高二电磁场与电磁波知识点
- 格式:docx
- 大小:37.49 KB
- 文档页数:3
高中物理电磁学知识点导言:物理学是自然科学的一个重要分支,涵盖了广泛的知识领域,其中电磁学是其中的一个重要部分。
在高中物理学习中,学生们领会和掌握电磁学的基本概念对于理解电磁学原理和应用非常重要。
本文将介绍高中物理电磁学知识点的大致范围,包括电磁场、电磁感应和电磁波等方面的基础知识。
一、电磁场1. 电荷和电场:电荷的电场以及电场的概念和特征。
2. 静电场和电势:静电场的产生和性质,电势的概念,电势差和电场强度之间的关系。
3. 磁场和磁感应:磁场的特征与表示方法,磁感应的概念和特征。
二、电磁感应和法拉第电磁感应定律1. 电磁感应现象:磁场中导体中的感应电动势。
2. 法拉第电磁感应定律:导体中感应电动势的大小和方向。
3. 感生电动势和自感现象:感生电动势的产生和特征,自感的概念和影响。
三、电磁感应的应用1. 电磁感应的实际应用:发电机、电动机等的基本原理与结构。
2. 互感现象和变压器:互感的概念、互感系数和变压器的基本原理。
3. 皮肤效应和涡流:电磁感应中的皮肤效应和涡流现象及其应用。
四、电磁波1. 电磁波的概念和特征:电磁波的传播特点和电磁谱的大致范围。
2. 光的电磁波理论:光的本质和电磁波的传播速度。
3. 光的反射和折射:光的反射定律、折射定律和光的全反射。
4. 光的色散和光的衍射:光的色散现象和衍射现象。
五、电磁学的实验技术1. 麦克斯韦环路定理的实验验证:使用简单电路和导体线圈验证麦克斯韦环路定理。
2. 安培环路定理的实验验证:使用安培计等仪器验证安培环路定理。
3. 恒定磁场的实验制备:使用恒定电流和线圈制备恒定磁场。
结论:高中物理电磁学的知识点主要包括电磁场、电磁感应和电磁波等方面的基础概念、定律和应用。
通过学习这些知识点,学生们能够深入理解电磁学的原理和应用,为进一步的学习和研究打下坚实的基础。
希望本文对高中物理学习中的电磁学知识点的整理和归纳有所帮助。
可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。
2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。
其中四指指向还可以理解为:感应电动势高电势处。
*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。
②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。
③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。
④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。
*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。
(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。
3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。
三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。
电荷是产生电场的源。
正电荷会产生向外辐射的电场,负电荷则产生向内汇聚的电场。
电场强度 E 用来描述电场的强弱和方向,其单位是伏特每米(V/m)。
电流是产生磁场的源。
电流产生的磁场方向可以通过右手螺旋定则来确定。
磁场强度 H 用来描述磁场的强弱和方向,其单位是安培每米(A/m)。
法拉第电磁感应定律表明,变化的磁场会产生电场。
麦克斯韦进一步提出,变化的电场也会产生磁场。
这两个定律共同揭示了电磁场的相互联系和相互转化。
二、电磁波的产生电磁波是电磁场的一种运动形态。
当电荷加速运动或者电流发生变化时,就会产生电磁波。
例如,在一个开放的电路中,电荷在电容器和电感之间来回振荡,就会产生电磁波。
这种振荡电路是产生电磁波的一种简单方式。
电磁波的频率和波长之间存在着一定的关系,即光速 c =λf,其中c 是光速(约为 3×10^8 m/s),λ 是波长,f 是频率。
不同频率的电磁波具有不同的特性和应用。
例如,无线电波频率较低,用于通信和广播;而X 射线频率较高,用于医学成像和材料检测。
三、电磁波的传播电磁波在真空中可以无需介质传播,在介质中传播时,其速度会发生变化。
电磁波在传播过程中遵循反射、折射和衍射等规律。
当电磁波遇到障碍物时,会发生反射。
