总统证法勾股定理
- 格式:doc
- 大小:12.84 KB
- 文档页数:2
勾股定理有多种证明方法,以下是其中一些常见证法:1. 欧几里德证明:通过勾股圆方图证明勾股定理,大正方形的面积等于4个直角三角形加上一个小正方形面积之和。
2. 加菲尔德证明:在梯形中构造三个直角三角形,利用梯形面积等于三个直角三角形的面积之和,证明勾股定理。
3. 小K证明:通过相似三角形,边长之比相等,证明勾股定理。
4. 辅助圆证明:以点B为圆心,BA为半径作圆,延长BC交圆于点E,D,则三角形DCA相似ACE,从而证明勾股定理。
5. 切割定理证明:直角三角形ABC,以点B为圆心BC为半径作圆,交AB及AB延长线于D,E,则BE=BC=BD=a,从而证明勾股定理。
6. 面积合成证明:利用图形拼接证明勾股定理。
7. 行列式证明:n阶行列式等于以n个向量为边在n维空间中张成的n维体的体积,从而证明勾股定理。
8. 赵爽弦图证法:利用弦图构造直角三角形,利用面积法证明勾股定理。
9. 毕达哥拉斯证法:利用正方形分割法证明勾股定理。
10. 书本证明方法:利用八个全等的直角三角形和三个边长分别为a、b、c的正方形构造两个正方形,从而证明勾股定理。
11. 三角形相似推导:利用三角形相似的性质推导勾股定理。
12. 切割线定理证明:利用切割线定理和相似三角形证明勾股定理。
13. 托勒密定理证明:利用托勒密定理和相似三角形证明勾股定理。
14. 利用切线长定理:利用切线长定理和相似三角形证明勾股定理。
15. 总统证法:美国第20任总统加菲尔德在五年前证明了勾股定理,其方法被称为“总统证法”,具体为梯形面积等于三个直角三角形的面积之和。
16. 射影定理证明:利用射影定理和相似三角形证明勾股定理。
17. 余弦定理证明:当90度角时,利用余弦定理证明勾股定理。
18. 达芬奇的证明:利用几何图形和比例关系证明勾股定理。
19. 高斯公式证明:利用高斯公式(也叫鞋带公式)证明多边形面积,从而证明勾股定理。
以上是常见的勾股定理的证法,其中最常用的是面积法,同时还会结合其他几何知识如相似三角形、切割线定理、射影定理等进行证明。
勾股定理的常用证明方法【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯. ∴ 222c b a =+.【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵RtΔEAD ≌RtΔCBE, ∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º,∴∠AED + ∠BEC = 90º.∴∠D EC = 180º―90º= 90º.∴ΔDEC是一个等腰直角三角形,它的面积等于2 21c.又∵∠DAE = 90º, ∠EBC = 90º, ∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于()2 21b a+.∴()222121221cabba+⨯=+. ∴222cba=+.【证法4】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE ≌RtΔEBF,∴∠AHE = ∠BEF.∵∠AEH + ∠AHE = 90º,∴∠AEH + ∠BEF = 90º.∴∠HEF = 180º―90º= 90º.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2.∵RtΔGDH ≌RtΔHAE,∴∠HGD = ∠EHA.∵∠HGD + ∠GHD = 90º,∴∠EHA + ∠GHD = 90º.又∵∠GHE = 90º,∴∠DHA = 90º+ 90º= 180º.∴ABCD是一个边长为a + b的正方形,它的面积等于()2b a+.∴()22214cabba+⨯=+. ∴222cba=+.【证法5】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a , ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a . 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+.【证法6】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.D。
关于“勾股定理”的60种证法1.(面积法证明)1 证法1.1:证明:在直角三角形ABC 中,分别作以AB 、AC 、BC 为边的正方形ABED,正方形ACJI 和正方形BCHG ,连接线段IB 、CD 、AG 、CE 。
过点C 作DE 的垂线CK ,交DE 于点K ,交AB 于点L 。
90,,CAI BAD CAB CADCAB CAD AC AI AD AB ACD AIB∠=∠=∴∠=∠∠=∠==∴∆≅∆线段AI 平行于线段BJ ∴AIB ∆的面积等于AIC ∆ACD AIB ∆≅∆AIC ∴∆的面积等于ACD ∆ 线段AD 平行于线段CK∴矩形ADKL 的面积等于ACD ∆面积的两倍正方形ACJI 的面积等于AIC ∆的两倍,AIC ∆的面积等于ACD ∆ ∴矩形ADKL 的面积等于正方形ACJI 的面积同理,有:矩形BEKL 的面积等于正方形BCHG 的面积。
正方形ABED 的面积等于矩形ADKL 的面积加上矩形BEKL 的面积∴正方形ABED 的面积等于正方形ACJI 的面积与正方形BCHG 的面积之和即222AC BC AB +=.Remark :此为欧几里得(Euclid,约公元前330年-公元前275年)在几何原本中的证明方法。
2 证法1.2:证明:在上图中,整个正方形的面积为2()a b +,又等于四个直角三角形的面积加上里面的小正方形的面积,等于22ab c +。
因此,22()2a b ab c +=+,此即:222a b c +=。
Remark :此证法据Bretschneider 和Hankel 的推测,为毕达哥拉斯(Pythagoras ,约公元前580~约前500)的证法。
3 证法1.3(总统证明法)如图,三角形ABC 与三角形BDE 完全相等,易证三角形ABE 为等腰直角三角形。
整个直角梯形ACDE 的面积为21()2a b +,又等于两个直角三角形的面积加上等腰直角三角形ABE 的面积,等于212ab c +,故2211()22a b ab c +=+。
勾股定理总统证法在数学界,勾股定理一直是最有名的定理之一。
它的证明方式也有多种,其中最为著名的就是总统证法。
总统证法又称为李氏定理,距今已有2000多年的历史。
它的原作者不可考,但它的精神活跃在我们的数学世界中,给大家带来很多视角。
