试卷分类汇编 _二元一次方程组
- 格式:doc
- 大小:126.00 KB
- 文档页数:6
一、选择题1.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天2.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .463.已知方程组263a b a b m -=⎧⎨-=⎩中,a ,b 互为相反数,则m 的值是( )A .4B .4-C .0D .84.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( )A .3B .0C .1D .75.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有( )个. A .1B .2C .3D .46.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH DC ⊥,垂足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是( )A .24B .32C .36D .647.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩9.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .210.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.13.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________.14.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______.15.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 16.若实数a 与b 满足()24320a b a b -+-+=,则ab 的平方根为________.17.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.18.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.19.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______.20.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则34m n -的立方根=________.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h +++==,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.24.在平面直角坐标系xOy 中,点()4,0A -,点()0,3B ,点()3,0C .(1)ABC 的面积为______;(2)已知点()1,2D -,()2,3E --,那么四边形ACDE 的面积为______.(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m 表示格点多边形内的格点数,n 表示格点多边形边上的格点数,那么格点多边形的面积S 和m 与n 之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m 边界格点数n格点多边形面积SABC611四边形ACDE 8 11 五边形ABCDE208根据上述的例子,猜测皮克公式为S =______(用m ,n 表示),试计算图②中六边形FGHIJK 的面积为______(本大题无需写出解题过程,写出正确答案即可).25.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B . (1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.2.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.3.D解析:D 【分析】根据a 与b 互为相反数得到0a b +=,即=-b a ,代入方程组即可求出m 的值. 【详解】解:因为a ,b 互为相反数, 所以0a b +=, 即=-b a ,代入方程组得:364a a m =⎧⎨=⎩,解得:28a m =⎧⎨=⎩,故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.4.D解析:D 【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a ,b ,c 的值,即可求出所求. 【详解】解:把32x y =⎧⎨=-⎩代入方程组24ax by cx y +=⎧⎨-=-⎩得:322324a b c -⎧⎨+-⎩== , 把22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2,即-a +b =1,联立得:3221a b a b -⎧⎨-+⎩==,解得:45a b ⎧⎨⎩== , 由3c +2=-4,得到c =-2, 则a +b +c =4+5-2=7. 故选:D . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C解析:C 【分析】先解出二元一次方程组得1222x a y a =+⎧⎨=-⎩,①当a =1时,方程组的解为30x y =⎧⎨=⎩,则x +y =3=2a +1;②x +y =1+2a +2﹣2a =3,无论a 取何值,x ,y 的值不可能是互为相反数;③3x y +=,,x y 是自然数,解得,x y 有4对解;④2x +y =2(1+2a )+(2﹣2a )=4+2a =8,则a =2. 【详解】解:25241?x y a x y a +=-⎧⎨-=-⎩①②,①﹣②,得y =2﹣2a , 将y =2﹣2a 代入②,得 x =1+2a ,∴方程组的解为1222x ay a =+⎧⎨=-⎩,当a =1时,方程组的解为30x y =⎧⎨=⎩,∴x +y =3=2a +1, ∴①结论正确;∵x +y =1+2a +2﹣2a =30≠,∴无论a 取何值,x ,y 的值不可能是互为相反数, ∴②结论正确;3x y +=,,x y 是自然数0123,,,,3210x x x x y y y y ====⎧⎧⎧⎧∴⎨⎨⎨⎨====⎩⎩⎩⎩共4对 ∴x ,y 的自然数解有4对, ∴③结论不正确;∵2x +y =2(1+2a )+(2﹣2a )=4+2a =8, ∴a =2, ∴④结论正确; 故选:C . 