如果电磁波从一种介质进入另一种介质,会发生折射,折射的程度取决于两种介质的电磁特性。
衍射则是指电磁波绕过障碍物传播的现象。
当障碍物的尺寸与电磁波的波长相当或较小时,衍射现象较为明显。
电磁波的极化是指电场矢量的方向在传播过程中的变化。
常见的极化方式有线极化、圆极化和椭圆极化。
四、电磁波的特性1、电磁波是横波,电场和磁场的振动方向都与电磁波的传播方向垂直。
2、电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
3、电磁波的传播速度是恒定的,在真空中为光速。
《电磁场与电磁波基础知识概述》一、引言电磁场与电磁波是现代物理学的重要组成部分,在通信、电子、电力等众多领域都有着广泛的应用。
从无线电广播到手机通信,从雷达探测到卫星导航,电磁场与电磁波无处不在。
深入了解电磁场与电磁波的基础知识,对于理解现代科技的发展和应用具有重要意义。
二、电磁场的基本概念(一)电场1. 定义电场是电荷及变化磁场周围空间里存在的一种特殊物质。
电场对放入其中的电荷有作用力,这种力称为电场力。
2. 电场强度电场强度是描述电场强弱和方向的物理量,用 E 表示。
它的定义是单位正电荷在电场中所受的电场力。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
3. 电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线上每一点的切线方向表示该点电场强度的方向,电场线的疏密程度表示电场强度的大小。
(二)磁场1. 定义磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷周围。
磁场对放入其中的磁体、电流和运动电荷有力的作用。
2. 磁感应强度磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。
它的定义是在磁场中垂直于磁场方向的通电导线,所受的磁场力 F 与电流 I 和导线长度 L 的乘积 IL 的比值。
磁感应强度是矢量,其方向与小磁针在该点静止时 N 极所指的方向相同。
3. 磁感线磁感线是为了形象地描述磁场而引入的假想曲线。
磁感线上每一点的切线方向表示该点磁感应强度的方向,磁感线的疏密程度表示磁感应强度的大小。
(三)电磁场1. 定义电磁场是有内在联系、相互依存的电场和磁场的统一体和总称。
变化的电场产生磁场,变化的磁场产生电场,两者相互激发,形成电磁场。
2. 麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,由四个方程组成。
它揭示了电场和磁场之间的内在联系,以及电磁波的产生和传播规律。
三、电磁波的基本概念(一)定义电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场。
第四章电磁振荡与电磁波第2节电磁场与电磁波【素养目标】1.了解电磁波发现的过程,领会人类认识世界的认知规律。
2.初步了解麦克斯韦电磁场理论的基本思想以及在物理学发展史上的意义。
3.知道变化的磁场产生电场,变化的电场产生磁场。
知道变化的电场和变化的磁场交替产生,由近及远地向周围传播就形成电磁波。
4.知道赫兹用实验证明了电磁波的存在,在人类历史上首先捕捉到了电磁波。
【必备知识】知识点一、电磁场(1)变化的磁场产生电场实验基础:如图所示,在变化的磁场中放一个闭合电路,电路里就会产生感应电流。
麦克斯韦对该问题的见解:回路里有感应电流产生,一定是变化的磁场产生了电场,自由电荷在电场的作用下发生了定向移动。
该现象的实质:变化的磁场产生了电场。
(2)变化的电场产生磁场麦克斯韦大胆地假设,既然变化的磁场能产生电场,变化的电场也会在空间产生磁场。
知识点二、电磁波(1)电磁波的产生:如果空间某区域存在不均匀变化的电场,那么它就会在空间引起不均匀变化的磁场,这一不均匀变化的磁场又引起不均匀变化的电场……于是变化的电场和变化的磁场交替产生,由近及远向周围传播,形成电磁波。
(2)电磁波是横波:根据麦克斯韦的电磁场理论,电磁波中的电场强度和磁感应强度互相垂直,而且二者均与波的传播方向垂直,因此电磁波是横波。
(3)电磁波的速度:麦克斯韦指出了光的电磁本性,他预言电磁波的速度等于光速。
知识点三、赫兹的电火花(1)赫兹的实验:如图所示。
(2)实验现象:当感应线圈的两个金属球间有火花跳过时,导线环两个金属小球也跳过电火花。
(3)现象分析:当感应线圈使得与它相连的两个金属球间产生电火花时,空间出现了迅速变化的电磁场,这种电磁场以电磁波的形式在空间传播。
在电磁波到达导线环时,它在导线环中激发出感应电动势,使得导线环的空隙处也产生了火花。
