五年高考真题(数学理) 4.2三角函数的图象与性质
- 格式:doc
- 大小:666.50 KB
- 文档页数:11
三角函数高考题及练习题(含答案)1. 掌握正弦函数、余弦函数、正切函数的图象与性质;会用“五点法”作出正弦函数及余弦函数的图象;掌握函数y =Asin (ωx +φ)的图象及性质.2. 高考试题中,三角函数题相对比较传统,位置靠前,通常是以简单题形式出现,因此在本讲复习中要注重三角知识的基础性,特别是要熟练掌握三角函数的定义、三角函数图象的识别及其简单的性质(周期、单调性、奇偶、最值、对称、图象平移及变换等).3. 三角函数是每年高考的必考内容,多数为基础题,难度属中档偏易.这几年的高考加强了对三角函数定义、图象和性质的考查.在这一讲复习中要重视解三角函数题的一些特殊方法,如函数法、待定系数法、数形结合法等.1. 函数y =2sin 2⎝⎛⎭⎫x -π4-1是最小正周期为________的________(填“奇”或“偶”)函数.答案:π 奇解析:y =-cos ⎝⎛⎭⎫2x -π2=-sin2x.2. 函数f(x)=lgx -sinx 的零点个数为________. 答案:3解析:在(0,+∞)内作出函数y =lgx 、y =sinx 的图象,即可得到答案.3. 函数y =2sin(3x +φ),⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________.答案:π4解析:由已知可得3×π12+φ=k π+π2,k ∈Z ,即φ=k π+π4,k ∈Z .因为|φ|<π2,所以φ=π4.4. 若f(x)=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.答案:34解析:由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f(x)在⎣⎡⎦⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3,所以ωπ3=π4,解得ω=34.题型二 三角函数定义及应用问题例1 设函数f(θ)=3sin θ+cos θ,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P(x ,y),且0≤θ≤π.(1) 若点P 的坐标是⎝⎛⎭⎫12,32,求f(θ)的值;(2) 若点P(x ,y)为平面区域⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.解:(1) 根据三角函数定义得sin θ=32,cos θ=12,∴ f (θ)=2.(本题也可以根据定义及角的范围得角θ=π3,从而求出 f(θ)=2).(2) 在直角坐标系中画出可行域知0≤θ≤π2,又f(θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6,∴ 当θ=0,f (θ)min =1;当θ=π3,f (θ)max =2.(注: 注意条件,使用三角函数的定义, 一般情况下,研究三角函数的周期、最值、单调性及有关计算等问题时,常可以先将函数化简变形为y =Asin (ωx +φ)的形式)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B 的横坐标分别为210、255.求:(1) tan (α+β)的值; (2) α+2β的值.解:由题意得cos α=210,cos β=255,α、β∈⎝⎛⎭⎫0,π2,所以sin α=1-cos 2α=7210,sin β=1-cos 2β=55, 因此tan α=7,tan β=12.(1) tan (α+β)=tan α+tan β1-tan αtan β=7+121-7×12=-3.(2) tan (α+2β)=tan [(α+β)+β]=-3+121-(-3)×12=-1.又α+2β∈⎝⎛⎭⎫0,3π2,所以α+2β=3π4.题型二 三角函数的图象与解析式问题例2 函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0)的部分图象如图所示. (1) 求f(0)的值;(2) 若0<φ<π,求函数f(x)在区间⎣⎡⎦⎤0,π3上的取值范围.解:(1)由题图可知A =2,∵ T 4=7π12-π3=π4,∴ ω=2.又2×7π12+φ=2k π+3π2,∴ φ=2k π+π3(k ∈Z ),∴ f(0)=2sin ⎝⎛⎭⎫2k π+π3=62.(2) φ=π3,f(x)=2sin ⎝⎛⎭⎫2x +π3.因为0≤x ≤π3,所以π3≤2x +π3≤π,所以0≤sin ⎝⎛⎭⎫2x +π3≤1,即f(x)的取值范围为[0,2].(注:本题主要考查正弦、余弦、正切函数及y =Asin (ωx +φ)的图象与性质以及诱导公式,运用数形结合思想,属于中档题)已知函数f(x)=Asin ωx +Bcos ωx(A 、B 、ω是常数,ω>0)的最小正周期为2,并且当x =13时,f(x)max =2.(1) 求f(x)的解析式;(2) 在闭区间⎣⎡⎦⎤214,234上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由.解:(1) 因为f(x)=A 2+B 2sin (ωx +φ),由它的最小正周期为2,知2πω=2,ω=π.又当x =13时,f(x)max =2,知13π+φ=2k π+π2(k ∈Z ),即φ=2k π+π6(k ∈Z ),所以f(x)=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6(k ∈Z ).故f(x)的解析式为f(x)=2sin ⎝⎛⎭⎫πx +π6.(2) 当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2(k ∈Z ),解得x =k +13(k ∈Z ),由214≤k +13≤234,解得5912≤k ≤6512.又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f(x)的对称轴,其方程为x =163. 题型三 三角函数的性质与图象的移动问题例3 把函数f(x)=sin 2x -2sinxcosx +3cos 2x 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线x =17π8对称.(1) 求m 的最小值;(2) 证明:当x ∈⎝⎛⎭⎫-17π8,-15π8时,经过函数f(x)图象上任意两点的直线的斜率恒为负数;(3) 设x 1,x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,求x 1+x 2的值.(1) 解:f(x)=sin 2x -2sinxcosx +3cos 2x =1-cos2x 2-sin2x +3·1+cos2x2=cos2x -sin2x+2=2cos ⎝⎛⎭⎫2x +π4+2.因为将f(x)的图象沿x 轴向左平移m 个单位(m>0),得到g(x)=2⎣⎡⎦⎤2(x +m )+π4+2的图象,又g(x)的图象关于直线x =17π8对称,所以2⎝⎛⎭⎫17π8+m +π4=k π,即m =(2k -9)4π(k ∈Z ). 因为m>0,所以m 的最小值为π4.(2) 证明:因为x ∈⎝⎛⎭⎫-17π8,-15π8,所以-4π<2x +π4<-7π2,所以f(x)在⎝⎛⎭⎫-17π8,-15π8上是减函数.所以当x 1、x 2∈⎝⎛⎭⎫-17π8,-15π8,且x 1<x 2时,都有f(x 1)>f(x 2),从而经过任意两点(x 1,f(x 1))和(x 2,f(x 2))的直线的斜率k =f (x 1)-f (x 2)x 1-x 2<0.(3) 解:令f(x)=1,所以cos ⎝⎛⎭⎫2x +π4=-22.因为x ∈(0,π),所以2x +π4∈⎝⎛⎭⎫π4,9π4.所以2x +π4=3π4或2x +π4=5π4,即x =π4或x =π2.因为x 1、x 2∈(0,π),x 1≠x 2,且f(x 1)=f(x 2)=1,所以x 1+x 2=π4+π2=3π4已知函数f(x)=2sin ωx ,其中常数ω>0.(1) 若y =f(x)在⎣⎡⎦⎤-π4,2π3上单调递增,求ω的取值范围;(2) 令ω=2,将函数y =f(x)的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g(x)的图象,区间[a ,b](a ,b ∈R 且a<b)满足:y =g(x)在[a ,b]上至少含有30个零点,在所有满足上述条件的[a ,b]中,求b -a 的最小值.解:(1) 因为ω>0,根据题意有 ⎩⎨⎧-π4ω≥-π22π3ω≤π20<ω≤34.(2) f(x)=2sin2x ,g(x)=2sin2⎝⎛⎭⎫x +π6+1=2sin ⎝⎛⎭⎫2x +π3+1,g(x)=0sin ⎝⎛⎭⎫2x +π3=-12x =k π-π3或x =k π-712π,k ∈Z, 即g(x)的零点相邻间隔依次为π3和2π3,故若y =g(x)在[a ,b]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.已知函数f(x)=3sin (ωx +φ)-cos (ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝⎛⎭⎫π8的值;(2) 将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递减区间.解:(1) f(x)=3sin (ωx +φ)-cos (ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6.因为f(x)为偶函数,所以对x ∈R ,f(-x)=f(x)恒成立,因此sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6,即-sin ωxcos ⎝⎛⎭⎫φ-π6+cos ωxsin ⎝⎛⎭⎫φ-π6=sin ωxcos (φ-π6)+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωxcos ⎝⎛⎭⎫φ-π6=0.因为ω>0,且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0.又0<φ<π,故φ-π6=π2.所以f(x)=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx.由题意得2πω=2×π2,所以ω=2,故f(x)=2cos2x ,因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,所以g(x)=f ⎝⎛⎭⎫x -π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=2cos ⎝⎛⎭⎫2x -π3.当2k π≤2x -π3≤2k π+π(k ∈Z ),即k π+π6≤x ≤k π+2π3(k ∈Z )时,g(x)单调递减,因此g(x)的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 题型四 三角函数图象及性质、三角公式综合运用例4 已知函数f(x)=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R .(1) 求f(x)的最小正周期;(2) 若h(x)=f(x +t)的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3) 当x ∈⎣⎡⎦⎤π4,π2时,不等式|f(x)-m|<3恒成立,求实数m 的取值范围.解:(1)因为f(x)=-cos ⎝⎛⎭⎫π2+2x -3cos2x =2sin ⎝⎛⎭⎫2x -π3,故f(x)的最小正周期为π.(2) h(x)=2sin ⎝⎛⎭⎫2x +2t -π3.令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z ),又t ∈(0,π),故t =π3或5π6. (3) 当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,∴ f(x)∈[1,2].又|f(x)-m|<3,即f(x)-3<m <f(x)+3, ∴ 2-3<m <1+3,即-1<m <4.已知函数f(x)=Asin (ωx +φ)(A>0,ω>0,|φ|<π),在同一周期内,当x =π12时,f(x)取得最大值3;当x =712π时,f(x)取得最小值-3.(1) 求函数f(x)的解析式;(2) 求函数f(x)的单调递减区间;(3) 若x ∈⎣⎡⎦⎤-π3,π6时,函数h(x)=2f(x)+1-m 有两个零点,求实数m 的取值范围.解:(1) 由题意,A =3,T =2⎝⎛⎭⎫712π-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π得φ=π3+2k π,k ∈Z .又 -π<φ<π,∴ φ=π3,∴ f(x)=3sin ⎝⎛⎭⎫2x +π3.(2) 由π2+2k π≤2x +π3≤3π2+2k π,得π6+2k π≤2x ≤7π6+2k π,即π12+k π≤x ≤7π12+k π,k ∈Z . ∴ 函数f(x)的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z.(3) 由题意知,方程sin ⎝⎛⎭⎫2x +π3=m -16在⎣⎡⎦⎤-π3,π6上有两个根.∵ x ∈⎣⎡⎦⎤-π3,π6,∴ 2x +π3∈⎣⎡⎦⎤-π3,2π3.