形的两直角边,则下列结论不正确的是()A.a2+b2=25B.a+b=5C.a﹣b=1D.ab=129、如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.10、已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.46二、填空题(每小题3分,满分18分)11、二次根式中,字母x的取值范围是.12、某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.13、直线y=kx+b经过点(3,﹣2),当﹣1≤x≤5时,y的最大值为6,则k的值为.14、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为.15、一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4<2x的解集是.16、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合).且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个说法:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.其中正确的是.第14题图第15题图第16题图2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19、已知y+1与x﹣2成正比例,且当x=1时,y=﹣3.(1)求y关于x的函数关系式;(2)当m≤x≤m+3时,y的最大值为7,求m的值.20、在某次体育节中,实验中学学生会开展“爱心义卖”活动,准备笔记本和便利贴两种文创产品共100本.若售出3本笔记本和2本便利贴收入65元,售出4本笔记本和3个便利贴收入90元.(1)求笔记本和便利贴的售价各是多少元;(2)已知笔记本数量不超过便利贴的3倍,则准备笔记本和便利贴各多少本的时候总收入最多,并求出总收入的最大值?21、为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a=;(2)本次抽样调查中,中位数是,扇形统计图中课外阅读6本的扇形的圆心角大小为度;(3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.22、已知:矩形ABCD,AC、BD交于点O,过点O作EF⊥BD分别交AB、CD于E、F.(1)求证:四边形BEDF是菱形..(2)若BC=3,CD=5,求S菱形BEDF23、直线y=﹣2x+4与x轴,y轴分别交于点A、B,过点A作AC⊥AB于点A,且AC=AB,点C在第一象限内.(1)求点A、B、C的坐标;(2)在第一象限内有一点P(3,t),使S△P AB =S△ABC,求t的值.24、如图,直线与x轴,y轴分别交于点A,B,直线y=kx﹣1与线段AB交于点C,与y轴交于点P,与x轴交于点D.(1)直接写出点A,B,P的坐标;(2)连接BD,若BD=AD,求S△PBC的值;(3)若∠PCB=45°,求点C的坐标.25、如图,直线y=kx﹣4k(k≠0)与坐标轴分别交于点A,B,过点A、B作直线AB,以OA为边在y轴的右侧作四边形AOBC,S=8.△AOB(1)求点A,B的坐标;(2)如图,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE;①如图1,问点E是否在定直线上,若是,求该直线的解析式;若不是,请说明理由;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请直接写出点H的坐标.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、x≥2且x≠3 12、513、﹣2或4 14、16 15、x>1.516、①③④三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、018、证明略19、(1)y=2x﹣5 (2)m的值为320、(1)笔记本的售价是15元,便利贴的售价是10元(2)总收入的最大值为1375元21、(1)图略20 (2)6,129.6(3)52822、(1)证明(2)10.223、(1)C(6,2)(2)t的值为824、(1)P(0,﹣1)(2)(3)C(,)25、(1)A(0,4),B(4,0)(2)①点E在定直线y=x﹣4上②点H坐标为(12,8)或(6,2)。
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
2023年部编版八年级数学(下册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.函数132y x x =--+中自变量x 的取值范围是__________. 3.若2|1|0a b -++=,则2020()a b +=_________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图1,在菱形ABCD 中,AC =2,BD =3AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、23x -<≤3、14、(-4,2)或(-4,3)5、:略6、132三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、4ab ,﹣4.3、(1)a ≥2;(2)-5<x <14、略5、(1)2;(2)60︒ ;(3)见详解6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
天门市八年级数学试卷 第 1 页 (共 6 页)1 224- x天门市 2019— 2020 学年度第二学期期末考试八年级数 学 试 题(本试卷满分 120 分,考试时间 120 分钟)一、选择题(每小题 3 分,共 30 分.在下列各小题中,均给出四个答案,其中有且仅有一个正确答案,请你将所选答案的字母代号填在题后的括号内)1. 下列二次根式中,是最简二次根式的是()A.B .C .D .2. 下列特征量不能反映一组数据集中趋势的是()A. 平均数 B .中位数 C .众数D .方差3.在下列选项中,不能判定四边形 ABCD 是平行四边形的是( ) A .AD ∥BC ,AB ∥CD B .AB ∥CD ,AB = C D C .AD ∥BC ,AB = C DD .AB = C D ,AD =BC4. 一个装有进水管和出水管的空容器,从某时刻开始 4 min 内只进水不出水,容器内存水8 L ;在随后的 8 min 内既进水又出水,容器内存水 12 L ;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量 y (单位:L )与时间 x (单位:min )之间的函数关系的图象大致的是()y/Ly/L y/LOx/min OAx/min OBx/min C D5. 