(4)实验结论:赫兹证实了电磁波的存在。
(5)赫兹的其他实验成果:赫兹做了一系列的实验,观察了电磁波的反射、折射、干涉、偏振和衍射现象,并通过测量证明,电磁波在真空中具有与光相同的速度,证实了麦克斯韦关于光的电磁理论。
高二物理电磁波知识点高二物理电磁波学问点(一)麦克斯韦电磁场理论1、电磁场理论的核心之一:改变的磁场产生电场在改变的磁场中所产生的电场的电场线是闭合的(涡旋电场)理解:①匀称改变的磁场产生稳定电场;②非匀称改变的磁场产生改变电场。
2、电磁场理论的核心之二:改变的电场产生磁场麦克斯韦假设:改变的电场就像导线中的电流一样,会在空间产生磁场,即改变的电场产生磁场理解:①匀称改变的电场产生稳定磁场;②非匀称改变的电场产生改变磁场。
(二)电磁波1、电磁场:假如在空间某区域中有周期性改变的电场,那么这个改变的电场就在它四周空间产生周期性改变的磁场;这个改变的磁场又在它四周空间产生新的周期性改变的电场,改变的电场和改变的磁场是相互联系着的,形成不行分割的统一体,这就是电磁场。
这个过程可以用下图表达:2、电磁波:电磁场由发生区域向远处的传播就是电磁波。
3、电磁波的特点:(1)电磁波是横波,电场强度E 和磁感应强度B按正弦规律改变,二者相互垂直,均与波的传播方向垂。
(2)电磁波可以在真空中传播,速度和光速相同。
(3)电磁波具有波的特性。
(三)赫兹的电火花赫兹视察到了电磁波的反射、折射、干涉、偏振和衍射等现象,他还测量出电磁波和光有相同的速度.这样赫兹证明了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕获到了电磁波。
高二物理学问点放射性同位素:有些同位素具有放射性,叫做放射性同位素。
同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发觉:用粒子轰击铝时,发生核反应。
1934年,约里奥居里夫妇发觉经过α粒子轰击的铝片中含有放射性磷衰变:原子核由于放出某种粒子而转变成新核的改变称为衰变在原子核的衰变过程中,电荷数和质量数守恒半衰期:放射性元素的原子核的半数发生衰变所须要的时间,称该元素的半衰期。
放射性元素衰变的快慢是由核内部自身因素确定的,跟原子所处的化学状态和外部条件没有关系。
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体。
电荷产生电场,电流产生磁场。
电场是存在于电荷周围,能传递电荷之间相互作用的物理场。
它的基本特性是对置于其中的电荷有力的作用。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
单位是伏特每米(V/m)。
磁场是一种看不见、摸不着的特殊物质,能对放入其中的磁体、电流产生力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。
单位是特斯拉(T)。
二、库仑定律与安培定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比。
其表达式为:$F =k\frac{q_1q_2}{r^2}$,其中 k 是库仑常量,约为$9×10^9N·m^2/C^2$ 。
安培定律则阐述了两个电流元之间的相互作用力。
电流元在磁场中所受到的安培力为$dF = I dl × B$ 。
三、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,由四个方程组成。
高斯定律:$\oint_{S} E·dS =\frac{q}{ε_0}$,表明电场的散度与电荷量成正比。
高斯磁定律:$\oint_{S} B·dS = 0$ ,说明磁场是无源场。
法拉第电磁感应定律:$\oint_{C} E·dl =\frac{d}{dt}\int_{S} B·dS$ ,揭示了时变磁场产生电场。
安培麦克斯韦定律:$\oint_{C} H·dl = I +\frac{d}{dt}\int_{S} D·dS$ ,指出时变电场产生磁场。
四、电磁波的产生与传播电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波。
变化的电场和变化的磁场相互激发,形成在空间中传播的电磁波。
电磁波的产生通常需要一个振荡电路,比如 LC 振荡电路。
当电容器充电和放电时,电路中的电流和电荷不断变化,从而产生变化的电磁场,并向周围空间传播。