∴ m -16∈⎣⎡⎦⎤-32,1,∴ m ∈[1-33,7).1. (2013·江西卷)设f(x)=3sin3x +cos3x ,若对任意实数x 都有|f(x)|≤a ,则实数a 的取值范围是________.答案:a ≥2解析:f(x)=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f(x)|≤2,所以a ≥2.2. (2013·天津卷)函数f(x)=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值是________.答案:-223. (2013·全国卷)函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则|φ|=________.答案:5π64. (2014·北京卷)设函数f(x)=Asin (ωx +φ)(A 、ω、φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________. 答案:π解析:由f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6知,函数f(x)的对称中心为⎝⎛⎭⎫π3,0,函数f(x)的对称轴为直线x =12⎝⎛⎭⎫π2+2π3=7π12,设函数f(x)的最小正周期为T ,所以12T ≥π2-π6,即T ≥2π3,所以7π12-π3=T 4,解得T =π. 5. (2014·福建卷)已知函数f(x)=cosx(sinx +cosx)-12.(1) 若0<α<π2,且sin α=22,求f(α)的值;(2) 求函数f(x)的最小正周期及单调递增区间.解:(解法1)(1) 因为0<α<π2,sin α=22,所以cos α=22.所以f(α)=22⎝⎛⎭⎫22+22-12=12.(2) 因为f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(解法2)f(x)=sinxcosx +cos 2x -12=12sin2x +1+cos2x 2-12=12sin2x +12cos2x =22sin ⎝⎛⎭⎫2x +π4.(1) 因为0<α<π2,sin α=22,所以α=π4.从而f(α)=22sin ⎝⎛⎭⎫2α+π4=22sin 3π4=12.(2) T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f(x)的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .6. (2013·北京卷)已知函数f(x)=(2cos 2x -1)sin2x +12cos4x.(1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝⎛⎭⎫π2,π,且f(α)=22,求α的值.解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2xsin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎫4x +π4,所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎫4α+π4=1.因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4,所以4α+π4=5π2,故α=9π16.(本题模拟高考评分标准,满分14分)设a>0,函数f(x)=asinxcosx -sinx -cosx ,x ∈⎣⎡⎦⎤0,π2的最大值为G(A).(1) 设t =sinx +cosx ,x ∈⎣⎡⎦⎤0,π2,求t 的取值范围,并把f(x)表示为t 的函数m(t);(2) 求G(A).解:(1) t =sinx +cosx =2sin ⎝⎛⎭⎫x +π4.∵ x ∈⎣⎡⎦⎤0,π2,∴ x +π4∈⎣⎡⎦⎤π4,3π4,∴ 22≤sin ⎝⎛⎭⎫x +π4≤1,∴ 1≤t ≤2,即t 的取值范围为[1,2].(3分)(另解:∵ x ∈⎣⎡⎦⎤0,π2,∴ t =sinx +cosx =1+sin2x.由2x ∈[0,π]得0≤sin2x ≤1,∴ 1≤t ≤2)∵ t =sinx +cosx ,∴ sinxcosx =t 2-12,(5分)∴ m(t)=a·t 2-12-t =12at 2-t -12a ,t ∈[1,2],a>0.(7分)(2) 由二次函数的图象与性质得:① 当1a <1+22,即a>2(2-1)时,G(A)=m(2)=12a -2; (10分)② 当1a ≥1+22,即0<a ≤2(2-1)时,G(A)=m(1)=- 2.(13分)∴ G(A)=⎩⎪⎨⎪⎧12a -2,a>2(2-1),-2,0<a ≤2(2-1).(14分)1. 若π4<x <π2,则函数y =tan2xtan 3x 的最大值为________.答案:-8解析:令tanx =t ∈(1,+∞),y =2t 41-t 2,y ′(t)=-4t 3(t +2)(t -2)(1-t 2)2,得t =2时y 取最大值-8.2. 已知函数f(x)=2cos2x +sin 2x ,求:(1) f ⎝⎛⎭⎫π3的值;(2) f(x)的最大值和最小值.解:(1) f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3=-1+34=-14.(2) f(x)=2(2cos 2x -1)+(1-cos 2x)=3cos 2x -1,x ∈R .因为cosx ∈[-1,1],所以当cosx =±1时,f(x)取最大值2;当cosx =0时,f(x)取最小值-1.3. 已知A 为△ABC 的内角,求y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围.解: y =cos 2A +cos 2⎝⎛⎭⎫2π3+A =1+cos2A 2+1+cos2⎝⎛⎭⎫2π3+A 2=1+cos2A 2+12⎝⎛⎭⎫cos 4π3cos2A -sin 4π3sin2A=1+12⎝⎛⎭⎫12cos2A +32sin2A =1+12cos ⎝⎛⎭⎫2A -π3.∵ A 为三角形内角,∴ 0<A <π,∴ -1≤cos ⎝⎛⎭⎫2A -π3≤1,∴ y =cos 2A +cos 2⎝⎛⎭⎫2π3+A 的取值范围是[12,32].4. 设函数f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4,x ∈R ,其中|t|≤1,将f(x)的最小值记为g(t).(1) 求g(t)的表达式;(2) 讨论g(t)在区间(-1,1)内的单调性并求极值.解:(1) f(x)=-cos 2x -4tsin x 2cos x2+4t 3+t 2-3t +4=sin 2x -2tsinx +4t 3+t 2-3t +3 =(sinx -t)2+4t 3-3t +3.由于(sinx -t)2≥0,|t|≤1,故当sinx =t 时,f(x)达到其最小值g(t),即g(t)=4t 3-3t +3. (2) g′(t)=12t 2-3=3(2t +1)(2t -1),-1<t <1. 由此可见,g(t)在区间⎝⎛⎭⎫-1,-12和⎝⎛⎭⎫12,1上单调增,在区间⎝⎛⎭⎫-12,12上单调减,极小值为g ⎝⎛⎭⎫12=2,极大值为g ⎝⎛⎭⎫-12=4.。
第四节三角函数的图象与性质1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是(0,0)(π,0)(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是(0,1)(π,-1)(2π,1).2.正弦、余弦、正切函数的图象与性质|π1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若y =A sin(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若y =A cos(ωx +φ)为奇函数,则有φ=k π+π2(k ∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).3.对于y =tan x π-π2,k πk ∈Z )上都是增函数.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =sin x 在第一、第四象限单调递增.()(2)正切函数y =tan x 在定义域上是增函数.()(3)由sin π6,知2π3是正弦函数y =sin x (x ∈R )的一个周期.()(4)余弦曲线的对称轴是y 轴.()(5)函数y =cos|x |和y =cos x 周期相同.()答案(1)×(2)×(3)×(4)×(5)√2.小题热身(1)若函数y =2sin2x -1的最小正周期为T ,最大值为A ,则()A .T =π,A =1B .T =2π,A =1C .T =π,A =2D .T =2π,A =2答案A 解析T =2π2π,A =2-1=1.故选A.(2)(人教B 必修第三册7.3.4例1改编)函数y =3tan x ________.答案|x ≠k π2+π8,k ∈解析要使函数有意义,则2x +π4≠k π+π2,k ∈Z ,即x ≠k π2+π8,k ∈Z ,所以函数的定义域|x ≠k π2+π8,k ∈(3)(人教A 必修第一册5.4.2练习T3改编)函数y =4sin x 在[-π,π]上的单调递减区间是________.答案-π,-π2和π2,π(4)(人教A 必修第一册习题5.4T4改编)函数y =3-2cos ________,此时x=________.答案53π4+2k π(k ∈Z )解析函数y =3-2cos3+2=5,此时x +π4=π+2k π,k ∈Z ,即x =3π4+2k π(k ∈Z ).第1课时三角函数的单调性与最值考点探究——提素养考点一三角函数的定义域例1函数f (x )=sin x +116-x 2的定义域为________.答案(-4,-π]∪[0,π]解析因为f (x )=sin x +116-x 2,x ≥0,-x 2>0,解得k π≤x ≤π+2k π,k ∈Z ,4<x <4.对于2k π≤x ≤π+2k π,k ∈Z ,当k =0时,0≤x ≤π;当k =1时,2π≤x ≤3π;当k =-1时,-2π≤x ≤-π;当k =-2时,-4π≤x ≤-3π,所以-4<x ≤-π或0≤x ≤π,即f (x )的定义域为(-4,-π]∪[0,π].【通性通法】求三角函数的定义域,实际上是构造简单的三角不等式(组),解三角不等式(组)常借助三角函数的图象,对于有限集、无限集求交集可借助数轴.【巩固迁移】1.函数f (x )=ln (cos x )的定义域为()A π-π2,k πk ∈ZB .(k π,k π+π),k ∈ZC k π-π2,2k πk ∈ZD .(2k π,2k π+π),k ∈Z 答案C解析由题意知cos x >0,∴2k π-π2<x <2k π+π2,k ∈Z ,∴函数f (x )的定义域为k π-π2,2k πk ∈Z .故选C.考点二三角函数的单调性(多考向探究)考向1求三角函数的单调区间例2函数f (x )=sin 2x [0,π]上的单调递减区间为________.答案0,5π12和11π12,π解析f (x )=2x sin -x x 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故函数f (x )的单调递减区间为k π-π12,k π+5π12(k ∈Z ).令A =k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =0,5π12∪11π12,π,∴f (x )在[0,π]上的单调递减区间为0,5π12和11π12,π.【通性通法】已知三角函数解析式求单调区间的方法代换法将比较复杂的三角函数含自变量的代数式整体当作一个角,利用复合函数的单调性列不等式求解图象法画出三角函数的图象,结合图象求函数的单调区间【巩固迁移】2.(2022·北京高考)已知函数f (x )=cos 2x -sin 2x ,则()A .f (x )-π2,-B .f (x )-π4,C .f (x )D .f (x )答案C解析因为f (x )=cos 2x -sin 2x =cos2x .对于A ,当-π2<x <-π6时,-π<2x <-π3,则f (x )在-π2,,A 错误;对于B ,当-π4<x <π12时,-π2<2x <π6,则f (x )-π4,不单调,B 错误;对于C ,当0<x <π3时,0<2x <2π3,则f (x ),C 正确;对于D ,当π4<x <7π12时,π2x <7π6,则f (x ),D 错误.故选C.考向2已知三角函数的单调性求参数例3已知ω>0,函数f (x )=sinω的取值范围是()A .(0,2]B ,12C .12,34D .12,54答案D解析解法一(子集法):由2kπ+π2≤ωx+π4≤2kπ+3π2,k∈Z,得2kπω+π4ω≤x≤2kπω+5π4ω,k∈Z,因为f(x)=sin,+π4ω≤π2,k∈Z,+5π4ω≥π,k∈Z,解得≥4k+12,k∈Z,≤2k+54,k∈Z.因为k∈Z,ω>0,所以k=0,所以12≤ω≤54.故选D.解法二(反子集法):∵x ωx+π4∈+π4,πω∵f(x),∴+π4≥π2+2kπ,k∈Z,+π4≤3π2+2kπ,k∈Z,解得≥4k+12,k∈Z,≤2k+54,k∈Z.又ω>0,k∈Z,∴k=0,此时12≤ω≤54.故选D.