顺次连接菱形四边中点得到的四边形是()A .平行四边形B .矩形C .菱形D .正方形6.下列说法正确的是( )A .若a <0,则 <0B .x 是实数,且x 2 = a ,则a >0C . 有意义时,x ≤0D .0.1的平方根是±0.0112a 2 y/LOx/min7.已知M,N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是()A.锐角三角形B.直角三角形C.锐角三角形D.等腰三角形8.某公司全体职工的月工资(单位:元)如下:月工资18000 12000 8000 6000 4000 2500 2000 1500 1200人数1(总经理)2(副总经理)3410 20 22 12 6该公司月工资数据的众数为2000,中位数为2250,平均数为3115,极差为16800,公司的普通员工最关注的数据是()A.中位数和众数B.平均数和中位数C.平均数和众数D.平均数和极差9.下列关于一次函数y =kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y 随x 的增大而减小C.图象与y 轴交于点(0,b)D.当x>-b时,y>0 k10.如图,在正方形ABCD 中,点E,F 分别在BC,CD 上,AE =AF,AC 与EF 相交于点G.下列结论:①AC 垂直平分EF;②BE+DF =EF;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,∠AEB =∠AEF.其中正确的结论是()(第10 题图)A.①③B.②④C.①③④D.②③④二、填空题(每小题 3 分,共24 分.请将结果直接写在横线上)11.在函数y = x + 2中,自变量x 的取值范围是.x - 112.某中学规定学生的学期体育成绩满分为100 分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95 分,90 分,85 分,则小桐这学期的体育成绩是分.13.在平面直角坐标系中,将函数y =3x 的图象向上平移6 个单位长度,则平移后的图象与x 轴的交点坐标为.天门市八年级数学试卷第 2 页(共 6 页)天门市八年级数学试卷 第 3 页 (共 6 页)23 2 2 6 3 3 3 8 2 27 5 5 14. 如图,在△ABC 中,∠ACB =90°,点 D ,E ,F 分别是 AB , BC ,CA 的中点,若 CD = 2,则线段 EF 的长是. 15. 当 x =- 1 时,代数式 x 2 + 2x + 2 的值为.16. 在从小到大排列的五个整数中,中位数是 2,唯一的众数是 4,则这五个数和的最大值是 .(第 14 题图)17. 已知□ABCD 的对角线 AC ,BD 相交于点 O ,△AOD 是等边三角形,且 AD = 4,则AB 的长为 .18.观察:①3 - 2 = ( - 1)2,② 5 - 2 = ( - 2 )2,③ 7 - 4 = (2 - 3 )2, …,请你根据以上各式呈现的规律,写出第 6 个等式: .三、解答题(共 7 个小题,满分 66 分) 19.(10 分)计算:(1) 3 - + - ;(2) (2 + 5 2 )(2 - 5 2 )-(- 2 )2.20.(6 分)如图,在 7×6 的方格中,△ABC 的顶点均在格点上.试按要求画出线段 EF (E ,F 均为格点),各画出一条即可.5天门市八年级数学试卷 第 4 页 (共 6 页)21.(10 分)8 年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为 10 分,成绩大于或等于 6 分为合格,成绩大于或等 于 9 分为优秀).班级平均分 方差 中位数 众数 合格率 优秀率 一班 a 2.11 7 c 92.5% 20% 二班6.854.28b8d10%根据图表信息,回答问题:(1) 直接写出表中 a ,b ,c ,d 的值; (2) 用方差推断,班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;(3) 甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?22.(10分)已知一次函数y1=kx+b(k≠0)的图象过点(0,-2),且与一次函数y=x+1的图象相交于点P(2,m).2(1)求点P 的坐标和函数y1 的解析式;(2)在平面直角坐标系中画出y1,y2 的函数图象;(3)结合你所画的函数图象,直接写出不等式-7<y1≤y2 的解集.23.(10分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =B C,且∠CBE︰∠BCE =2︰3,求证:四边形ABCD 是正方形.Array(第23 题图)天门市八年级数学试卷第 5 页(共 6 页)天门市八年级数学答案 第 1 页 (共 4 页)y /元y 乙3400 y 甲20001600O2000 4000x /元24.(10 分)江汉平原享有“中国小龙虾之乡”的美称.甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额 y 甲, y 乙(单位:元)与原价 x (单位:元)之间的函数关系如图所示.(1) 直接写出 y 甲, y 乙关于 x 的函数关系式;(2) “龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?(第 24 题图)25.(10 分)定义:对角线互相垂直的四边形叫做垂美四边形.(1) 概念理解:如图 1,在四边形 ABCD 中,AB =AD ,CB = C D ,问四边形 ABCD是垂美四边形吗?请说明理由;(2) 性质探究:如图 2,四边形 ABCD 的对角线 AC ,BD 交于点 O ,AC ⊥BD .证明:AB 2+CD 2 = A D 2+BC 2;(3) 解决问题:如图 3,分别以 Rt △ACB 的直角边 AC 和斜边 AB 为边向外作正方形ACFG 和正方形 ABDE ,连接 CE ,BG ,GE .已知 AC = 4,AB = 5,求 GE 的长.图 1 图 2图 3天门市八年级数学答案 第 2 页 (共 4页)372天门市 2019—2020 学年度第二学期期末考试八年级数学试卷参考答案及评分说明说明:本评分说明一般只给出一种解法,对其他解法,只要推理严谨,运算合理,结果正确,均给满分;对部分正确的,参照此评分说明,酌情给分. 一、选择题(每小题 3 分,共 30 分) 1.B2.D3.C4.A5.B6.C7.B8.A9.D10.A二、填空题(每小题 3 分,共 24 分) 11.x ≥﹣2 且 x ≠1; 12.85.5; 13.(﹣2,0);14.2;15.24; 16.11;17. 