仪器分析
- 格式:doc
- 大小:222.00 KB
- 文档页数:2
第一章绪论1.仪器分析是以物质的物理组成或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与被分析物质组成的内在关系和规律,进而对其进行定性、定量、进行形态和机构分析的一类测定方法,由于这类方法的测定常用到各种比较贵重、精密的分析仪器,故称为仪器分析。
与化学分析相比,仪器分析具有取样量少、测定是、速度快、灵敏、准确和自动化程度高的显著特点,常用来测定相对含量低于1%的微量、痕量组分,是分析化学的主要发展方向。
2.仪器分析的特点:速度快、灵敏度高、重现性好、样品用量少、选择性高局限性:仪器装置复杂、相对误差较大3.精密度:是指在相同条件下对同一样品进行多次测评,各平行测定结果之间的符合程度。
4、灵敏度:仪器或方法的灵敏度是指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的该变量,它受校正曲线的斜率和仪器设备本身精密度的限制。
5.准确度:是多次测定的平均值与真实值相符合的程度,用误差或相对误差来描述,其值越小准确度越高。
6.空白信号:当试样中没有待测组分时,仪器产生的信号。
它是由试样的溶剂、基体材质及共存组分引起的干扰信号,具有恒定性,可以通过空白实验扣除。
7.本底信号:通常将没有试样时,仪器所产生的信号主要是由随机噪声产生的信号。
它是由仪器本身产生的,具有随机性,难以消除,但可以通过增加平行测定次数等方法减小;、8.仪器分析法与化学分析法有何异同:相同点:①都属于分析化学②任务相同:定性和定量分析不同点:①与化学分析相比,仪器分析具有取样量少、测定快速、灵敏、准确和自动化程度高等特点②分析对象不同:化学分析是常量分析,而仪器分析是用来测定相对含量低于1%的微量、衡量组分,是分析化学的主要发展方向9.仪器分析主要有哪些分类:①光分析法:分为非光谱分析法和光谱法两类。
非光谱法:是不涉及物质内部能级跃迁的,通过测量光与物质相互作用时其散射、折射、衍射、干涉和偏振等性质的变化,从而建立起分析方法的一类光学分析法。
仪器分析(名词解释).doc仪器分析(Instrumental Analysis)是一门研究测定物质的含量、结构及性质的科学。
它是由分析化学与仪器学结合起来的科学。
它是对物质的构成、含量及性质进行分析测定和确定的方法,也就是说,借助仪器和手段,通过物质本身的反应,检测物质的特征和各种组成,以及它们之间的关系,从而达到确定物质组成和性质的目的。
仪器分析具有准确、快速、高效、可重复等特点。
它结合了传统的分析化学和仪器学的技术,能够检测出物质的特征,并且能够精确地测定出物质的含量。
仪器分析可以分为光谱分析、质谱分析、电化学分析和核磁共振分析等。
光谱分析是仪器分析中最常用的一种技术。
它利用物质发出的不同波长的光,从而判断物质的组成、结构及性质。
可以分为原子光谱分析、分子光谱分析、X射线光谱分析、红外光谱分析、紫外光谱分析等。
质谱分析是测定物质分子结构的另一种方法。
它利用质谱仪,将物质分成其原子的离子,并以质量分辨率的形式测定出物质的分子结构。
它分为电子质谱分析和离子质谱分析两类。
电化学分析是测定物质及其反应物的含量时使用的常用方法。
它通过测量物质在电极上发生的电化学反应,从而测定出物质的含量。
它有很大的应用前景,因为它可以测定出低激活能量物质的含量。
核磁共振分析(NMR)是一种测定物质结构和性质的非常有效的方法。
它可以通过在核磁场中对物质的核磁共振信号的分析,测定出物质的结构和性质。
它也可用于测定物质的含量。
仪器分析是一门研究物质的含量、结构及性质的科学,它是由分析化学与仪器学结合起来的科学。
仪器分析具有准确、快速、高效、可重复等特点,它的应用非常广泛,可以用于科学研究、工业生产、农业生产等多个领域。
它是通过借助仪器和手段,结合传统的分析化学和仪器学技术,对物质进行分析测定和确定的方法,从而达到确定物质组成和性质的目的。
常见的仪器分析方法有光谱分析、质谱分析、电化学分析和核磁共振分析等。
仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。
以下是对常见仪器分析方法的知识点总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。
其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。
原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。
优点:选择性好、灵敏度高、分析范围广、精密度好。
局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。