勾股定理指:任意一个直角三角形,它的斜边的平方等于它的两条直边的平方和。
具体地说,即:a^2 + b^2 = c^2总统证法是古代古希腊数学家著名的定理,他们用它来证明勾股定理。
他们使用一个四边形的概念,把它划分成四个直角三角形,并令其斜边的平方等于这些三角形的两条直边的平方和。
以下是证明勾股定理的总统证法的具体步骤:(1)把四边形划分成四个直角三角形,四边形中心两边的内角均为90°,其余各内角均为45°。
(2)给四边形赋予正方形形式,此时四边形被划为四个直角三角形,即:A-B-C-DA-C-B-DA-D-C-BA-B-D-C(3)把四边形的边赋予任意数值,如a, b, c, d,则每三角形的斜边长度分别为a, b, c, d。
(4)因为(AC)+(CB)=(AD);(BC)+(AD)=(CB);(AB)+(CD)=(BD);(BD)+(CD)=(AB);所以有:(a^2+b^2) = (c^2+d^2) = (a^2+d^2) = (b^2+c^2)。
因此,证明了勾股定理:任意一个直角三角形,它的斜边的平方等于它的两条直边的平方和。
总统证法是一种非常有效的勾股定理证明方式,它也证明了数学的美妙之处,源自古希腊数学家的智慧。
总统证法的理论支持,使得勾股定理的证明更加准确,令数学变得更加完美。
它也激发了人类对数学的持续探索,使得数学日益进步。
最后,总统证法也使我们更加深刻地理解勾股定理,并知晓学习数学之美。
勾股定理是一个奥秘又伟大的定理,它丰富而深刻,只有经过不懈努力才可以得以理解。
学习这个定理,不仅可以提高我们数学的能力,还可以激发我们对数学的热爱,提高我们的求知欲望。
勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方,即在以a、b为直角边,c为斜边的三角形中有a^2+b^2=c^2。
方法•1/16证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线。
∵Rt△HAE≌Rt△EB F∴∠AHE=∠BEF∵∠AHE+∠AEH=90°∴∠BEF+∠AEH=90°∵A、E、B共线∴∠HEF=90°,四边形EFGH为正方形由于上图中的四个直角三角形全等,易得四边形ABCD为正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴(a+b)^2=4•(1/2)•ab+c^2,整理得a^2+b^2=c^2•2/16证法二(课本的证明):如上图所示两个边长为a+b的正方形面积相等,所以a^2+b^2+4•(1/2)•ab=c^2+4•(1/2)•ab,故a^2+b^2=c^2。
•3/16证法三(赵爽弦图证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼。
易得四边形ABCD和四边形EFGH都是正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴c^2=4•(1/2)•ab+(b-a)^2 ,整理得a^2+b^2=c^2•4/16证法四(总统证明):如下图所示。
易得△CDE为等腰直角三角形∴梯形ABCD的面积=两个直角三角形的面积+一个等腰三角形的面积∴1/2•(a+b)•(a+b)=2•(1/2)•ab+(1/2)•c^2,整理得a^2+b^2=c^2•5/16证法五(梅文鼎证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使DEF在同一直线上,过C点作CI垂直于DF,交DF于I点。
易得四边形ABEG、四边形CBDI、四边形FGHI都为正方形。
∴多边形EGHCB的面积=正方形ABEG的面积-两个直角三角形的面积且多边形EGHCB的面积=正方形CBDI的面积+正方形FGHI的面积-两个直角三角形的面积∴正方形ABEG的面积=正方形CBDI的面积+正方形FGHI的面积∴c²=a²+b²•6/16证法六(项明达证明):以a、b为直角边,以c为斜边做两个全等的三角形,做一个边长为c的正方形,按下图所示相拼,使E、A、C在同一条直线上。
勾股定理的几种证明方法我们刚刚学了勾股定理这重要的知识,老师告诉我们,勾股定理的证明方法非常得多,其数量之大足可以撰写出一部书来,我对知识的探求欲望被激发了出来,随即到网络上查找了勾股定理的证明方法,现在我收集到了几种。
【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.这是课本上面为我们提供的毕达哥拉斯的证明方法,我在网络上查阅资料发现:毕达哥拉斯是西方公认的发现勾股定理的数学家,因此,我们可以在外国的一些资料上发现,勾股定理在西方被称为毕达格拉斯定理。
【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.这个证明对我来讲也很好理解,它利用了全等三角形的性质和因式分解的知识,这对于我们初二的学生来说,是能够领会的。
勾股定理的总统证法及其他证法TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】总统巧证勾股定理学过几何的人都知道勾股定理。
它是几何中一个比较重要的定理,应用十分广泛。
迄今为止,关于勾股定理的证明方法已有500余种。
其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话。
总统为什么会想到去证明勾股定理呢难道他是数学家或数学爱好者答案是否定的。
事情的经过是这样的;在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。
由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。
只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。
于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。
”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。
”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。
他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
他是这样分析的,如图所示:1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。
1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。
”证法。