高中物理电磁场和电磁波知识点总结1.麦克斯韦的电磁场理论(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.(2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场.(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.2.电磁波(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s.下面为大家介绍的是2019年高考物理知识点总结电磁感应,希望对大家会有所帮助。
1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3. 楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.。
高二物理电磁场与电磁波知识总复习【本讲主要内容】电磁场与电磁波知识总复习 电磁场、电磁波知识总结【知识掌握】 【知识点精析】电磁振荡 定义:在LC 回路中,电场强度E ,磁感应强度B 都发生周期性变化,这种现象,叫电磁振荡。
振荡规律: 放电过程↑↑↑↓↓↓↓磁场能电场能B i E U q C C放电完毕0E 0U 0q C C === 电场能为0 i 最大 B 最大 磁场能最大 充电过程↓↓↓↑↑↑↑磁场能电场能B i E U q C C充电完毕C q 最大 C U 最大 E 最大 电场能最大,i=0 B=0 磁场能为零 机械振动与电磁振荡:机:s 、v 、a 、随t 周期性变化,功能←→势能 电:q 、I 、v 、E 、B 随t 周期性变化,电能←→磁能 振荡:等幅(无阻尼):振幅、总能量不变。
减幅(阻尼):振幅,总能量逐渐减小。
周期、频率:LC21f LC2T π=π=麦克斯韦电磁场理论: 变化的电场产生磁场,均匀变化的电场产生稳定的磁场,非均匀变化的电场产生变化的磁场。
变化的磁场产生电场,均匀变化的磁场产生稳定的电场,非均匀变化的磁场产生变化的电场。
变化的电场和磁场总是相互联系的,形成一个不可分离的场,叫电磁场。
电磁波:麦克斯韦预言:某空间变化的电场,引起变化的磁场,在较远空间引起新的变化的电场和磁场,变化的电场和磁场不局限于某个空间,而是由近及远向周围传播开去,形成电磁波,它的速度等于光速。
电磁波特点:1、是横波 B ⊥E B ⊥x E ⊥x2、v=C3、Tf f v =λ= 4、传播电磁能 5、不需介质 赫兹实验:1、证实电磁波存在2、测定v=C3、测定电磁波λ、f4、证实了光是一种电磁波5、证实电磁波能发生反射、折射、干涉、衍射 电磁波发射:发射电路:开放电路⎪⎨⎧电感线圈天线原理:1、电磁遇导体激起感应电流,包括各种频率电磁波。
2、电谐振:LC 回路频率=需要电磁波频。
3、检波:从载波中检出信号。
《电磁场与电磁波》讲义一、什么是电磁场与电磁波在我们的日常生活中,电和磁的现象无处不在。
从电动机的转动到手机的通信,从微波炉的加热到卫星的导航,都离不开电磁场与电磁波的作用。
电磁场,简单来说,就是由带电物体产生的一种物理场。
电荷的运动或者静止都会产生电场,而电流的流动则会产生磁场。
当电场和磁场相互作用、相互影响时,就形成了电磁场。
电磁波呢,则是电磁场的一种运动形态。
它是由同相且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面。
二、电磁场的基本原理要理解电磁场,首先得了解库仑定律和安培定律。
库仑定律描述了两个静止点电荷之间的电场力的大小和方向,它表明电场力与两个电荷的电荷量成正比,与它们之间的距离的平方成反比。
安培定律则阐述了电流元之间的磁场相互作用规律。
通过这两个定律,我们可以初步认识到电场和磁场的产生和作用方式。
麦克斯韦方程组是电磁场理论的核心。
这组方程由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。
电场的高斯定律表明,通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷量除以真空介电常数。
磁场的高斯定律指出,通过任何一个闭合曲面的磁通量恒为零,这意味着不存在磁单极子。
法拉第电磁感应定律说明,当穿过一个闭合回路的磁通量发生变化时,会在回路中产生感应电动势。
安培麦克斯韦定律则将安培定律进行了扩展,引入了位移电流的概念,使得在时变电磁场中,磁场的旋度不仅与传导电流有关,还与位移电流有关。
三、电磁波的特性电磁波具有很多独特的特性。
首先是波动性,它以正弦波的形式传播,具有波长、频率和波速等特征。
波长是指相邻两个波峰或波谷之间的距离,频率则是单位时间内电磁波振动的次数,而波速等于波长乘以频率。
电磁波在真空中的传播速度是恒定的,约为 3×10^8 米/秒。