(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。
原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。
其仪器包括激发光源、分光系统和检测系统。
优点:可同时测定多种元素、分析速度快、选择性好。
缺点:精密度较差、检测限较高。
(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。
原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。
仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。
应用广泛,可用于定量分析、定性分析以及化合物结构研究。
(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。
原理是:分子的振动和转动能级跃迁产生红外吸收。
仪器包括红外光源、样品室、单色器、检测器和记录仪。
常用于有机化合物的结构鉴定。
二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。
包括直接电位法和电位滴定法。
仪器分析方法仪器分析方法是化学分析中常用的一种技术手段,它通过利用各种仪器设备对样品进行分析,从而得到样品的成分、结构和性质等信息。
仪器分析方法的发展,为化学分析提供了更加准确、快速、灵敏的手段,广泛应用于环境监测、食品安全、药物研发等领域。
本文将就常见的仪器分析方法进行介绍和分析。
一、光谱分析。
光谱分析是利用物质对光的吸收、发射、散射等特性进行分析的一种方法。
常见的光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
这些方法通过测量样品对特定波长的光的吸收或散射情况,从而得到样品的成分和结构信息。
光谱分析方法具有快速、非破坏性、灵敏度高的特点,被广泛应用于化学分析领域。
二、色谱分析。
色谱分析是利用物质在固定相和流动相作用下的分离和检测特性进行分析的一种方法。
常见的色谱分析包括气相色谱、液相色谱、超高效液相色谱等。
这些方法通过样品在色谱柱中的分离和检测,从而得到样品中各种成分的含量和结构信息。
色谱分析方法具有分离效果好、分析速度快、灵敏度高的特点,被广泛应用于食品安全、环境监测等领域。
三、质谱分析。
质谱分析是利用物质在电场或磁场中的运动特性进行分析的一种方法。
常见的质谱分析包括质子磁共振质谱、质子转移反应质谱、质子撞击电离质谱等。
这些方法通过测量样品中各种离子的质荷比,从而得到样品的成分和结构信息。
质谱分析方法具有高分辨率、高灵敏度、高准确度的特点,被广泛应用于药物研发、生物分析等领域。
四、电化学分析。
电化学分析是利用物质在电极上的电化学反应特性进行分析的一种方法。
常见的电化学分析包括极谱法、循环伏安法、恒电位法等。
这些方法通过测量样品在电极上的电流和电压变化,从而得到样品的成分和性质信息。
电化学分析方法具有灵敏度高、实时性好、样品准备简单的特点,被广泛应用于环境监测、能源材料等领域。
综上所述,仪器分析方法在化学分析中具有重要的地位和作用,它为化学分析提供了更加准确、快速、灵敏的手段。
随着科技的不断发展,仪器分析方法将会不断完善和创新,为人类的健康和环境保护提供更多的支持和帮助。
仪器分析总结仪器分析是一种重要的化学分析方法,通过利用各种仪器设备对样品进行测试和测量,以获得样品中特定组分的定量和定性信息。
仪器分析的意义在于提高实验效率和准确度,为化学研究和应用提供了有力的支持。
以下是对仪器分析的总结。
首先,仪器分析的优点之一是其高准确性和高灵敏度。
现代仪器设备已经发展到了能够对样品进行非常精确的测量和分析的程度。
仪器分析能够检测到非常少量的物质,对于需要高精度测量的实验非常有用。
其次,仪器分析的快速性也是其优点之一。
相比于传统的化学分析方法,仪器分析通常能够在较短的时间内完成测试。
这对于需要大量样品测试或需要实时监测的实验非常有利。
仪器分析还具有多样性和多功能性。
现代仪器设备种类繁多,可以适用于不同类型的样品和不同类型的分析需求。
例如,气相色谱-质谱联用技术可以用于对气体、液体和固体样品中的化合物进行定性和定量分析。
这种多样性和多功能性使得仪器分析具有广泛的应用领域,包括环境分析、食品检测、药物研发等。
仪器分析还可以实现对复杂样品的分析。
传统的化学分析方法可能无法有效地处理具有复杂矩阵和多种成分的样品。
而仪器分析技术,如液相色谱-质谱联用技术和核磁共振技术,可以通过选择适当的条件和分析方法,对这些复杂的样品进行分析,并准确地确定其中的组分。
此外,仪器分析还具有自动化和高通量分析的特点。
通过仪器设备的自动化控制,样品的处理和分析可以大大加快和简化。
高通量分析技术则可以同时分析多个样品,提高实验的效率和产出。