【通性通法】已知单调区间求参数的三种方法子集法求出原函数的相应单调区间,由已知区间是该区间的子集,列不等式(组)求解反子集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过14个周期列不等式(组)求解注意:“函数f(x)在区间M上单调”与“函数f(x)的单调区间为N”两者的含义不同,M是N的子集.【巩固迁移】3.若函数f(x)=2在区间π2,a上单调,则实数a的最大值是________.答案7π5解析解法一:令2kπ+π2≤x+π10≤2kπ+3π2,k∈Z,即2kπ+2π5≤x≤2kπ+7π5,k∈Z,所以函数f (x )在区间2π5,7π5上单调递减,所以实数a 的最大值是7π5.解法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,又f (x )在区间π2,a 上单调,所以π2+π10<a+π10≤3π2,即π2<a ≤7π5,所以实数a 的最大值是7π5.4.(2024·河北石家庄二中模拟)已知函数y =3tan ωx +1-π3,则ω的取值范围是________.答案-32,解析∵函数y =3tan ωx +1-π3,,∴ω<0,所求函数可化为y =-3tan(-ωx )+1,∴-ω-π2且-ω×π4≤π2,∴ω≥-32,又ω<0,∴-32≤ω<0.考点三三角函数的最值(值域)例4(1)(2023·辽宁沈阳模拟)函数f (x )=2cos x -cos2x 的最小值为()A .-4B .-3C .-2D .-1答案B解析因为f (x )=2cos x -cos2x ,所以f (x )=-2cos 2x +2cos x +1,令t =cos x ,t ∈[-1,1],所以函数f (x )=2cos x -cos2x 等价于y =-2t 2+2t +1,t ∈[-1,1],又y =-2t 2+2t +1=-+32,t ∈[-1,1],当t =-1时,y min =-3,即函数f (x )=2cos x -cos2x 的最小值为-3.(2)(2024·福建龙岩质检)函数y =sin x -cos ________.答案[-3,3]解析∵y =sin x -sin x -32·cos x +12sin x =32sin x -32cos x =3sin 函数y=sin x -cos [-3,3].【通性通法】求解三角函数的值域(最值)常见的几种类型类型一形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值)类型二形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值)类型三形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t的二次函数求值域(最值)【巩固迁移】5.函数y =2sin x cos x +2sin x -2cos x +2的最大值为()A .52B .3C .72D .4答案C解析设t =2sin x -2cos x =[-2,2],则2sin x cos x =1-t 22,则原函数可化为y=1-t 22+t +2=-t 22+t +3=-12(t -1)2+72,t ∈[-2,2],所以当t =1时,函数取得最大值72.6.(2024·江苏常州模拟)函数y =1+tan x1-tan x ,x -π2,________.答案(-1,1)解析因为y =1+tan x1-tan x,x -π2,所以tan x ∈(-∞,0),令t =tan x ,则t ∈(-∞,0),所以y =1+t 1-t =-1+-2t -1,因为t ∈(-∞,0),所以t -1∈(-∞,-1),1t -1∈(-1,0),-2t -1∈(0,2),-1+-2t -1∈(-1,1),即y ∈(-1,1).课时作业一、单项选择题1.函数y =|cos x |的一个单调递增区间是()A .-π2,π2B .[0,π]C .π,3π2D .3π2,2π答案D解析将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图),由图象可知选D.2.函数y =ln (3-2x -x 2)+2sin x -1的定义域是()A .π6,B 1,π6C 3,π6D .π6,5π6答案A解析由题知-2x -x 2>0,x -1≥0.由3-2x -x 2>0,解得-3<x <1,由2sin x -1≥0,解得π6+2k π≤x ≤5π6+2k π,k ∈Z .当k =0时,3<x <1,x ≤5π6,解得π6≤x <1;当k =1时,区间(-3,1)k =-1时,区间(-3,1)-11π6,.所以函数的定义域是π6,故选A.3.已知函数f (x )=a =b =c =a ,b ,c 的大小关系是()A .a >b >cB .a >c >bC .c >a >bD .b >a >c答案A解析a =2cos 13π42,b =2cos π3,c =2cos 5π12,因为y =cos x 在[0,π]上单调递减,又13π42<π3<5π12,所以a >b >c .故选A.4.函数f (x )=tan ()A k -12,4k k ∈ZB k -32,4k k ∈ZC k -32,2k k ∈ZD k -12,2k k ∈Z答案C解析令-π2+k π<π2x +π4<k π+π2,k ∈Z ,解得-32+2k <x <2k +12,k ∈Z ,所以函数f (x )的单调k -32,2k k ∈Z .故选C.5.已知函数f (x )=x 1的定义域为[0,m ],值域为[-2,7],则m 的最大值是()A .π6B .π3C .2π3D .5π6答案C解析由函数f (x )=x 1的值域为[-2,7],可得x ∈-12,1,由x ∈[0,m ]可得2x -π6∈-π6,2m -π6,所以π2≤2m -π6≤7π6,解得π3≤m ≤2π3,所以m 的最大值是2π3.故选C.6.函数f (x )=cos2x +2sin x ,x ∈[0,π]的最大值为()A .12B .1C .32D .2答案C解析f (x )=1-2sin 2x +2sin x =-x +32,因为x ∈[0,π],所以sin x ∈[0,1],所以当sin x =12时,f (x )取得最大值,为32.故选C.7.函数f (x )=x -12,则下列表述正确的是()A .f (x )-π3,-B .f (x )C .f (x )-π6,D .f (x )答案D解析f (x )=x -12,由2x +π6∈-π2+2k π,π2+2k π,k ∈Z ,解得x ∈-π3+k π,π6+k π,k ∈Z ,当k =0时,x ∈-π3,π6,所以函数f (x )在-π3,π6上单调递增,-π3,π6,故选D.8.已知函数f (x )=sin ωx +3cosωx (ω>0)ω的取值范围为()A .(2,4)B .2,72C .73,269D .73,4答案C解析f (x )=sin ωx +3cos ωx =当x,ωx +π3∈,ωπ3+该区间上有零点,故ωπ3+π3>π⇒ω>2,又xf (x )单调,则T =2πω≥ω≤4,即ω∈(2,4],≤7π3,+π3≤10π3⇒≤ωπ2+π3,+π3≤5π2⇒ω∈73,269.故选C.二、多项选择题9.已知函数f (x )=12sin x x ∈[m ,n ](m <n )时,f (x )∈-12,14,则n -m 的值可能为()A .5π12B .π2C.7π12D .3π4答案ABC解析f (x )=12sin x 作出函数f (x )的图象,如图所示.在一个周期内考虑问题,若要使当x ∈[m ,n ]时,f (x )∈-12,14,=π2,n ≤7π6m ≤5π6,=7π6,所以n -m 的值可以为区间π3,2π3内的任意实数.故选ABC.10.已知函数f (x )=sin2x +2sin 2x -1在[0,m ]上单调递增,则m 的值可能是()A .π4B .π2C .3π8D .π答案AC解析由题意,得f (x )=sin2x +2sin 2x -1=sin2x -cos2x =2sin x 由-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,解得-π8+k π≤x ≤3π8+k π,k ∈Z ,当k =0时,-π8≤x ≤3π8,即函数f (x )在-π8,3π8上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8.故选AC.三、填空题11.函数y =2+log 12x +tan x 的定义域为________.答案[π,4]解析+log 12x ≥0,x ≥0,log 12x ≥log 124,x ≥0,x ≤4,π≤x <k π+π2,k ∈Z ,解得x [π,4].12.函数f (x )=sin x cos x1+sin x +cos x的值域为________.答案-2-12,-1,2-12解析令t =sin x +cos x =2sint ∈[-2,-1)∪(-1,2],则t 2=1+2sin x cos x ,即sin x cos x =t 2-12,所以y =t 2-121+t =t -12,又因为t ∈[-2,-1)∪(-1,2],所以y ∈-2-12,-1,2-12,即函数f (x )=sin x cos x1+sin x +cos x的值域为-2-12,-1,2-12.13.比较大小:sin164°________cos110°.答案>解析sin164°=sin(180°-16°)=sin16°,cos110°=cos(90°+20°)=-sin20°.因为y =sin x 在-π2,π2上单调递增,所以-sin20°<sin16°,即cos110°<sin164°.14.函数y =lg (sin2x )+9-x 2的定义域为________.答案-3解析∵函数y =lg (sin2x )+9-x 2,∴x x >0,-x 2≥0,π<x <π2+k π,3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为-3,四、解答题15.已知函数f (x )=2sinx (1)求函数f (x )的单调递增区间;(2)当x ∈π4,3π4时,求函数f (x )的最大值和最小值.解(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z .故函数f (x )的单调递增区间为k π-3π8,k π+π8,k ∈Z .(2)因为当x ∈π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤x ≤22,所以-2≤f (x )≤1.所以当x ∈π4,3π4时,函数f (x )的最大值为1,最小值为-2.16.(多选)下列各式中正确的是()A .tan3π5<tan π5B .tan2>tan3C .D .答案AC解析对于A ,tan 3π5=因为正切函数y =tan x -π2,,且-π2<-2π5<π5<π2,所以<tan π5,即tan 3π5<tan π5,A 正确;对于B ,由于正切函数y =tan x ,且π2<2<3<3π2,所以tan2<tan3,B 不正确;对于C ,cos 17π4=cos π4,cos23π5=cos 3π5,因为余弦函数y =cos x 在(0,π)上为减函数,且0<π4<3π5<π,所以cos π4>cos 3π5,即C 正确;对于D ,由于正弦函数y=sin x -π2,,且-π2<-π10<-π18<π2,所以D 不正确.故选AC.17.已知函数f (x )=sin x +cos x (x ∈R ),则函数y =f (x )f 在0,π2上的最大值为________.答案1+22解析2sin x ,所以y =f (x )=2sin x (sin x +cos x )=2(sin x cos x +sin 2x )x -12cos2x x 22.当x ∈0,π2时,2x -π4∈-π4,3π4,所以当2x -π4=π2,即x =3π8时,函数y =f (x )f 在0,π2上取得最大值1+22.18.(2023·北京高考)设函数f (x )=sin ωx cos φ+cos ωx sin >0,|φ(1)若f (0)=-32,求φ的值;(2)已知f (x )在区间-π3,2π3上单调递增,1,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数f (x )存在,求ω,φ的值.条件①:=2;条件②:1;条件③:f (x )在区间-π2,-π3上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解(1)因为f (x )=sin ωx cos φ+cos ωx sin φ,ω>0,|φ|<π2,所以f (0)=sin(ω·0)cos φ+cos(ω·0)sin φ=sin φ=-32,因为|φ|<π2,所以φ=-π3.(2)因为f (x )=sin ωx cos φ+cos ωx sin φ,ω>0,|φ|<π2,所以f (x )=sin(ωx +φ),ω>0,|φ|<π2,所以f (x )的最大值为1,最小值为-1.若选条件①:因为f (x )=sin(ωx +φ)的最大值为1,最小值为-1,所以=2无解,故条件①不能使函数f (x )存在.若选条件②:因为f (x )在-π3,2π3上单调递增,且1,1,所以T 2=2π3-π,所以T =2π,ω=2πT=1,所以f (x )=sin(x +φ),又因为1,所以-π3+1,所以-π3+φ=-π2+2k π,k ∈Z ,所以φ=-π6+2k π,k ∈Z ,因为|φ|<π2,所以φ=-π6 .所以ω=1,φ=-π6 .若选条件③:因为f(x)在-π3,2π3上单调递增,在-π2,-π3上单调递减,所以f(x)在x=-π3处取得最小值-1,即 1.以下与条件②相同.。