不同频率的电磁波在介质中的传播速度会有所不同。
电磁波还具有偏振性。
高二电磁学物理知识点总结一、电磁场电磁场是指电荷或电流产生的电场和磁场以及它们相互作用的一种物理场。
电磁场的性质主要包括以下几个方面:1. 电场:电场是指物体周围由电荷引起的力场。
在一个电场中,一个测试电荷会受到电场力的作用,力的大小和方向取决于测试电荷的大小和电场中的电荷分布。
电场的强度可以用电场线代表,电场线的密集程度表示电场的强弱,电场线的方向表示电场力的方向。
2. 磁场:磁场是指物体周围由磁性物质或者电流产生的磁力场。
磁场是一种无源场,它的性质是由磁性物质或者电流的分布所确定的。
在一个磁场中,物体会受到磁场力的作用,力的大小和方向取决于物体的磁性和磁场的分布。
3. 电磁感应:电磁感应是指磁场和电场之间的相互作用导致的现象。
当磁场和电场发生相互作用时,会产生感应电流或感应电势,这是电磁感应的一种表现形式。
电磁感应是电磁学中的重要现象,在许多实际应用中都有重要的作用。
4. 麦克斯韦方程组:麦克斯韦方程组是电磁学的基本方程,它描述了电场和磁场的状况,包括了电荷和电流的分布、电场和磁场的产生和变化规律。
麦克斯韦方程组被认为是电磁学的重要成果,它对电磁学的发展产生了深远的影响。
二、电磁感应电磁感应是指磁场和电场之间相互作用的现象,它是电磁学中的重要内容之一。
在高二的电磁学中,学生需要了解电磁感应的相关知识,包括以下几个方面:1. 法拉第电磁感应定律:法拉第电磁感应定律是电磁学中的重要定律,它描述了磁场和电路之间的相互作用。
根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在电路中诱导出感应电流。
这个定律为电磁感应现象提供了定量的描述,也为电磁感应的应用提供了理论依据。
2. 楞次定律:楞次定律描述了电场和磁场之间的相互作用导致的现象。
根据楞次定律,当电路中有感应电流时,该电流会产生磁场,这个磁场会对原来的磁场产生反作用。
楞次定律是电磁学中的重要定律,它揭示了电磁感应的本质,也对电磁感应的应用有着重要的意义。
高考物理电磁场和电磁波知识点1.麦克斯韦的电磁场理论1变化的磁场可以在周围空间产生电场,变化的电场可以在周围空间产生磁场。
2随时间均匀变化的磁场产生稳定电场。
随时间不均匀变化的磁场产生变化的电场。
随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。
变化的电场和变化的磁场总是相互联系,形成一个不可分割的统一体,即电磁场。
2.电磁波周期性变化的电场和磁场总是交替变换、激发和产生,并从发生区域传播到周围空间,形成电磁波。
2电磁波是横波。
3.电磁波可以在真空中传播。
电磁波从一种介质进入另一种介质。
频率不变,波速和波长变化。
电磁波的传播速度V等于波长λ和频率f,即V=λf。
真空中任何频率的电磁波的传播速度等于真空中的光速,C=3。
00×108m/s1.磁场磁场:磁场是一种存在于磁铁、电流和运动电荷周围的物质。
永磁体和电流都能在太空中产生磁场。
变化的电场也能产生磁场。
2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。
3磁现象的电学本质:所有磁现象都可以归因于通过磁场的移动电荷或电流之间的相互作用。
4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。
5磁场方向:指定磁场中任何点上小磁针N极上的力的方向,或小磁针静止时N极的方向是该点的磁场方向。
2.磁感线在磁场中人工绘制一系列曲线。
曲线的切线方向表示该位置的磁场方向,曲线的密度可以定性地表示磁场的强弱。
这一系列曲线被称为磁感应线。
2磁铁外部的磁感线,都从磁铁n极出来,进入s极,在内部,由s极到n极,磁感线是闭合曲线;磁感线不相交。
3几种典型磁场的磁感应线分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。
② 通电螺线管的磁场:两端分别为N极和S极。
管内可视为均匀磁场,管外可视为非均匀磁场。
③环形电流的磁场:两侧是n极和s极,离圆环中心越远,磁场越弱。
电磁场与电磁波-知识点总结已经将文本间距加为24磅,第18章:电磁场与电磁波一、知识网络LC 回路中电磁振荡过程中电荷、电场。
电路电流与磁场的变化规律、LC T π2=电磁麦克变化的电场产生磁场 特点:为横波,在真空中电磁电磁场与发接应用:电视、雷达。
目的:传递信息 调制:调幅和调频 原理:电磁波遇到导体会在导体中激起同频率感应电流二、重、难点知识归纳1.振荡电流和振荡电路(1)大小和方向都随时间做周期性变化的电流叫振荡电流。