然而,仪器分析也存在一些局限性。
首先,仪器设备的高成本和复杂性使得其对于一些小型实验室或初级研究单位来说不太实际。
其次,仪器分析可能需要复杂的样品处理和前处理步骤,这对操作者的技术要求较高。
最后,仪器分析虽然可以提供准确的定量和定性结果,但在某些情况下可能受到干扰因素的影响,需要仔细的实验设计和数据处理。
总的来说,仪器分析是一种高效、准确和灵敏的化学分析方法,对于化学研究和应用有重要的意义。
仪器分析与总结分析仪器与总结仪器分析是一种通过仪器设备对物质进行测试和分析,获取精确数据和结果的方法。
其广泛应用于科研实验室、工业生产和环境监测等领域。
本文将对仪器分析的原理、分类和应用进行详细的分析,并总结其优缺点及发展趋势。
一、仪器分析的原理仪器分析的原理是基于物质与电磁辐射、粒子束、声波等相互作用的基础上进行分析。
具体而言,仪器分析分为光学分析、电化学分析、质谱分析、核磁共振分析和热分析等多种方法。
这些方法通过测量样品与仪器之间的响应信号,来推断样品的组成、结构和性质。
光学分析是利用光的吸收、散射、发射和干涉等现象对样品进行分析的方法。
其中,常用的方法有紫外可见分光光度法、荧光法和原子吸收光谱法。
电化学分析是通过样品与电极之间的电荷转移过程进行分析的方法,其中常见的有电位滴定法、电位荧光法和电解析光波法。
质谱分析是通过测量样品中离子的质量-电荷比来分析样品的成分和结构,其中常见的有质谱法和电离质谱法。
核磁共振分析是通过测量样品中核自旋的频率来分析样品的结构和性质,其中常见的有核磁共振光谱法和电子顺磁共振法。
热分析是通过测量样品在一定条件下的物理和化学变化来分析样品的成分和性质,其中常见的有差示热分析法和热重分析法。
二、仪器分析的分类根据仪器的特点和应用范围,仪器分析可分为定性分析和定量分析。
定性分析是通过测量样品的响应信号来确定样品中存在的成分和结构的方法。
定性分析常用于物质的鉴定和鉴别。
例如,通过光谱法可以确定物质的吸收或发射峰,从而判断物质的种类和结构。
定量分析是通过测量样品的响应信号来确定样品中成分的含量和浓度的方法。
定量分析常用于物质的含量测定和质量控制。
例如,通过光度法可以测定物质的吸光度,从而计算出物质的浓度。
三、仪器分析的应用仪器分析广泛应用于科研实验室、工业生产和环境监测等领域。
其应用范围涉及医药、化工、冶金、环保、食品、农业等多个行业。
在医药领域,仪器分析可用于药物的研发、质量控制和药物代谢的研究等。
仪器分析及其方法仪器分析是指利用各种仪器设备进行样品分析的科学技术领域。
它是现代分析化学的重要分支,具有高准确度、高灵敏度、高选择性等特点,广泛应用于环境监测、药品检测、食品安全等领域。
仪器分析的方法主要包括物质分离、物质识别与测定、物质结构研究等方面。
下面我们详细介绍几种常见的仪器分析方法。
一、光谱分析法:光谱分析法利用物质与电磁波相互作用的原理,通过测量样品在不同波长或频率下的吸收、发射、散射等光谱特性来进行分析。
常见的光谱分析方法有紫外可见吸收光谱法、红外光谱法、核磁共振光谱法等。
二、电化学分析法:电化学分析法是利用电化学基本原理,通过物质与电极界面的电化学反应产生的电流、电势等信号来进行分析。
常见的电化学分析方法包括电位滴定法、极谱分析法、循环伏安法等。
三、色谱分析法:色谱分析法是以固定相与流动相之间的分配作用对物质进行分离与测定的方法。
常见的色谱分析方法有气相色谱法、液相色谱法、超临界流体色谱法等。
四、质谱分析法:质谱分析法是利用物质的质量与电荷比在磁场中的运动轨迹和谱图进行分析的方法。
常见的质谱分析方法有质谱仪法、飞行时间质谱法、离子阱质谱法等。
五、核素分析法:核素分析法是利用放射性核素的独特性质进行分析的方法。
常见的核素分析方法有放射计数法、伽马射线分析法、中子活化分析法等。
六、电子显微镜分析法:电子显微镜分析法是利用电子束与样品相互作用所产生的信号来进行分析的方法。
常见的电子显微镜分析方法包括扫描电子显微镜、透射电子显微镜等。
七、光电分析法:光电分析法是利用光电效应测量电流或电压信号进行分析的方法。
常见的光电分析方法有光电比色法、光电导比法、光电堆积法等。
这些仪器分析方法各具特点,可以根据不同样品的性质和需要选择相应的方法进行分析。
仪器分析方法的发展使得分析结果更加准确、灵敏,缩短了分析时间,提高了工作效率,大大推动了科学研究和工业生产的进程。
三简答题
1,何为发色团,助色团?答:分子中能吸收紫外光或可见光的结构系统叫做发色团。
有些原子或基团,本身不能吸收波长大于200nm的光波,但它与一定的发色团相连时,可使发色团所产生的吸收峰向长波长方向移动,并使吸收强度增加,这样的原子或基团叫做助色团。
2,红外光谱产生必须具备的两个条件。
答:①辐射光具有的能量与发生振动跃迁时所需的能量相等②辐射与物质之间有偶合作用。
3,①何为化学位移?②它有什么重要性?