第四章 三角函数及三角恒等变换第二节 三角函数的图象和性质及三角恒等变换第一部分 五年高考荟萃2009年高考题一、选择题1.(2009年广东卷文)函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数解析 因为22cos ()1cos 2sin 242y x x x ππ⎛⎫=--=-= ⎪⎝⎭为奇函数,22T ππ==,所以选A. 答案 A2.(2009全国卷Ⅰ理)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为( )A .6π B.4π C.3π D. 2π解析:函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 423k πφπ∴⋅+=42()3k k Z πφπ∴=-⋅∈由此易得min ||3πφ=.故选C 答案 C3.(2009全国卷Ⅰ理)若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
解析:令tan ,x t =142x t ππ<<∴>,4432224222tan 2222tan 2tan 81111111tan 1()244x t y x x x t t t t ∴=====≤=-------答案4..(2009浙江理)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )解析 对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π. 答案:D5..(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )【命题意图】此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度. 【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π. 答案 D6.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x = C.)42sin(1π++=x y D.22sin y x =解析 将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22cos y x x =+=,故选B.答案:B【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形. 7.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x =B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =解析 将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22cos y x x =+=,故选A.答案:A【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.8(2009安徽卷理)已知函数()cos (0)f x x x ωωω+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是 A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈D.2[,],63k k k Z ππππ++∈解析 ()2sin()6f x x πω=+,由题设()f x 的周期为T π=,∴2ω=,由222262k x k πππππ-≤+≤+得,,36k x k k z ππππ-≤≤+∈,故选C答案 C9..(2009安徽卷文)设函数,其中,则导数的取值范围是A. B. C.D.解析 21(1)sin x f x xθθ='=⋅⋅sin 2sin()3πθθθ==+50,sin()(1)21232f πθπθ⎤⎡⎤⎤'∈∴+∈∴∈⎥⎢⎥⎦⎣⎦⎣⎦,选D10.(2009江西卷文)函数()(1)cos f x x x =的最小正周期为 A .2π B .32π C .π D .2π答案:A解析 由()(1)cos cos 2sin()6f x x x x x x π==+=+可得最小正周期为2π,故选A.11.(2009江西卷理)若函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为A .1B .2C 1D 2 答案:B解析 因为()(1)cos f x x x ==cos x x =2cos()3x π-当3x π=是,函数取得最大值为2. 故选B12.(2009湖北卷理)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于.(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π答案 B解析 直接用代入法检验比较简单.或者设(,)a x y ''=v,根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '13.(2009全国卷Ⅱ理)若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+⎪⎝⎭的图像重合,则ω的最小值为A .16B.14C.13D.12解析:6tan tan[(]ta )6446n y x y x x πππππωωω⎛⎫⎛⎫=+→=-=+ ⎝+⎪ ⎪⎝⎭⎭向右平移个单位164()662k k k Z ππωπωπ+=∴=+∈∴-, 又min102ωω>∴=.故选D 答案 D14..(2009福建卷理)函数()sin cos f x x x =最小值是 ( ) A .-1 B. 12- C. 12D.1 答案 B解析 ∵1()sin 22f x x =∴min 1()2f x =-.故选B 15.(2009辽宁卷理)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( )A.23-B. 23C.- 12D. 12解析 由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23答案 B16.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 A.6π B.4π C. 3π D. 2π 【解析】本小题考查三角函数的图象性质,基础题。
专题4.2 三角函数的图像与性质【647】.(2022·全国·高考真题·★★★)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【648】.(2020·全国·高考真题·★★★)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【649】.(2019·全国·高考真题·★★★)函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【650】.(2019·全国·高考真题·★★★★) 关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③【651】.(2007·海南·高考真题·★★)函数sin(2)3y x π=-在区间[,]2ππ-的简图是A .B .C .D .【652】.(2015·全国·高考真题·★★)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【653】.(2012·浙江·高考真题·★★★)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )A .B .C .D .【654】.(2011·全国·高考真题·★★) 设函数,则()A .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; B .函数()f x 在(0,)2π上单调递增,其图象关于直线对称; C .函数()f x 在(0,)2π上单调递减,其图象关于直线对称; D .函数()f x 在(0,)2π上单调递减,其图象关于直线对称;【655】.(2018·全国·高考真题·★★★)若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .4πB .2π C .34π D .π【656】.(2018·天津·高考真题·★★★)将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增B .在区间,04π⎡⎤-⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减【657】.(2016·全国·高考真题·★★★) 函数sin()y A x ωϕ=+的部分图象如图所示,则A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π=【658】.(2013·全国·高考真题·★★)若函数()()sin 0y x ωϕω=+>的部分图象如图,则=ω( )A .5B .4C .3D .2【659】.(2020·海南·高考真题·★★)(多选题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x - 2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【660】.(2022·全国·高考真题·★★★★)(多选题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( ) A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线 【661】.(2021·全国·高考真题·★★)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【662】.(2021·全国·高考真题·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【663】.(2020·全国·高考真题·★★★★)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【664】.(2011·江苏·高考真题·★★★)函数()sin()(,,f x A x A ωϕωϕ=+是常数,0,0A ω>>)的部分图象如图所示,则_____________【665】.(2022·全国·模拟预测·★★★★)(多选题)已知函数()()sin cos sin f x x x x =-,则下列说法正确的是( )A .函数()f x 的最小正周期为2πB .()f xC .()f x 的图像关于直线8x π=-对称D .将()f x 的图像向右平移8π个单位长度,再向上平移12个单位长度后所得图像对应的函数为奇函数 【666】.(2022·全国·模拟预测·★★★)(多选题)已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()3cos 26f x x π⎛⎫=- ⎪⎝⎭B .()f x 在()3,4ππ上单调递增C .()32f x >的解集为()4,43k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z .D .()f x 的图象的对称轴方程为()3x k k ππ=-∈Z【667】.(2022·全国·模拟预测·★★★)(多选题)函数()()()cos 02f x x ωϕϕπ=+≤<的部分图像如图所示,则( )A .3ω=B .65ϕπ=C .函数()f x 在314,55ππ⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 图像的对称轴方程为()315k x k ππ=-∈Z 【668】.(2022·山东师范大学附中模拟预测·★★★★)(多选题)已知函数()()sin 0,R f x x x x ωωω=>∈的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π3个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论正确的是( ) A .函数()g x 是偶函数 B .()g x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称C .()g x 在ππ,33⎡⎤-⎢⎥⎣⎦上是增函数D .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[1,2]【669】.(2022·湖南·长沙县第一中学模拟预测·★★★)(多选题) 已知函数()cos 2sin f x x x =+,则下列说法正确的是( ) A .直线2x π=为函数f (x )图像的一条对称轴B .函数f (x )图像横坐标缩短为原来的一半,再向左平移2π后得到()cos22sin 2g x x x =+ C .函数f (x )在[-2π,2π]上单调递增D .函数()f x 的值域为[-2 【670】.(2022·内蒙古包头·二模·★★★)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足条件()54f x f π⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()703f x f π⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎭<⎝的最小正偶数x 为___________.