【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组 ,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.6.C解析:C 【分析】由图可知:重新拼成一个长方形BEMN ,长BN =8,宽BE =4,得二元一次方程组,解出可得结论. 【详解】 解:如图所示,由已知得:BN =8,S 长方形BNME =32, ∴BE =32÷8=4,则84x y x y +⎧⎨-⎩== , 解得:2x =12, ∴x =6,∴正方形ABCD 的面积是36, 故选:C . 【点睛】此题主要考查了几何图形和解二元一次方程组,正确得出长方形的长与宽是解题关键.7.A解析:A 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.【详解】 解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=, ∴113b =, 3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩. 故选:A .【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.8.D解析:D【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D .【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键 9.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 14.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:2 xy=⎧⎨=⎩【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.15.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.16.±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵∴∴①②,得∴∴∴的平方根为±4故解析:±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵()24320a b a b -+-+= ∴()240320a b a b ⎧-=⎪⎨-+=⎪⎩∴40320a b a b -=⎧⎨-+=⎩①② ①-②,得2a =∴48b a ==∴16ab =∴ab 的平方根为±4故答案为:±4.【点睛】本题考查了乘方、绝对值、二元一次方程组、平方根的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组、平方根的性质,从而完成求解.17.9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组. 18.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.19.±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将21xy=⎧⎨=⎩代入方程组215x aybx y-=⎧⎨+=⎩,得:41215ab-=⎧⎨+=⎩,解得:32ab=⎧⎨=⎩,∴6a b-=6×3﹣2=16,∴6a b-的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a、b值和平方根是解答的关键.20.【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把代入方程组得:,解得:,∵1的立方根为1,∴的立方根是1故答案为:1【点睛】此题考查了二元一次方解析:1【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 34981m n ∴-=-=∵1的立方根为1,∴34m n -的立方根是1故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()282122=0a b c -+-++, ∴80a -=,2120b -=,20c +=, ∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -, ∴AC =10,OB =6,∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭, 12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-,结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤; (3)①由AOB AOM BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①②由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①②由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析【分析】(1)利用非负数的性质求出a ,b 的值,可得结论.(2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1)|3|0a +,又|3|0a +10,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴.理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;12n m +-;30 【分析】(1)画出图形,根据三角形的面积公式求解;(2)画出图形,利用割补法求解;(3)设S =am +bn +c ,其中a ,b ,c 为常数,根据表中数据列方程组求出a ,b ,c ,然后根据公式即可求出六边形FGHIJK 的面积.【详解】(1)如图1,ABC 的底为7,高为3,所以面积为0.57310.5⨯⨯=,故答案为:10.5;(2)如图2,0.523320.5310.52236 1.5212.5S =⨯⨯+⨯+⨯⨯+⨯⨯=+++=,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m 边界格点数n 格点多边形面积SABC 四边形ACDE 五边形ABCDE 设S = am +61110.581112.520823a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩, 解得1121a b c =⎧⎪⎪=⎨⎪=-⎪⎩, ∴皮克公式为12n S m =+-, ∵六边形FGHIJK 中,m =27,n =8,∴六边形FGHIJK 的面积为82712S =+-=30. 