勾股定理的证明罗洪信(2002年4月25日参加桂林市创新教育课堂教学大比武用)【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+. 【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF ,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90o , ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o .∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE ,∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90o , ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o ,∴ ∠DHA = 90o+ 90o= 180o .D G C B a b ca bca bc a b c∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90o ,∴ ∠EAB + ∠HAD = 90o ,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o .∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+.【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE ,∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90o , ∴ ∠AED + ∠BEC = 90o . ∴ ∠D EC = 180o ―90o= 90o .∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c . 又∵ ∠DAE = 90o , ∠EBC = 90o ,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD , ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180o ―90o= 90o . 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形.∴ ∠ABC + ∠CBE = 90o .∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90o . 即 ∠CBD= 90o . 又∵ ∠BDE = 90o ,∠BCP = 90o , BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P .过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90o ,QP ∥BC ,∴ ∠MPC = 90o ,∵ BM ⊥PQ , ∴ ∠BMP = 90o ,∴ BCPM 是一个矩形,即∠MBC = 90o . ∵ ∠QBM + ∠MBA = ∠QBA = 90o , ∠ABC + ∠MBA = ∠MBC = 90o , ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90o ,∠BCA = 90o ,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD ,∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221a, ΔGAD 的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积∴ 222b a c += ,即 222c b a =+.【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90o , ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90o ,∠P AC = 90o , ∴ ∠DAH = ∠BAC . 又∵ ∠DHA = 90o ,∠BCA = 90o ,AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .K∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90o ,∠DHF = 90o ,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o , ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . T F ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得= 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90o , ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90o ,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE .∴ HT = AE = a .∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90o , ∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC . ∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90o ,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90o ,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90o ,∠BAE + ∠CAR = 90o ,∠AQM = ∠BAE ,∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90o ,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90o ,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=()()BD AB BE AB -+=()()a c a c -+ = 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米BD AC BC AD DC AB •+•=•, ∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b ac +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r . ∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+ = CD CE += r + r = 2r, 即 r c b a 2=-+,∴ c r b a +=+2. ∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42,又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A , ∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90o ,∴ ∠ADC ≠90o ,∠CDB ≠90o .这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c . ∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ()a b +―a = b .又∵ ∠CMD = 90o ,CM = a ,∠AED = 90o , AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180o ,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o , ∴ ∠ADC = 90o .∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90o , ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90o ,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
勾股定理常用公式及证明方法二方法七:在印度、阿拉伯和欧洲出现的拼图证明篇四
做法是将一条垂直线和一条水平线,将较大直角边的正方形分成4分。
之后依照图中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。
方法二:刘徽“青朱出入图” 篇五
约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。
方法三:欧几里得“公理化证明”
希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。
1955年希腊为了纪念二千五百年前古希腊在勾股定理上的贡献,发行了一张邮票,图案是由三个棋盘排列而成。
方法八:加菲尔德“总统证明法” 篇六
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。
1881年,伽菲尔德就任美国第二十任总统。
后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。
勾股定理总统证法
雅典娜勾股定理(又称「毕达哥拉斯定理」),源于古希腊数学家毕达哥拉斯(Pythagoras)于公元前6世纪研究和探讨的一个数学定理,由他提出的一条关于直角三
角形的公式:
a² + b² = c²
这个公式是毕达哥拉斯归纳出来的,指出一个直角三角形的斜边长(c)平方等于它的两
个邻边长(a和b)的平方和。
这个公式在计算机编程、工程学、物理学、建筑学及几何
学等各个领域都有大量的应用,甚至被称为「几何学中的经典定理」。
自毕达哥拉斯证明了这个定理后,许多历史上著名的数学家接着对这个定理进行进一步的
研究和证明,包括英国数学家乔治·欧文(George Owen)、荷兰数学家汉诺普(Hanno)
和英国数学家伯维尔(Bervel)。
1800年,德国数学家施特劳斯(K.F.Stauss)还发现了证明雅典娜勾股定理的总统证(Presidential Theorem):
若一个多边形有三条边,则该多边形的边连接点之间的距离,满足勾股定理,且三条边的
长度和除以2,等于另外三条边之间距离的平方。
也就是说,当一个三角形领边相加等于
另外三条边之间距离的平方时,三角形就必须为直角三角形,这体现了雅典娜勾股定理的
原理,证明三条边组成直角三角形。
经过几千年的发展和改进,毕达哥拉斯定理仍然是数学界很重要的定理,其理论仍是数学
物理、几何学和数学分析的基础,应用在许多实际问题中,甚至遗留萃及数学实践中今天,它仍是学生学习数学时十分重要的部分,几乎在每学期都会涉及到它。
勾股定理的九种证明方法(附图)勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。
CAD∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。
由公式(2)+(3)得:(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,即(AB)^2;+(BC)^2;=(AC)^2七、杨作玫证法:做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D 作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD = 90º,∠PAC = 90º,∴∠DAH = ∠BAC.又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴RtΔDHA ≌RtΔBCA.∴DH = BC = a,AH = AC = b.由作法可知,PBCA 是一个矩形,所以RtΔAPB ≌RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.987654321PQR HG Dabcaccc∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA. ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a . ∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 543212S S S S S c ++++= ① ∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.