能够产生振荡电流的电路叫振荡电路。
自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。
在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。
(2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小(3) LC 电路中能量的转化 :a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,电流变小时,磁场能转化为电场能。
b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大.c 、理想的LC 回路中电场能E 电和磁场机械能 定义:机械能是指动能和势能的总和。
能E 磁在转化过程中的总和不变。
回路中电流越大时,L 中的磁场能越大。
极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。
(4) LC 电路的周期公式及其应用LC 回路的固有周期和固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L 及电容器的电容C 。
2、电磁场麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。
高中物理11章知识点归纳总结### 高中物理第十一章知识点归纳总结第十一章:电磁场和电磁波1. 电磁场的基本概念- 电场:电荷周围存在的一种特殊物质,能够对电荷施加力。
- 磁场:磁体或运动电荷周围存在的一种特殊物质,对磁体或运动电荷产生力的作用。
- 场强:描述场的强弱和方向的物理量,电场强度和磁感应强度是描述电磁场的基本物理量。
2. 电场和磁场的产生- 静电场:由静止电荷产生的电场。
- 感应电场:由变化的磁场产生的电场。
- 恒定磁场:由永久磁体或电流产生的磁场。
3. 电磁感应- 法拉第电磁感应定律:描述变化磁场产生感应电动势的规律。
- 楞次定律:描述感应电流方向的规律,即感应电流的磁场总是阻碍原磁场的变化。
4. 麦克斯韦方程组- 高斯定律:描述电场和电荷的关系。
- 高斯磁定律:描述磁场和电流的关系。
- 法拉第电磁感应定律:描述变化的磁场产生电场的规律。
- 安培定律:描述电流和磁场的关系,包括位移电流。
5. 电磁波- 电磁波的产生:由变化的电场和磁场相互激发产生。
- 电磁波的性质:包括波长、频率、速度等。
- 电磁波谱:包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
6. 电磁波的传播- 波的传播:电磁波在介质中传播时,电场和磁场交替变化,形成波形。
- 波的反射、折射和干涉:电磁波在不同介质界面上发生的反射、折射和干涉现象。
7. 电磁波的应用- 通信:无线电波用于无线通信。
- 医疗:X射线用于医学成像。
- 能源传输:太阳能电池板将太阳光转化为电能。
8. 电磁波的防护- 电磁污染:电磁波可能对人体健康和电子设备产生影响。
- 防护措施:包括屏蔽、吸收和距离等方法。
9. 电磁场的能量和动量- 能量守恒:电磁场的能量在传播过程中守恒。
- 动量守恒:电磁波具有动量,可以对物体产生推动作用。
通过以上知识点的归纳总结,我们可以看到电磁场和电磁波在物理学中的重要性,它们不仅在理论研究中占有重要地位,而且在实际应用中也发挥着巨大作用。
电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖρ本构关系: E J HB ED ϖϖϖϖϖϖσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ2 边界条件(1)一般情况的边界条件nn n sT t t s n s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖϖ((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖ(((1)基本方程0022=•==∇-=∇=•=•∇=•=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρϖϖϖϖϖϖϖϖ本构关系: E D ϖϖε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。
● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。