【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等, 人数为:1(40424)62--=(人); ∴(1)班得总分为:40656102420570⨯+⨯+⨯+⨯=(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有(2)y z +人,∴(2)40y z y z +++=,∴3240y z +=,∴七(2)班得总分为:51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=(分);∵570600<,∴七(2)班的总分高.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确掌握题目的等量关系,列出方程进行解题.26.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩,由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.27.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标; (2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.。
二元一次方程组(1)一、耐心填一填,一锤定音!(每小题6分,共30分)1.在方程427x y -=中,如果用含有x 的式子表示y ,则y =_____.2.若方程4mx y -=的一个解是43x y =⎧⎨=⎩,,则m =_____.3.请写出一个以51x y =⎧⎨=⎩,为解的二元一次方程组_____.4.在二元一次方程2()15x y x y ++=-中,当3y =时,x =_____.5.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求这两种各有多少个?若设篮球有x 个,排球有y 个,则依题意得到的方程组是_____. 二、精心选一选,慧眼识金!(每小题5分,共15分) 1.下列方程组中,是二元一次方程组的是( )A.44129x y x y +=⎧⎪⎨+=⎪⎩,B.2537x y y z +=⎧⎨+=⎩,C.146x x y =⎧⎨-=⎩,D.421x y xy x y -=⎧⎨-=⎩,2.下列说法中正确的是( )A.二元一次方程中只有一个解 B.二元一次方程组有无数个解C.二元一次方程组的解必是它所含的二元一次方程的公共解D.判断一组解是否为二元一次方程的解,只需代入其中的一个二元一次方程即可3.西部山区某县响应国家“退耕还林”的号召,将该县一部分耕地改还为林地,改还后,林地面积和耕地面积共有2180km ,耕地面积是林地面积的25%,设改还后耕地面积为2km x ,林地面积为2km y ,则下列方程组中,正确的是( )A.18025%x y y x +=⎧⎨=⎩,B.18025%x y x y +=⎧⎨=⎩,C.18025%x y x y +=⎧⎨-=⎩,D.18025%x y y x +=⎧⎨-=⎩,三、用心做一做,马到成功!(本大题共20分) 1.(本题10分)解方程组:(1)25437x y x y +=⎧⎨+=⎩,;(2)74321432x yy x ⎧+=⎪⎪⎨⎪+=⎪⎩,.2.(本题10分)已知等式y kx b =+,当2x =时,1y =;当1x =-时,3y =;求k b ,的值.四、综合运用,现接再厉!(本大题共35分)1.(本题11分)小明在做家庭作业时发现练习册上一道解方程组的题目被墨水污染325x y x y -=⎧⎨+=⎩,,□□“□”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y =⎧⎨=-⎩,你能帮助他补上“□”的内容吗?说出你的方法.2.(本题12分)若方程组2(1)(1)4x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,求k 的值.3.(本题12分)有黑白两种小球各若干个,且同色小球质量均相等,在如下图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?参考答案一、1.472x - 2.74 3.略 4.103 5.2323x y x y =-⎧⎨=⎩二、1.C 2.C 3.B 三、1.(1)43x y =⎧⎨=-⎩,;(2)1212x y =⎧⎨=⎩,.2.23-,73四、1.8,9.2.2.3.黑球3克,白球1克.第一次称量 第二次称量二元一次方程组(2)一、精心选一选!一定能选对!(每小题3分,共30分) 1.下列方程是二元一次方程的是( ). (A )21x += (B )222x y += (C )14y x += (D )103x y += 2.方程组2021x y x y +=⎧⎨-=⎩解的个数有( ).(A )一个 (B )2个 (C )3个 (D )4个 3.若方程组01ax y x by +=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,那么a 、b 的值是( ).(A )10a b ==,(B )112a b ==,(C )10a b =-=,(D )00a b ==, 4.若m 、n 满足2|21|(2)0m n -++=,则mn 的值等于( ). (A )-1 (B )1 (C )-2 (D )25.若方程2(2)234a b a b x x y -+++=是关于x 、y 的二元一次方程,则a 、b 的值是( ).(A )00a b =⎧⎨=⎩ (B )11a b =⎧⎨=⎩ (C )1323a b ⎧=⎪⎪⎨⎪=-⎪⎩ (D )1323a b ⎧=-⎪⎪⎨⎪=⎪⎩6.下列说法中正确的是( ).(A )二元一次方程325x y -=的解为有限个(B )方程327x y +=的解x 、y 为自然数的有无数对(C )方程组00x y x y -=⎧⎨+=⎩的解为0(D )方程组中各个方程的公共解叫做这个方程组的解7.在等式y kx b =+中,当1x =-时,2y =-,当2x =时,7y =,则这个等式是( ). (A )31y x =-+ (B )31y x =+ (C )23y x =+ (D )31y x =--8. (2005年灵武)方程组51x y x y +=⎧⎨-=⎩,的解是( )(A)14x y =⎧⎨=⎩, (B)23x y =⎧⎨=⎩, (C)32x y =⎧⎨=⎩, (D)41x y =⎧⎨=⎩,9. (2005年宁夏)买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x 桶,乙种水y 桶,则所列方程组中正确的是 ( ) (A )6825075%x y x y +=⎧⎨=⎩(B )8625075%x y y x +=⎧⎨=⎩(C )8625075%x y x y +=⎧⎨=⎩(D )6825075%x y y x+=⎧⎨=⎩10. (2005年福建福州)如图,射线OC 的端点O 在直线AB 上,∠1的度数x ︒比∠2的度数y ︒的2倍多10°,则可列正确的方程组为( ).