八、陈杰证法:设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c. ∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b. 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC. ∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE.BD F Gab ca b cac a b c 1234567∴ ∠AFB = ∠AED = 90º,BF = DE = a. ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG.∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=, 76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.九、辛卜松证法:设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.ab 21ab 21ab 21ab 212c 2b 2aAD B Bab aba bb a ccccb a ab ab ba b a。
【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4x1/2ab=c²+4x1/2ab,整理得a²+b²=c²。
1. 2【证法2】(邹元治证明)以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵RtΔHAE ≌RtΔEBF, ∴∠AHE = ∠BEF.∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE,∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o,∴∠EHA + ∠GHD = 90o.又∵∠GHE = 90o,∴∠DHA = 90o+ 90o= 180o.∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)².∴(a+b)²=4x1/2ab+c²∴ a²+b²=c²。
2. 3【证法3】(赵爽证明)以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 1ab2三角形的面积等于. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴∠HDA = ∠EAB.∵∠HAD + ∠HAD = 90o,∴∠EAB + ∠HAD = 90o, 2∴ ABCD是一个边长为c的正方形,它的面积等于c.∵ EF = FG =GH =HE = b―a ,∠HEF = 90o.∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)².∴(b-a)²=4x1/2ab+c²∴ a²+b²=c²。
勾股定理的证明据不完全统计,勾股定理的证明方法已经多达400多种了。
下面我便向大家介绍几种十分著名的证明方法。
【证法1】(赵爽证明)以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.∵RtΔDAH ≌RtΔABE,∴∠HDA = ∠EAB.∵∠HAD + ∠HAD = 90º,∴∠EAB + ∠HAD = 90º,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF = FG =GH =HE = b―a ,∠HEF = 90º.∴EFGH是一个边长为b―a的正方形,它的面积等于.∴∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即,整理得.【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD ≌RtΔCBE,∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º,∴∠AED + ∠BEC = 90º.∴∠DEC = 180º―90º= 90º.∴ΔDEC是一个等腰直角三角形,它的面积等于.又∵∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴.∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。
总统证法勾股定理
1.于任意正三角形,其有三条边,分别被称为直角边、长边和短边,分别表示为a、b、c;
2.于直角边的平方等于长边和短边的平方之和,故有:a^2 + b^2 = c^2;
3.此,当a、b、c都大于0时,总统证法勾股定理成立。
总统证法勾股定理是古希腊数学家勾股(Pythagoras)第一个提出的有关三角形的几何定理,被称为勾股定理。
它的定义是:在直角三角形中,直角的边的平方的和等于斜边的平方,即a^2 + b^2 = c^2。
总统证法勾股定理是相当重要的几何定理。
它可以被用于计算三角形的某个边的长度,当另外两边的长度已知时。
在工程、建筑和设计领域中,也经常采用勾股定理来计算几何形状的大小和角度。
此外,总统证法勾股定理也经常被用来求解向量,以及描述物体运动的物理关系。
总统证法勾股定理可以说是数学史上最重要的几何定理之一,它在古希腊科学家希及克罗(Hicetas)的定义之前就已存在。
勾股(Pythagoras)本人没有提出总统证法勾股定理,而是由其学生依西修斯(Euryphaeus)利用它来证明一个问题。
此外,勾股定理也曾被希腊哲学家苏格拉底(Socrates)提出,但是他并没有证明此定理。
历史上,总统证法勾股定理的证明也有很多种。
林肯(Franklin)在1840年提出了一个基于抽象几何定理的证明。
他指出,如果一个三角形的底边是平移而不是旋转的,那么这个三角形依然满足总统证
法勾股定理。
因为他的抽象几何证明简单明了,林肯的总统证法勾股定理也就成为了今天最流行的证明版本。
另外,总统证法勾股定理在一个不同的角度来看也有很多奇妙的应用。
它可以用来计算曲线的面积,计算二维图形的形状,甚至可以用来求解三维图形或立体几何图形。
此外,还有用总统证法勾股定理计算椭圆的周长、圆的面积以及三角型面积的应用,也不可忽视。
总而言之,总统证法勾股定理是数学史上一项重要的几何定理,它至今仍然是一个学术界及工程界最重要的几何工具之一。
它曾多次被用于数学的研究和科学的实践,成为数学发展的重要组成部分。