电磁场与电磁波知识点:电磁场与电磁波一、电磁场1.变化的磁场产生电场(1)实验基础:如图所示,在变化的磁场中放一个闭合电路,电路里就会产生感应电流.(2)麦克斯韦的见解:电路里能产生感应电流,是因为变化的磁场产生了电场,电场促使导体中的自由电荷做定向运动.(3)实质:变化的磁场产生了电场.2.变化的电场产生磁场麦克斯韦假设,既然变化的磁场能产生电场,那么变化的电场也会在空间产生磁场.二、电磁波1.电磁波的产生:变化的电场和磁场交替产生,由近及远向周围传播,形成电磁波.2.电磁波的特点:(1)电磁波在空间传播不需要介质;(2)电磁波是横波:电磁波中的电场强度与磁感应强度互相垂直,而且二者均与波的传播方向垂直,因此电磁波是横波.(3)电磁波的波长、频率、波速的关系:v=λf,在真空中,电磁波的速度c=3.0×108 m/s.(4)电磁波能产生反射、折射、干涉、偏振和衍射等现象.3.电磁波具有能量电磁场的转换就是电场能量与磁场能量的转换,电磁波的发射过程是辐射能量的过程,传播过程是能量传播的过程.技巧点拨一、电磁场对麦克斯韦电磁场理论的理解(1)变化的磁场产生电场①均匀变化的磁场产生恒定的电场.②非均匀变化的磁场产生变化的电场.③周期性变化的磁场产生同频率的周期性变化的电场.(2)变化的电场产生磁场①均匀变化的电场产生恒定的磁场.②非均匀变化的电场产生变化的磁场.③周期性变化的电场产生同频率的周期性变化的磁场.二、电磁波与机械波的比较例题精练1.(2021春•成都期末)关于电磁波,下列说法正确的是()A.变化的电场产生变化的磁场B.电磁波必须依赖介质才能传播C.电磁波在真空中和介质中的传播速度相同D.电磁波可以发生衍射现象【分析】明确麦克斯韦电磁场理论,知道在分析电磁波的产生时应注意区分均匀变化和周期性变化;明确电磁波可以传播不需要介质,知道电磁波在不同介质中传播速度不同;明确电磁波具有波的干涉和衍射等现象。
高二电磁场与电磁波知识点
电磁场和电磁波是物理学中非常重要的概念和内容。
在高二物
理学习中,电磁场与电磁波的理论和实践知识是必不可少的。
本
文将对高二电磁场与电磁波的知识点进行全面的介绍和解析。
1. 电磁场的概念
电磁场是指空间中存在的物质对电荷和电流产生相互作用的力场。
它包括静电场和磁场两个部分。
静电场是由电荷产生的,而
磁场是由电流产生的。
电磁场以场线形式存在,用于描述力的大
小和方向。
2. 静电场的性质与计算
静电场的性质是指电场所具有的特点和规律。
其中包括电场强度、电势、电场线、电场能等。
电场强度表示单位正电荷在电场
中所受到的力的大小和方向。
电势则表示单位正电荷在某一点处
所具有的电场能。
静电场还可以通过库仑定律进行计算,即F =
k(q1q2/r^2),其中F为电场力,k为库仑常量,q1和q2为电荷量,r为两个电荷之间的距离。
3. 磁场的性质与计算
磁场的性质包括磁场强度、磁感应强度、磁场线等。
磁场强度表示单位磁极在磁场中所受到的力的大小和方向。
磁感应强度则表示在某点的磁场中单位面积上垂直于磁场方向的磁感线数目。
磁场可以使用安培环路定理进行计算,即B = μ₀I/2πr,其中B为磁感应强度,μ₀为真空中的磁导率,I为电流强度,r为电流所形成的环路与要计算的点之间的距离。
4. 电磁感应与电磁感应定律
电磁感应是指导体中的磁感线发生变化时,导体中会产生感应电动势。
电磁感应定律描述了感应电动势的大小和方向。
如果一个导体环路内的磁感线数目发生变化,就会在导体中产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁感线的变化率成正比。
5. 波动光学的基本原理
波动光学是电磁场与光学的关系,主要探讨光的传播、衍射、干涉、偏振等问题。
根据光的波动性质,波动光学理论解释了光的传播方向、波长和频率等特性。
波动光学中的重要概念还包括光的干涉、衍射和偏振现象。
6. 电磁波的性质与分类
电磁波是由电场和磁场交替变化产生的一种能量传播形式。
电
磁波的性质包括传播速度、频率、波长和能量等。
根据电磁波的
波长和频率不同,可以将电磁波分为不同的类型,包括射电波、
微波、红外线、可见光、紫外线、X射线和γ射线等。
7. 电磁波与生活应用
电磁波广泛应用于科学研究、通信、医学、遥感、能源和生活
等领域。
在通信方面,电磁波的特性使得无线电、电视、手机和
卫星通信成为可能。
在医学方面,X射线和核磁共振成像等技术
得以应用。
电磁波还可以用于太阳能发电、微波炉和雷达等领域。
通过对高二电磁场与电磁波知识点的详细介绍,我们可以了解
到电磁场和电磁波在物理学中的重要性和广泛应用。
对这些知识
点的掌握和理解将有助于我们更好地理解自然界中的现象,并为
进一步的物理学习打下坚实的基础。