4 ; 18.13 - 2三、解答题(本大题共 8 个小题,共 66 分)= ( - 6)2 .19.(10 分) 解:(1)原式= - . ................................................................................ 5 分(2)原式= - 37 + 2. ................................. 5 分20.(6 分)解:每图 3 分. ............................................... 6 分21.(10 分)解:(1)a =7.2 ,b =8,c =6,d =85% . ....................................................... 4 分(2) 从方差看,二班成绩波动较大,从众数、中位数上看,一班的成绩较好,42 10天门市八年级数学答案 第 3 页 (共 4页)故答案为:二,一. ................................................ 6 分(3) 乙同学的说法较合理,众数和中位数是反映一组数据集中发展趋势和集中水平,由于二班的众数、中位数都比一班的要好. ........................... 10 分22.(10 分)解:(1)∵一次函数 y 2 = x + 1 的图象过点 P (2,m ),∴m =2+1=3,∴点 P 的坐标为(2,3), ................................. 2 分∵一次函数 y 1 = kx + b 的图象过点 P (2,3),(0,-2),⎧2k + b= 3 ⎧⎪k = 5 ∴ ⎨ ,解得 ⎨ 2 , ⎩b = -2⎪⎩b = -2 ∴函数 y 1 的解析式为 y 1= 5x -2; ..................................... 4 分2(2)……………………………………8 分(3)由图象可知,直线 y 1= 5x -2 过点(﹣2,﹣7),且 y 随 x 的增大而增大,直线2y 1 与 y 2 相交于点 P (2,3),∴-7<y 1≤y 2 的解集是﹣2<x ≤2. ................................. 10 分天门市八年级数学答案 第 4 页 (共 4页)⎩23.(10 分)证明:(1)在△ADE 与△CDE 中,,∴△ADE ≌△CDE ,∴∠ADE =∠CDE , ...................................................... 2 分 ∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形 ABCD 为平行四边形, ......................................... 4 分 ∵AD =CD ,∴四边形 ABCD 是菱形; ............................................... 5 分 (2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE :∠BCE =2:3,∴∠CBE =180× =45°,................... 8 分∵四边形 ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形 ABCD 是正方形. ........................................ 10 分24.(10 分)解:(1) y 甲 = 0.8x (x ≥ 0) .................................. 2 分y = ⎧x(0 ≤ x < 2000) ………………………………………4 分乙 ⎨0.7x + 600(x ≥ 2000)(2)当0 < x <2000 时,0.8x <x ,到甲商店购买省钱 ..................... 5 分当 x ≥ 2000 时,若到甲商店购买省钱,则0.8x < 0.7x + 600, 解得: x < 6000; ............................................. 6 分 若到乙商店购买省钱,则0.8x > 0.7x + 600,解得: x > 6000; .............................................. 7 分 若到甲、乙两商店购买都一样,则0.8x = 0.7x + 600,解得: x = 6000. .............................................. 8 分 ∴当购买金额按原价小于 6000 元时,到甲商店购买省钱; 当购买金额按原价大于 6000 元时,到乙商店购买省钱;当购买金额按原价等于 6000 元时,到甲、乙两商店购买花钱一样.10 分25.(10 分)解:(1)四边形 ABCD 是垂美四边形.理由如下:∵AB =AD ,∴点 A 在线段 BD 的垂直平分线上, .......................... 1 分天门市八年级数学答案 第 5 页 (共 4页)∵CB =CD ,∴点 C 在线段 BD 的垂直平分线上, .......................... 2 分 ∴直线 AC 是线段 BD 的垂直平分线,∴AC ⊥BD ,即四边形 ABCD 是垂美四边形; .............................. 3 分(2) 证明:∵AC ⊥BD ,∴∠AOD =∠AOB =∠BOC =∠COD =90°, 由勾股定理得,AD 2+BC 2=AO 2+DO 2+BO 2+CO 2, AB 2+CD 2=AO 2+BO 2+CO 2+DO 2,∴AD 2+BC 2=AB 2+CD 2; ................................................6 分(3) 连接 CG ,BE ,∵∠CAG =∠BAE =90°,∴∠CAG +∠BAC =∠BAE +∠BAC , 即 ∠GAB =∠CAE , 在△GAB 和△CAE 中,,∴△GAB ≌△CAE (SAS ), ............................................ 7 分∴∠ABG =∠AEC ,又∠AEC +∠AME =90°, ∴∠ABG +∠AME =90°,即 CE ⊥BG ,∴四边形 CGEB 是垂美四边形, ....................................... 8 分由(2)得,CG 2+BE 2=CB 2+GE 2,∵AC =4,AB =5,∴BC =3,CG =4 ,BE =5 ,∴GE 2=CG 2+BE 2﹣CB 2=73,∴GE = . (10)分天门市八年级数学答案第 6 页(共 4 页)。