(A )18010x y x y +=⎧⎨=+⎩(B )180210x y x y +=⎧⎨=+⎩(C )180102x y x y -=⎧⎨=-⎩(D )90210x y y x +=⎧⎨=-⎩ 二、耐心填一填!一定能填对!(每小题3分,共30分)11.已知方程23x y -=,用含x 的式子表示y 的式子是____,用含y 的式子表示x 的式子是___________.12.已知112x y =⎧⎪⎨=⎪⎩是方程42ax y +=的一个解,那么a =__________.13.已知4x y +=,10x y -=,则2xy =________.14.若121x y ⎧=⎪⎨⎪=-⎩同时满足方程23x y m -=和方程4x y n +=,则m ·n =_________.15.解二元一次方程组1819136345x y x y +=⎧⎨+=⎩用________-法消去未知数________比较方便.16. (2005年江苏盐城)若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是_______________(只要求写出一个) 17.已知方程组4234ax by x y -=⎧⎨+=⎩与2432ax by x y +=⎧⎨-=⎩的解相同,那么a b +=_______.18.若12x y =⎧⎨=-⎩,2x y =⎧⎨=⎩都是方程4ax by -=的解,则a =______,b =________.19.(2003年山东潍坊)蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是________________. 20. (2005年南宁)根据下图提供的信息,求出每支..网球拍的单价为 元,每支..乒乓球拍的单价为 元.200元 160元 三、用心想一想!一定能做对!(共60分)21.(本小题8分)(2005年江苏苏州)解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩22. (本小题8分)(2005年福建宁德)解方程组:⎩⎪⎨⎪⎧x +y =93(x +y )+2x =3323.(本小题10分)(广东中考题)如果关于x y 、的二元一次方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,那么关于x y 、的二元一次方程组3()()162()()15x y a x y x y b x y +--=⎧⎨++-=⎩的解是什么?24.(本小题10分)(天津中考)某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎样调配劳力才能使挖出来的土能即使运走且不窝工?25.(本小题12分)(2005,临沂)李明家和陈刚家都从甲、乙两供水点购买同一种桶装矿泉水,李明家第一季度从甲、乙两供水点分别购买了10桶和6桶,共花费51元;陈刚家第一季度从甲、乙两供水点分别购买了8桶和12桶,且在乙供水点比在甲供水点多花18元钱.若只考虑价格因素,通过计算说明到哪家供水点购买在喝种桶装矿泉水更便宜一些?26.(本小题12分)(2003,黄冈)已知某电脑公司有A 型、B 型、C 型三种型号的电脑,其价格分别为A 型每台6000元,B 型每台4000元,C 型每台2500元.我市东坡中学计划将100500元钱全部用于从该公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.参考答案一、1~10 DAAAC DBCBB 二、11. 32x y -=,23x y =+;12.0;13.-42;14.4;15.加减消元,x ;16. 3x y -=等;17.1.5;18.2,1;19.6.1万元,6.9万元;20.80,20. 三、21. 312x y =⎧⎪⎨=⎪⎩;22.36x y =⎧⎨=⎩;23. 43x y =⎧⎨=⎩;24. 54人挖土,18人运土; 25. 解:设这种矿泉水在甲、乙两处每桶的价格分别为x y 、元,根据题意,得1065112818.x y y x +=⎧⎨-=⎩,解这个方程组,得33.5.x y =⎧⎨=⎩,因为3.53>.所以到甲供水点购买便宜一些.26. 解:设从该电脑公司购进A 型电脑x 台,购进B 型电脑y 台,购进C 型电脑z 台.则可分以下三种情况考虑:(1)只购进A 型电脑和B 型电脑,依题意可列方程组 6000400010050036.x y x y +=⎧⎨+=⎩,解得 21.7557.75.x y =-⎧⎨=⎩,不合题意,应该舍去;(2)只购进A 型电脑和C 型电脑,依题意可列方程组 6000250010050036.x z x z +=⎧⎨+=⎩,解得 3,33.x z =⎧⎨=⎩(3)只购进B 型电脑和C 型电脑,依题意可列方程组40002500100500,36.y z y z +=⎧⎨+=⎩ 解得7,29.y z =⎧⎨=⎩答:有两种方案供该校选择,第一种方案是购进A 型电脑3台和B 型电脑33台;第二种方案是购进B 型电脑7台和C 型电脑29台.二元一次方程组(3)一、填空题1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是 .2.已知甲、乙两人从相距36k m 的两地同时相向而行,1.8h 相遇.如果甲比乙先走23h ,那么在乙出发后23h 与甲相遇.设甲、乙两人速度分别为x k m /h 、y k m /h ,则x = ,y = .3.甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是 .4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x 人,全队每天的数额为y 件,则依题意可得方程组 .5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了 .6.一艘轮船顺流航行,每小时行20千米;逆流航行每小时行16千米.则轮船在静水中的速度为 ______,水流速度为______.7.一队工人制造某种工件,若平均每人一天做5件,那么全队一天就比定额少完成30件;若平均每人一天做7件,那么全队一天就超额20件. 则这队工人有_____人,全队每天制造的工件数额为_____件.8.若()235230x y x y -++-+=,则_______x y +=.9.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有x 枚,2分硬币有y 枚,则可列方程组为 .10.小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这10元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他______元. 11.