32 流体动力学基本方程分解
- 格式:ppt
- 大小:3.48 MB
- 文档页数:15
流体动力学基本方程
“流体动力学基本方程”是将质量、动量和能量守恒定律用于流体运动所得到的联系流体速度、压力、密度和温度等物理量的关系式。
对于系统和控制体都可以建立流体动力学基本方程。
系统是确定不变的物质的组合;而控制体是相对于某一坐标系固定不变的空间体积,它的边界面称为控制面。
流体动力学中讨论的基本方程多数是对控制体建立的。
主要有连续方程、动量方程、动量矩方程和能量方程。
1、连续方程:ρ1v1A1=ρ2v2A2,式中ρ1、v1、ρ
2、v2分别为A1和A2截面上的流体平均密度和速度。
2、动量方程:单位时间内,流入控制体的动量与作用于控制面和控制体上的外力之和,等于控制体内动量的增加。
3、动量矩方程:单位时间内,流入控制体的动量与作用于控制体和控制面上的外力对某一参考点的动量矩之和,等于控制体内对同一点的动量矩的增加。
4、能量方程:单位时间内,流入控制体的各种能量与外力所作的功之和,等于控制体内能量的增加。
流体动力学三大方程流体动力学是研究流体运动和流体力学性质的学科,它以三大方程为基础,这三大方程分别是连续性方程、动量方程和能量方程。
在本文中,将对这三大方程进行详细的介绍和解释。
1. 连续性方程连续性方程是描述流体质点的质量守恒的基本方程。
它表明在流体运动中,质量是守恒的,即单位时间内流入某一区域的质量等于单位时间内流出该区域的质量。
连续性方程的数学表达式是通过流体的速度场和流体密度来描述的。
在一维情况下,连续性方程可以表示为流体密度乘以速度的横向梯度等于零。
2. 动量方程动量方程描述了流体力学中质点的动量变化。
根据牛顿第二定律,动量方程可以表达为流体质点的质量乘以加速度等于质点所受到的合力。
在流体动力学中,动量方程的数学表达式是通过流体的速度场、压力场和粘性力来描述的。
动量方程是解决流体力学问题的基础方程之一,它可以用来计算和预测流体的速度和压力分布。
3. 能量方程能量方程描述了流体质点的能量变化。
在流体动力学中,能量方程的数学表达式是通过流体的速度场、压力场、密度和温度来描述的。
能量方程包括了流体的动能、压力能和内能的变化。
能量方程在研究流体的热力学性质和能量转化过程中起着重要的作用。
通过能量方程,可以计算和预测流体的温度分布和能量转化效率。
这三大方程是流体动力学研究中的核心内容,它们相互联系、相互依赖,共同构成了流体运动的基本规律。
连续性方程保证了质量守恒,动量方程描述了力学平衡,能量方程描述了能量转化。
在实际应用中,这些方程可以用来解决各种流体力学问题,如流体的流动特性、压力分布、速度场、能量转化等。
流体动力学三大方程——连续性方程、动量方程和能量方程是研究流体运动和流体力学性质的基础。
它们通过数学表达式描述了质量守恒、力学平衡和能量转化的规律。
这些方程的应用广泛,能够帮助我们理解和预测流体的运动和性质,对于工程设计、自然灾害和环境保护等领域都具有重要意义。
通过研究和应用这些方程,我们可以更好地掌握和利用流体动力学知识,为社会发展和人类福祉做出贡献。
Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。
本章任务建立控制方程组,确定边界条件的近似描述和数学表达。
I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。
质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。
在此假设下,对物质体τ有0dd dtτρτ=⎰。
根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CV CSd v ds t ρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。
上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。
由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。
考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。
2)由0=dt md δ(m δ为微团的质量)知11d d dt dtρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。
3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。
由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。
不可压缩流动满足的0v ∇⋅=或CSv ds ⋅=⎰⎰是对速度场的一个约束。
例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。
流体动力学基本方程流体动力学基本方程000【本章重点】(1)稳定活动与不稳定活动的概念;(2)连续性方程式的推导及其应用;(3)柏努利方程式的推导及其应用。
【本章难点剖析】(1)流体动量通量的概念动量通量,特别是粘性动量通量是一个比较抽象而又难于理解的概念,这一概念又是纳维-斯托克斯方程推的重要基础,因此,必须讲深讲透。
此概念涉及到通量、动量、粘性力、切应力(粘性应力)、层流、紊流等基本概念和牛顿粘性定律等基础知识。
讲述此概念时,首先可以从同学们所熟悉的物理学中磁通量的概念进手,引出通量(即单位时间通过单位面积传递的量)的概念,再推演出动量通量的概念,即单位时间通过单位面积传递的动量。
然后在温习前面所学的层流与紊流以及紊流的脉动性和时均化等概念的基础上,引出对活动量通量(由流体的宏观运动引起,传递方向与流体运动方向一致)和粘性动量通量(包括层流粘性动量通量和紊流粘性动量通量,前者由层流过程流体的分子运动而引起,后者由紊流过程流体微团的横向脉动引起,它们的传递方向都与流体的宏观活动方向垂直)的概念。
值得指出的是,从量纲考虑,粘性动量通量与应力的量纲一致(kgm-1s-2),故层流粘性动量通量可以用切应力来表示,即可以用牛顿粘性定律来描述;但紊流粘性动量通量比较复杂。
(2)欧拉方程和纳维-斯托克斯方程的推导前面的流体静力学基本方程、连续性方程等的推导为欧拉方程和纳维-斯托克斯方程的推导打下了良好的微分法推导基础。
在此基础上比较轻易导出欧拉方程。
但纳维-斯托克斯方程的推导既有一定难度,又有一定深度,而且比较繁琐。
"难",难在三维粘性动量通量的概念;"深",深在二阶微分的运算和变换等数学基础;"繁",繁在数学符号多,上下标多。
因此,在讲述推导过程时,需留意上述题目。
【本章主要内容】3.1流体活动的基本概念3.1.1流场的概念及其表示方法流场是指布满运动流体的空间。