③在1H-NMR中影响化学位移的因素有哪些?答:①如果磁场强度固定而改变频率,或将射频固定而改变磁场强度时,不同环境的质子(即具有不同屏蔽常数δ的质子)会一个接一个地产生共振。
不同类型氢核因所处的化学环境不同,共振峰将出现在磁场的不同区域。
这种由于分子中各组质子所处的化学环境不同而在不同的磁场产生共振吸收的现象称为化学位移。
②由于化学位移的大小与氢核所处的化学环境密切相关,因此有可能根据化学位移的大小来考虑氢核所处的化学环境,亦即有机物的分子结构特征。
③由于化学位移是由核外电子云密度决定的,因此影响电子云密度的各种因素都会影响化学位移,如诱导效应,磁各向异性效应,溶剂效应,氢键等。
4,何谓气相色谱,液相色谱?按照分离作用原理可以分为哪几类?答:气相色谱法是一种以气体作流动相的柱色谱分离分析方法。
液相色谱法是指流动相为液体的色谱技术。
根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。
5,液质联用(LC-MS)时对分析样品制备的要求。
答:①样品要力求纯净,不含显著的杂质,尤其是与分析无关的蛋白质和肽类。
②不含有较高浓度的难挥发酸及其盐,难挥发酸及其盐的侵入会引起很强的噪声,严重是会造成仪器喷口处放电。
③样品黏度不能过大,防止堵塞柱子,喷口及毛细管入口。
二、填空题:
1.uv-vis光谱由分子吸收能量激发价电子或分子轨道上而产生的带状光谱。
分为可见光区、近紫外光区、远紫外光区。
2.IR光谱是研究分子结构的吸收光谱,也称红外吸收或分子转动-转动光谱,可反映分子所带官能团用于鉴定化合物的分子结构。
3.NMR法中影响质子化学位移值的因素有诱导效应、磁各向异性效应、氢键效应、溶剂效应、共轭效应。
4.质谱简称 MS 就是把分子离子或经一定方式裂解形成的碎片离子按照质荷比大小排列的图谱。
一、单选题:(共40分,每题2分)
1. 频率(MHz)为4.47×108的辐射,其波长数值为(A) 670.7nm
2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了(C)吸收峰的位置
3. 紫外光谱是带状光谱的原因是由于(D)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因
4. 化合物中,下面哪一种跃迁所需的能量最高(A)σ→σ*
5. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大(A)水
6. CH3—CH3的哪种振动形式是非红外活性的(A)υC-C
7. 一种能作为色散型红外光谱仪的色散元件材料为(D)卤化物晶体
8. 下列官能团在红外光谱中吸收峰频率最高的是(D)—O—H
9. 若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量如何变化?(B)逐渐变大10. 下列哪种核不适宜核磁共振测定(A)12C
11. 下列化合物中哪些质子属于磁等价核(C)R—CO—NH a H b
12. 苯环上哪种取代基存在时,其芳环质子化学位移最大(D)—CHO
13. 3个不同的质子H a、H b、H c,其屏蔽常数的大小为σb>σa>σc。
则它们的化学位移如何? (C)δc>δa>δb
14. 确定碳的相对数目时,应测定(D)反门控去偶谱
15. 下列化合物中羰基碳化学位移δC最大的是(A)酮
16. 在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是(C)红外和核磁
17. 在质谱仪中当收集正离子的狭缝位置和加速电压固定时,若逐渐增加磁场强度H,对具有不同质荷比的正离子,其通过狭缝的
18. 某化合物经MC检测出分子离子峰的m/z为67。
从分子离子峰的质荷比可以判断分子式可能为 (C) C4H5N
19. 在通常的质谱条件下,下列哪个碎片峰不可能出现(C)M-8
20.有一种含氧化合物,如用红外光谱判断它是否为羰基化合物,主要依据的谱带范围是(C) 1950~1650cm-1
12分)
)a=1.22ppm, b=1.30ppm或b=1.22ppm,
c=4.21ppm, d=7.30ppm , e=7.59ppm
)由于取代烯烃的分子构型有顺、反异构,造成两个乙氧基不是等价的,有趣的是这种不等价只在甲基上反映
图化合物的13C谱和DEPT谱
(a常规质子去偶13C谱;(b) 所有质子相连的碳;(c) DEPT-90谱,只有CH峰; (d) DEPT-130谱,CH、CH3为正峰,CH2为负峰;
答:结构指认如下:。