【671】.(2022·天津河西·一模·★★★)函数()()sin f x A x ωϕ=+(其中0>ω,0A >,π2ϕ<)的图象如图所示,则()f x 在点,66f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为______. 【672】.(2022·四川·成都七中三模·★★★★)已知函数()[]()()sin ,0,212,2,2x x f x f x x π∞⎧∈⎪=⎨-∈+⎪⎩,则函数()ln(1)y f x x =--的零点个数是______个.【673】.(2022·甘肃·武威第六中学模拟预测·★★★★)已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【674】.(2022·上海青浦·二模·★★★)已知函数()sin cos f x x x =+的定义域为[],a b ,值域为⎡-⎣,则b a -的取值范围是( ) A .3ππ,42⎡⎤⎢⎥⎣⎦B .π3π,24⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .3π3π,42⎡⎤⎢⎥⎣⎦【675】.(2022·青海·海东市第一中学模拟预测·★★★)将函数()πsin(2)6f x x =+的图象向右平移6π个单位长度,然后将所得图象上所有点的横坐标缩小到原来的12(纵坐标不变),得到函数()y g x =的图象,则下列说法正确的是( ) A .π()sin 46g x x ⎛⎫=+ ⎪⎝⎭B .()g x 在ππ,123⎡⎤⎢⎥⎣⎦上单调C .()g x 的图象关于直线π2x =对称D .当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦【676】.(2022·青海·海东市第一中学模拟预测·★★★) 函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .【677】.(2022·广东茂名·二模·★★★)已知函数π())(||)2f x x ϕϕ+< 的部分图象如图所示.将函数()f x 的图象向左平移 π12个单位得到()g x 的图象,则( )A . ()3sin(2)6g x x π=+) B .()3sin(2)12g x x 5π=+C .()2g x x =D .()2g x x =【678】.(2022·河南·开封市东信学校模拟预测·★★★)若函数()f x 过点,其导函数()cos(2)0,02f x A x A πϕϕ⎛⎫'=+><< ⎪⎝⎭的部分图象如图所示,则()f π=( )A .0B .12C .22D .2 【679】.(2022·黑龙江·哈九中三模·★★★★)已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【680】.(2022·河南·平顶山市第一高级中学模拟预测·★★)函数sin 22cos x x y x=-的部分图像大致为( ) A . B .C .D .【681】.(2022·贵州·贵阳一中模拟预测·★★)如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x =-的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【682】.(2022·浙江·湖州市菱湖中学模拟预测·★★★)函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭的大致图象为( ) A . B . C . D .【683】.(2022·山东潍坊·模拟预测·★★★)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,现将()f x 的图像向左平移6π个单位长度,得到函数()g x 的图像,则()g x 的表达式可以为( )A .2sin 2g x xB .()2cos 23g x x π=-⎛⎫ ⎪⎝⎭ C .()2sin 6g x x π⎛⎫=- ⎪⎝⎭ D .()2cos 3g x x π⎛⎫=+ ⎪⎝⎭ 【684】.(2022·全国·模拟预测·★★★)已知函数()|sin()|0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图像如图,则()f x 的解析式为( )A .()2sin 213f x x π⎛⎫=++ ⎪⎝⎭ B .()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭ C .()3sin 213f x x π⎛⎫=++ ⎪⎝⎭ D .()3sin 213f x x π⎛⎫=-+ ⎪⎝⎭ 【685】.(2022·上海金山·二模·★★)已知向量()()sin2,2cos ,3,cos a x x b x ==,则函数()1,,22f x a b x ππ⎡⎤=⋅-∈-⎢⎥⎣⎦的单调递增区间为__________. 【686】.(2022·上海闵行·二模·★★)若函数cos y x x +的图像向右平移ϕ个单位后是一个奇函数的图像,则正数ϕ的最小值为___________;【687】.(2022·山东日照·三模·★★)已知函数()()(2sin 0,||)f x x ωϕωϕπ=+><的部分图像如图所示,则ϕ=________.【688】.(2022·上海·模拟预测·★★★)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条7π4π()()043f x f f x f ⎡⎤⎡⎤⎛⎫⎛⎫---< ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦的最大负整数x 为_________.【689】.(2022·北京工业大学附属中学三模·★★★) 已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-;②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________.【690】.(2022·四川·模拟预测·★★★★)已知函数()cos 22cos 2f x x x π=+-⎛⎫ ⎪⎝⎭,则下列结论正确的是________.(写出所有正确结论的序号) ①()f x 的最小正周期为2π;②()f x 是奇函数;③()f x 的值域为33,2⎡⎤-⎢⎥⎣⎦;④()f x 在,26ππ⎡⎤-⎢⎥⎣⎦上单调递增. 【691】.(2022·江西·新余市第一中学三模·★★★★)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><<,若函数()y f x =的部分图象如图,函数()g x =()sin A Ax ϕ-,则下列结论正确的是___________.(填序号) ①函数()g x 的图象关于直线π12x =-对称; ②函数()g x 的图象关于点π,02⎛⎫ ⎪⎝⎭对称; ③将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象;④函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为06,π⎡⎤⎢⎥⎣⎦. 【692】.(2022·天津红桥·二模·★★★)已知函数()sin()f x A x ωϕ=+,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则ϕ=__________. 【693】.(2022·黑龙江·哈尔滨三中三模·★★★)函数()()()sin 0,0,0f x A x A ωφωφπ=+>><<的部分图象如图所示,则φ=___________.【694】.(2022·江西·模拟预测·★★★★) 如图是函数()sin(2)||,02f x A x A πθθ⎛⎫=+≤> ⎪⎝⎭的部分图像,()()0f a f b ==,且对不同的12,[,]x x a b ∈,若12()()f x f x =,有12()f x x +=θ=____________.【695】.(2022·河南·灵宝市第一高级中学模拟预测·★★★)已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移π4个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有______.(填序号)①方程()()3π60,2f x g x x ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为7π12;②不等式()()g x f x ≥ππ5ππ,3262k k ⎡⎫++⎪⎢⎣⎭,k ∈Z ③函数()y f x =与函数()y g x =图象关于7π24x =对称.。
[高考地位]近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。
要充分运用数形结合的思想,把图象与性质结合起来,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.[方法点评]类型一 求三角函数的单调区间使用情景:一般三角函数类型解题模板:第一步 先将函数式化为基本三角函数的标准式,要特别注意参数,A ω的正负;第二步 利用三角函数的辅助角公式一般将其化为同名函数,且在同一单调区间; 第三步 运用三角函数的图像与性质确定其单调区间.例1 函数cos(2)4y x π=-的单调递增区间是〔 A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π]〔以上k ∈Z[答案]B.考点:三角函数单调性. [点评]本题解题的关键是将24x π-作为一个整体,利用余弦函数的图像将函数cos(2)4y x π=-的单调递增区间转化为24x πθ=-在区间[]2,2k k πππ-+上递减的.[变式演练1]已知函数),0)(62sin()(>+=ωπωx x f 直线21,x x x x ==是)(x f y =图像的任意两条对称轴,且21x x -的最小值为2π.求函数)(x f 的单调增区间; [答案]Z k k k ∈++-],6,3[ππππ.[解析]试题分析:根据两条对称轴之间的最小距离求周期,根据周期求ω,根据公式求此函数的单调递增区间. 试题解析:由题意得,π=T 则1,()sin(2).6f x x πω=∴=+由222,262k x k πππππ-+≤+≤+解得.,63Z k k x k ∈+≤≤+-ππππ故)(x f 的单调增区间是Z k k k ∈++-],6,3[ππππ.考点:1.()ϕω+=x A y sin 的单调性;[变式演练2]已知函数()sin()+(00 )2f x A x B A πωϕωϕ=+>><,,的一系列对应值如下表:x6π-3π 56π 43π 116π73π 176πy2-42-4〔1根据表格提供的数据求函数()f x 的解析式; 〔2求函数()f x 的单调递增区间和对称中心; [答案]〔1()3sin 13f x x π⎛⎫=-+ ⎪⎝⎭〔252 2()66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,+ 1(3k k ππ∈Z)(,). 〔2当22()232k x k k πππππ-≤-≤+∈Z ,即52 ()266x k k k ππππ⎡⎤∈-+⎢⎥⎣⎦∈Z ,时,函数()f x 单调递增.令=(3x k k ππ-∈Z),得=+(3x k k ππ∈Z),所以函数()f x 的对称中心为+ 1(3k k ππ∈Z)(,). 考点:1.三角函数解析式及基本性质;2.数形结合法类型二 由sin()y A x ωϕ=+的图象求其函数式使用情景:一般函数sin()y A x ωϕ=+求其函数式解题模板:第一步 观察所给的图像及其图像特征如振幅、周期、与x 轴交点坐标等;第二步 利用特殊点代入函数解析式计算得出参数,,A ωϕ中一个或两个或三个; 第三步 要从图象的升降情况找准第一个零点的位置,并进一步地确定参数; 第四步 得出结论.例2 已知函数sin()y A x ωϕ=+),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的图象如图所示,则该函数的解析式是〔〔A )48sin(4π-π-=x y 〔B )48sin(4π-π=x y 〔C )48sin(4π+π=x y 〔D )48sin(4π+π-=x y[答案]D考点:()ϕω+=x A y sin 的图像[点评]本题的解题步骤是:首先根据已知图像与x 轴的交点坐标可得其周期为T ,进而可得ω的大小;然后观察图像知其振幅A 的大小;最后将图像与x 轴的交点坐标代入函数的解析式即可得到φ的大小. [变式演练3]已知函数()()sin f x A x ωϕ=+〔其中0,0,2A πωϕ>><的部分图象如图所示,则()f x 的解析式为〔 A .()2sin 3f x x π⎛⎫=+⎪⎝⎭B .()2sin 26f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=- ⎪⎝⎭D .()2sin 46f x x π⎛⎫=-⎪⎝⎭[答案]B [解析]考点:由)sin(ϕω+=x A y 的部分图像确定解析式。
第二节 三角函数的图象与性质考点一 三角函数的图象及其变换1.(2021·山东,3)要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析 ∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12, ∴要得到y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 答案 B2.(2021·湖南,9)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6解析 易知g (x )=sin(2x -2φ),φ∈⎝⎛⎭⎪⎫0,π2,由|f (x 1)-f (x 2)|=2及正弦函数的有界性知,①⎩⎪⎨⎪⎧sin 2x 1=-1,sin (2x 2-2φ)=1或②⎩⎪⎨⎪⎧sin 2x 1=1,sin (2x 2-2φ)=-1, 由①知⎩⎪⎨⎪⎧x 1=-π4+k 1π,k 2=π4+φ+k 2π(k 1,k 2∈Z ),∴|x 1-x 2|min =⎪⎪⎪⎪⎪⎪π2+φ+(k 2-k 1)πmin =π3,由φ∈⎝ ⎛⎭⎪⎫0,π2,∴π2+φ=2π3,∴φ=π6, 同理由②得φ=π6.故选D.答案 D3.(2021·浙江,4)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位解析 因为y =sin 3x +cos 3x =2cos ⎝ ⎛⎭⎪⎫3x -π4=2cos 3⎝ ⎛⎭⎪⎫x -π12,所以将函数y =2cos 3x 的图象向右平移π12个单位后,可得到y =2cos ⎝ ⎛⎭⎪⎫3x -π4的图象,故选C.答案 C4.(2021·辽宁,9)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 解析 将y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度后得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π2+π3,即y =3sin ⎝⎛⎭⎪⎫2x -2π3的图象,令-π2+2k π≤2x -2π3≤π2+2k π,k ∈Z ,化简可得x ∈⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎪⎫2x -2π3的单调递增区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,令k =0,可得y =3sin(2x -2π3)在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增,故选B.答案 B5.(2021·四川,5)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3B .2,-π6C .4,-π6D .4,π3解析 因为3T 4=5π12-⎝ ⎛⎭⎪⎫-π3=3π4,所以T =π.由此可得T =2πω=π,解得ω=2,由图象知当x =5π12时,2×5π12+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k ∈Z ).又因为-π2<φ<π2,所以φ=-π3.答案 A6.(2012·浙江,4)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )解析 y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应的图象为A 项.答案 A7.(2011·辽宁,16)已知函数f (x )=A tan(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝ ⎛⎭⎪⎫π24=________.解析 由题意,结合图象知函数周期T =⎝⎛⎭⎪⎫3π8-π8×2=π2,∴ω=2.由2×3π8+φ=k π(k ∈Z )及|φ|<π2,得φ=π4.∴f (x )=A tan ⎝ ⎛⎭⎪⎫2x +π4.将点(0,1)代入上式,得1=A tan π4,∴A =1,即f (x )=tan ⎝⎛⎭⎪⎫2x +π4.故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫π24×2+π4=tan π3= 3.答案38.(2021·福建,19)已知函数f (x )的图象是由函数g (x )=cos x 的图象经如下变换得到:先将g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(1)求函数f (x )的解析式,并求其图象的对称轴方程;(2)已知关于x 的方程f (x )+g (x )=m 在[0,2π)内有两个不同的解α,β.①求实数m 的取值范围; ②证明:cos(α-β)=2m25-1.解 法一 (1)将g (x )=cos x 的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y =2cos x 的图象,再将y =2cos x 的图象向右平移π2个单位长度后得到y =2cos ⎝⎛⎭⎪⎫x -π2的图象,故f (x )=2sin x .从而函数f (x )=2sin x 图象的对称轴方程为x =kπ+π2(k ∈Z ).(2)①f (x )+g (x )=2sin x +cos x=5⎝ ⎛⎭⎪⎫25sin x +15cos x=5sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=15,cos φ=25. 依题意,sin(x +φ)=m5在[0,2π)内有两个不同的解α,β,当且仅当⎪⎪⎪⎪⎪⎪m 5<1,故m的取值范围是(-5,5).②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解. 所以sin(α+φ)=m5,sin(β+φ)=m5.当1≤m <5时,α+β=2⎝ ⎛⎭⎪⎫π2-φ,即α-β=π-2(β+φ);当-5<m <1时,α+β=2⎝ ⎛⎭⎪⎫3π2-φ, 即α-β=3π-2(β+φ).所以cos(α-β)=-cos 2(β+φ)=2sin 2(β+φ)-1=2⎝ ⎛⎭⎪⎫m 52-1=2m 25-1.法二 (1)解 同法一.(2)①解 同法一.②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解, 所以sin(α+φ)=m5,sin(β+φ)=m5.当1≤m <5时,α+β=2⎝ ⎛⎭⎪⎫π2-α,即α+φ=π-(β+φ);当-5<m <1时,α+β=2⎝ ⎛⎭⎪⎫3π2-φ,即α+φ=3π-(β+φ);所以cos(α+φ)=-cos(β+φ).于是cos(α-β)=cos[(α+φ)-(β+φ)]=cos(α+φ)cos(β+φ)+sin(α+φ)sin(β+φ)=-cos 2(β+φ)+sin(α+φ)sin(β+φ)=-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫m 52+⎝ ⎛⎭⎪⎫m 52=2m 25-1.考点二 三角函数的性质及其应用1.(2021·四川,4)下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x解析 A 选项:y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,T =π,且关于原点对称,故选A.答案 A2.(2021·陕西,2)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6的最小正周期是( )A.π2B .πC .2πD .4π解析 ∵T =2π2=π,∴B 正确.答案 B3.(2021·大纲全国,12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( )A .y =f (x )的图象关于(π,0)中心对称B .y =f (x )的图象关于直线x =π2对称C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数解析 [对于A 选项,因为f (2π-x )+f (x )=cos(2π-x )·sin 2(2π-x )+cos x sin2x =-cos x sin 2x +cos x sin 2x =0,故y =f (x )的图象关于(π,0)中心对称,A 正确;对于B 选项,因为f (π-x )=cos(π-x )sin 2(π-x )=cos x sin 2x =f (x ),故y =f (x )的图象关于x =π2对称,故B 正确;对于C 选项,f (x )=cos x sin 2x =2sin x cos 2x =2sin x (1-sin 2x )=2sin x -2sin 3x ,令t =sin x ∈[-1,1],则h (t )=2t -2t 3,t ∈[-1,1],则h ′(t )=2-6t 2,令h ′(t )>0解得-33<t <33,故h (t )=2t -2t 3,在⎣⎢⎡⎦⎥⎤-33,33上递增,在⎣⎢⎡⎦⎥⎤-1,-33与⎣⎢⎡⎦⎥⎤33,1上递减,又h (-1)=0,h ⎝ ⎛⎭⎪⎫33=439,故函数的最大值为439,故C 错误; 对于D 选项,因为f (-x )+f (x )=-cos x sin 2x +cos x sin 2x =0,故是奇函数,又f (x+2π)=cos (2π+x )·sin 2(2π+x )=cos x sin 2x ,故2π是函数的周期,所以函数既是奇函数,又是周期函数,故D 正确.综上知,错误的结论只有C ,故选C.答案 C4.(2012·湖南,6)函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎢⎡⎦⎥⎤-32,32 解析 f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6=sin x -⎝ ⎛⎭⎪⎫32cos x -12sin x =32sin x -32cos x=3⎝⎛⎭⎪⎫32sin x -12cos x=3sin ⎝⎛⎭⎪⎫x -π6∈[-3,3].故选B 项. 答案 B5.(2012·新课标全国,9)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12 D .(0,2] 解析 由π2<x <π得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin α在⎝ ⎛⎭⎪⎫π2,32π上递减,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2,ωπ+π4≤32π,解得12≤ω≤54,故选A.答案 A6.(2011·新课标全国,11)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增 解析 f (x )=sin(ωx +φ)+cos(ωx +φ) = 2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵周期T =2πω=π,∴ω=2.又f (-x )=f (x ),即f (x )为偶函数, ∴φ+π4=k π+π2,φ=k π+π4,k ∈Z .又|φ|<π2,∴φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,易得f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,故选A.答案 A7.(2021·浙江,11)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析 ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z )f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解得:3π8+k π≤x ≤7π8+k π,k ∈Z ,∴单调递减区间是⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π,k ∈Z .答案 π8.(2021·上海,1)函数y =1-2cos 2(2x )的最小正周期是________. 解析 y =1-2cos 2(2x )=1-2×1+cos 4x 2=-cos 4x ,则最小正周期为π2.答案π29.(2021·北京,15)已知函数f (x )=2sin x 2cos x2-2sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解 (1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.精品 Word 可修改 欢迎下载 (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2, 即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22. 10.(2021·重庆,18)已知函数f (x )=sin ⎝⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。
第二节 三角函数的图象与性质考点一 三角函数的图象及其变换1.(2015·山东,3)要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析 ∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12, ∴要得到y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 答案 B2.(2015·湖南,9)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6解析 易知g (x )=sin(2x -2φ),φ∈⎝⎛⎭⎪⎫0,π2,由|f (x 1)-f (x 2)|=2及正弦函数的有界性知,①⎩⎪⎨⎪⎧sin 2x 1=-1,sin (2x 2-2φ)=1或②⎩⎪⎨⎪⎧sin 2x 1=1,sin (2x 2-2φ)=-1, 由①知⎩⎪⎨⎪⎧x 1=-π4+k 1π,k 2=π4+φ+k 2π(k 1,k 2∈Z ),∴|x 1-x 2|min =⎪⎪⎪⎪⎪⎪π2+φ+(k 2-k 1)πmin =π3,由φ∈⎝ ⎛⎭⎪⎫0,π2,∴π2+φ=2π3,∴φ=π6, 同理由②得φ=π6.故选D.答案 D3.(2014·浙江,4)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位解析 因为y =sin 3x +cos 3x =2cos ⎝ ⎛⎭⎪⎫3x -π4=2cos 3⎝ ⎛⎭⎪⎫x -π12,所以将函数y =2cos 3x 的图象向右平移π12个单位后,可得到y =2cos ⎝ ⎛⎭⎪⎫3x -π4的图象,故选C.答案 C4.(2014·辽宁,9)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增 解析 将y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度后得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+π3,即y =3sin ⎝⎛⎭⎪⎫2x -2π3的图象,令-π2+2k π≤2x -2π3≤π2+2k π,k ∈Z ,化简可得x ∈⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎪⎫2x -2π3的单调递增区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,令k =0,可得y =3sin(2x -2π3)在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增,故选B. 答案 B5.(2013·四川,5)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3B .2,-π6C .4,-π6D .4,π3解析 因为3T 4=5π12-⎝ ⎛⎭⎪⎫-π3=3π4,所以T =π.由此可得T =2πω=π,解得ω=2,由图象知当x =5π12时,2×5π12+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k ∈Z ).又因为-π2<φ<π2,所以φ=-π3.答案 A6.(2012·浙江,4)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )解析 y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应的图象为A 项. 答案 A7.(2011·辽宁,16)已知函数f (x )=A tan(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝ ⎛⎭⎪⎫π24=________.解析 由题意,结合图象知函数周期T =⎝ ⎛⎭⎪⎫3π8-π8×2=π2,∴ω=2.由2×3π8+φ=k π(k ∈Z )及|φ|<π2,得φ=π4.∴f (x )=A tan ⎝ ⎛⎭⎪⎫2x +π4.将点(0,1)代入上式,得1=A tan π4,∴A =1,即f (x )=tan ⎝⎛⎭⎪⎫2x +π4.故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫π24×2+π4=tan π3= 3.答案38.(2015·福建,19)已知函数f (x )的图象是由函数g (x )=cos x 的图象经如下变换得到:先将g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(1)求函数f (x )的解析式,并求其图象的对称轴方程;(2)已知关于x 的方程f (x )+g (x )=m 在[0,2π)内有两个不同的解α,β. ①求实数m 的取值范围;②证明:cos(α-β)=2m25-1.解 法一 (1)将g (x )=cos x 的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y =2cos x 的图象,再将y =2cos x 的图象向右平移π2个单位长度后得到y =2cos ⎝⎛⎭⎪⎫x -π2的图象,故f (x )=2sin x .从而函数f (x )=2sin x 图象的对称轴方程为x =kπ+π2(k ∈Z ).(2)①f (x )+g (x )=2sin x +cos x=5⎝ ⎛⎭⎪⎫25sin x +15cos x=5sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=15,cos φ=25.依题意,sin(x +φ)=m5在[0,2π)内有两个不同的解α,β,当且仅当⎪⎪⎪⎪⎪⎪m 5<1,故m的取值范围是(-5,5).②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解. 所以sin(α+φ)=m5,sin(β+φ)=m5.当1≤m <5时,α+β=2⎝ ⎛⎭⎪⎫π2-φ,即α-β=π-2(β+φ); 当-5<m <1时,α+β=2⎝⎛⎭⎪⎫3π2-φ,即α-β=3π-2(β+φ).所以cos(α-β)=-cos 2(β+φ)=2sin 2(β+φ)-1=2⎝ ⎛⎭⎪⎫m 52-1=2m 25-1.法二 (1)解 同法一. (2)①解 同法一.②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解, 所以sin(α+φ)=m5,sin(β+φ)=m5.当1≤m <5时,α+β=2⎝ ⎛⎭⎪⎫π2-α,即α+φ=π-(β+φ); 当-5<m <1时,α+β=2⎝ ⎛⎭⎪⎫3π2-φ,即α+φ=3π-(β+φ);所以cos(α+φ)=-cos(β+φ). 于是cos(α-β)=cos[(α+φ)-(β+φ)] =cos(α+φ)cos(β+φ)+sin(α+φ)sin(β+φ) =-cos 2(β+φ)+sin(α+φ)sin(β+φ)=-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫m 52+⎝ ⎛⎭⎪⎫m 52=2m 25-1.考点二 三角函数的性质及其应用1.(2015·四川,4)下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x解析 A 选项:y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,T =π,且关于原点对称,故选A.答案 A2.(2014·陕西,2)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6的最小正周期是( )A.π2B .πC .2πD .4π解析 ∵T =2π2=π,∴B 正确.答案 B3.(2013·大纲全国,12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ) A .y =f (x )的图象关于(π,0)中心对称 B .y =f (x )的图象关于直线x =π2对称C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数解析 [对于A 选项,因为f (2π-x )+f (x )=cos(2π-x )·sin 2(2π-x )+cos x sin 2x =-cos x sin 2x +cos x sin 2x =0,故y =f (x )的图象关于(π,0)中心对称,A 正确; 对于B 选项,因为f (π-x )=cos(π-x )sin 2(π-x )=cos x sin 2x =f (x ),故y =f (x )的图象关于x =π2对称,故B 正确;对于C 选项,f (x )=cos x sin 2x =2sin x cos 2x =2sin x (1-sin 2x )=2sin x -2sin 3x ,令t =sin x ∈[-1,1],则h (t )=2t -2t 3,t ∈[-1,1],则h ′(t )=2-6t 2,令h ′(t )>0解得-33<t <33,故h (t )=2t -2t 3,在⎣⎢⎡⎦⎥⎤-33,33上递增,在⎣⎢⎡⎦⎥⎤-1,-33与对于D 选项,因为f (-x )+f (x )=-cos x sin 2x +cos x sin 2x =0,故是奇函数,又f (x +2π)=cos(2π+x )·sin 2(2π+x )=cos x sin 2x ,故2π是函数的周期,所以函数既是奇函数,又是周期函数,故D 正确. 综上知,错误的结论只有C ,故选C. 答案 C4.(2012·湖南,6)函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎢⎡⎦⎥⎤-32,32 解析 f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6=sin x -⎝ ⎛⎭⎪⎫32cos x -12sin x =32sin x -32cos x=3⎝ ⎛⎭⎪⎫32sin x -12cos x=3sin ⎝ ⎛⎭⎪⎫x -π6∈[-3,3].故选B 项.答案 B5.(2012·新课标全国,9)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析 由π2<x <π得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin α在⎝ ⎛⎭⎪⎫π2,32π上递减,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2,ωπ+π4≤32π,解得12≤ω≤54,故选A.答案 A6.(2011·新课标全国,11)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增 解析 f (x )=sin(ωx +φ)+cos(ωx +φ) = 2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵周期T =2πω=π,∴ω=2.又f (-x )=f (x ),即f (x )为偶函数, ∴φ+π4=k π+π2,φ=k π+π4,k ∈Z .又|φ|<π2,∴φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,易得f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,故选A.答案 A7.(2015·浙江,11)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析 ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z )f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝⎛⎭⎪⎫2x -π4+32,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解得:3π8+k π≤x ≤7π8+k π,k ∈Z ,∴单调递减区间是⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π,k ∈Z .答案 π8.(2014·上海,1)函数y =1-2cos 2(2x )的最小正周期是________. 解析 y =1-2cos 2(2x )=1-2×1+cos 4x 2=-cos 4x ,则最小正周期为π2.答案π29.(2015·北京,15)已知函数f (x )=2sin x 2cos x2-2sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值. 解 (1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22. 10.(2015·重庆,18)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.解 (1)f (x )=sin ⎝⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减.。
第二节 三角函数的图象与性质考点一 三角函数的图象及其变换1.(2015·山东,3)要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析 ∵y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12,∴要得到y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 答案 B2.(2015·湖南,9)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( ) A.5π12B.π3C.π4D.π6解析 易知g (x )=sin(2x -2φ),φ∈⎝ ⎛⎭⎪⎫0,π2,由|f (x 1)-f (x 2)|=2及正弦函数的有界性知, ①⎩⎪⎨⎪⎧sin 2x 1=-1,sin (2x 2-2φ)=1或②⎩⎪⎨⎪⎧sin 2x 1=1,sin (2x 2-2φ)=-1,由①知⎩⎨⎧x 1=-π4+k 1π,k 2=π4+φ+k 2π(k 1,k 2∈Z ),∴|x 1-x 2|min =⎪⎪⎪⎪⎪⎪π2+φ+(k 2-k 1)πmin =π3,由φ∈⎝ ⎛⎭⎪⎫0,π2,∴π2+φ=2π3,∴φ=π6,同理由②得φ=π6.故选D. 答案 D3.(2014·浙江,4)为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π4个单位 B .向左平移π4个单位 C .向右平移π12个单位D .向左平移π12个单位解析 因为y =sin 3x +cos 3x =2cos ⎝ ⎛⎭⎪⎫3x -π4=2cos 3⎝ ⎛⎭⎪⎫x -π12,所以将函数y=2cos 3x 的图象向右平移π12个单位后,可得到y =2cos ⎝ ⎛⎭⎪⎫3x -π4的图象,故选C. 答案 C4.(2014·辽宁,9)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增解析 将y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度后得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+π3,即y =3sin ⎝ ⎛⎭⎪⎫2x -2π3的图象,令-π2+2k π≤2x -2π3≤π2+2kπ,k ∈Z ,化简可得x ∈⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,即函数y =3sin ⎝ ⎛⎭⎪⎫2x -2π3的单调递增区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z ,令k =0,可得y =3sin(2x -2π3)在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增,故选B.答案 B5.(2013·四川,5)函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3 B .2,-π6C .4,-π6 D .4,π3解析 因为3T 4=5π12-⎝ ⎛⎭⎪⎫-π3=3π4,所以T =π.由此可得T =2πω=π,解得ω=2,由图象知当x =5π12时,2×5π12+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k ∈Z ).又因为-π2<φ<π2,所以φ=-π3. 答案 A6.(2012·浙江,4)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )解析 y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos(x +1)+1,再向下平移1个单位长度得y 3=cos(x +1),故相应的图象为A 项. 答案 A7.(2011·辽宁,16)已知函数f (x )=A tan(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝ ⎛⎭⎪⎫π24=________.解析 由题意,结合图象知函数周期T =⎝ ⎛⎭⎪⎫3π8-π8×2=π2,∴ω=2.由2×3π8+φ=k π(k ∈Z )及|φ|<π2,得φ=π4.∴f (x )=A tan ⎝ ⎛⎭⎪⎫2x +π4.将点(0,1)代入上式,得1=A tan π4,∴A =1,即f (x )=tan ⎝⎛⎭⎪⎫2x +π4.故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫π24×2+π4=tan π3= 3.答案38.(2015·福建,19)已知函数f (x )的图象是由函数g (x )=cos x 的图象经如下变换得到:先将g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(1)求函数f (x )的解析式,并求其图象的对称轴方程;(2)已知关于x 的方程f (x )+g (x )=m 在[0,2π)内有两个不同的解α,β. ①求实数m 的取值范围; ②证明:cos(α-β)=2m 25-1.解 法一 (1)将g (x )=cos x 的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y =2cos x 的图象,再将y =2cos x 的图象向右平移π2个单位长度后得到y =2cos ⎝⎛⎭⎪⎫x -π2的图象,故f (x )=2sin x .从而函数f (x )=2sin x 图象的对称轴方程为x =k π+π2(k ∈Z ). (2)①f (x )+g (x )=2sin x +cos x=5⎝⎛⎭⎪⎫25sin x +15cos x =5sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=15,cos φ=25.依题意,sin(x +φ)=m 5在[0,2π)内有两个不同的解α,β,当且仅当⎪⎪⎪⎪⎪⎪m 5<1,故m 的取值范围是(-5,5).②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解. 所以sin(α+φ)=m 5,sin(β+φ)=m5.当1≤m <5时,α+β=2⎝ ⎛⎭⎪⎫π2-φ,即α-β=π-2(β+φ);当-5<m <1时,α+β=2⎝ ⎛⎭⎪⎫3π2-φ, 即α-β=3π-2(β+φ).所以cos(α-β)=-cos 2(β+φ)=2sin 2(β+φ)-1=2⎝ ⎛⎭⎪⎫m 52-1=2m 25-1. 法二 (1)解 同法一. (2)①解 同法一.②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解, 所以sin(α+φ)=m 5,sin(β+φ)=m 5. 当1≤m <5时,α+β=2⎝ ⎛⎭⎪⎫π2-α,即α+φ=π-(β+φ);当-5<m <1时,α+β=2⎝ ⎛⎭⎪⎫3π2-φ, 即α+φ=3π-(β+φ); 所以cos(α+φ)=-cos(β+φ). 于是cos(α-β)=cos[(α+φ)-(β+φ)] =cos(α+φ)cos(β+φ)+sin(α+φ)sin(β+φ) =-cos 2(β+φ)+sin(α+φ)sin(β+φ)=-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫m 52+⎝ ⎛⎭⎪⎫m 52=2m25-1.考点二 三角函数的性质及其应用1.(2015·四川,4)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝ ⎛⎭⎪⎫2x +π2B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x解析 A 选项:y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,T =π,且关于原点对称,故选A.答案 A2.(2014·陕西,2)函数f (x )=cos ⎝⎛⎭⎪⎫2x -π6的最小正周期是( )A.π2 B .π C .2π D .4π解析 ∵T =2π2=π,∴B 正确. 答案 B3.(2013·大纲全国,12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ) A .y =f (x )的图象关于(π,0)中心对称 B .y =f (x )的图象关于直线x =π2对称 C .f (x )的最大值为32D .f (x )既是奇函数,又是周期函数解析 [对于A 选项,因为f (2π-x )+f (x )=cos(2π-x )·sin 2(2π-x )+cos x sin 2x =-cos x sin 2x +cos x sin 2x =0,故y =f (x )的图象关于(π,0)中心对称,A 正确;对于B 选项,因为f (π-x )=cos(π-x )sin 2(π-x )=cos x sin 2x =f (x ),故y =f (x )的图象关于x =π2对称,故B 正确;对于C 选项,f (x )=cos x sin 2x =2sin x cos 2x =2sin x (1-sin 2x )=2sin x -2sin 3x ,令t =sin x ∈[-1,1],则h (t )=2t -2t 3,t ∈[-1,1],则h ′(t )=2-6t 2,令h ′(t )>0解得-33<t <33,故h (t )=2t -2t 3,在⎣⎢⎡⎦⎥⎤-33,33上递增,在⎣⎢⎡⎦⎥⎤-1,-33与⎣⎢⎡⎦⎥⎤33,1上递减,又h (-1)=0,h ⎝ ⎛⎭⎪⎫33=439,故函数的最大值为439,故C 错误;对于D 选项,因为f (-x )+f (x )=-cos x sin 2x +cos x sin 2x =0,故是奇函数,又f (x +2π)=cos (2π+x )·sin 2(2π+x )=cos x sin 2x ,故2π是函数的周期,所以函数既是奇函数,又是周期函数,故D 正确. 综上知,错误的结论只有C ,故选C.答案 C4.(2012·湖南,6)函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎢⎡⎦⎥⎤-32,32解析 f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6=sin x -⎝ ⎛⎭⎪⎫32cos x -12sin x =32sin x -32cos x=3⎝ ⎛⎭⎪⎫32sin x -12cos x=3sin ⎝ ⎛⎭⎪⎫x -π6∈[-3,3].故选B 项.答案 B5.(2012·新课标全国,9)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12 D .(0,2] 解析 由π2<x <π得,ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin α在⎝ ⎛⎭⎪⎫π2,32π上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤32π,解得12≤ω≤54,故选A.答案 A6.(2011·新课标全国,11)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ) A .f (x )在⎝⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 f (x )=sin(ωx +φ)+cos(ωx +φ) = 2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵周期T =2πω=π,∴ω=2.又f (-x )=f (x ),即f (x )为偶函数, ∴φ+π4=k π+π2,φ=k π+π4,k ∈Z . 又|φ|<π2,∴φ=π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,易得f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,故选A.答案 A7.(2015·浙江,11)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析 ⎣⎢⎡⎦⎥⎤38π+k π,78π+k π(k ∈Z )f (x )=1-cos 2x 2+12sin 2x +1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,∴T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z ,解得:3π8+k π≤x ≤7π8+k π,k ∈Z ,∴单调递减区间是⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π,k ∈Z .答案 π8.(2014·上海,1)函数y =1-2cos 2(2x )的最小正周期是________.解析 y =1-2cos 2(2x )=1-2×1+cos 4x 2=-cos 4x ,则最小正周期为π2.答案 π29.(2015·北京,15)已知函数f (x )=2sin x 2cos x 2-2sin 2x2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值. 解 (1)因为f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4.当x +π4=-π2,即x =-3π4时,f (x )取得最小值.所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎪⎫-3π4=-1-22.10.(2015·重庆,18)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x .(1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性.解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝ ⎛⎭⎪⎫2x -π3-32,因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。