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________;当y =-2时,x =___ ____.12.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解. 13.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.14.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =_ _,b = _ . 15.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____. 16.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________. 17.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.18.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________. 二、选择题 19.已知方程组其中正确的说法是( )A .只有(1)、(3)是二元一次方程组B .只有(1)、(4)是二元一次方程组C .只有(2)、(3)是二元一次方程组D .只有(2)不是二元一次方程组20.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x , 其中属于二元一次方程组的个数为( )A .1B .2C .3D .421.已知2 x b +5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为( )A .2B .-2C .1D .-122.已知方程组⎩⎨⎧-=-=+1242m ny x ny mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为( ) A .⎩⎨⎧-==11n m B .⎩⎨⎧==12n m C .⎩⎨⎧==23n m D .⎩⎨⎧==13n m 23.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是( )A .⎪⎩⎪⎨⎧===501z y xB .⎪⎩⎪⎨⎧===421z y x C .⎪⎩⎪⎨⎧===401z y x D .⎪⎩⎪⎨⎧===014z y x24.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为( )A .-4B .4C .2D .1 25.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩ C .12x y =⎧⎨=⎩ D .21x y =⎧⎨=⎩26.若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( )A .1B .-2C . 2或-1D .-2或127.在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x ,组数为y ,根据题意,可列方程组( ).28.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )A .-23B .23C .-32D .-2329.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是( ) A .2,1 B .32,35 C .-2,1 D .31,-32 30.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( )A .⎩⎨⎧=-=+y x y x 3847B .⎩⎨⎧=++=x y x y 3847C .⎩⎨⎧+=-=3847x y x yD .⎩⎨⎧+=+=3847x y x y三、解答题31.若12x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x -y +a=0的一个解,求a 的值.32.解关于x ,y 的方程组32165410x y kx y k +=⎧⎨-=-⎩,并求当解满足方程4x -3y =21时的k 值.33.甲、乙两人分别从相距30千米的A 、B 两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B 地所剩路程是乙到A 地所剩路程的2倍,求甲、乙两人的速度.34.甲乙两人做加法,甲在其中一个数后面多写了一个0,得和为2342,乙在同一个加数后面少写了一个0,得和为65,你能求出原来的两个加数吗?35.小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组31122x y x y +=⎧⎨+=-⎩ 中第一个方程y 的系数和第二个方程x 的系数看不到了,现在已知小丽的结果是12x y =⎧⎨=⎩,你能由此求出原来的方程组吗?36.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?37.师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?38.有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112c m,第一个长方形的宽比第二个长方形的长的2倍还大6c m,求这两个长方形的面积.39.在汶川大地震之后,全国各地区都有不少热心人参与抗震救灾行动中去,家住成都的小李也参加了,他要在规定的时间内由成都赶往绵阳地,如果他以每小时50千米的速度行驶,就会迟到24分钟;如果他以每小时75千米的高速行驶,则可提前24分钟到达绵阳地,求他以每小时多少千米的速度行驶可准时到达.40.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?41.《参考消息》报道,巴西医生马廷恩经过10年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的580名官员和600名廉洁官员进行比较,可发现,后者的健康人数比前者的健康人数多272人,两者患病或患病致死者共444人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?42.某校2009年初一年级和高一年级招生总数为500人,计划2010年秋季初一年级招生人数增加20%,高一年级招生人数增加25%,这样2010年秋季初一年级、高一年级招生总数比2006年将增加21%,求2010年秋季初一、高一年级的招生人数各是多少?43.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的35,问晚会上男、女生各有几人?44.随着奥运会成功召开,福娃系列商品也随之热销.一天小林在商场看到一件奥运吉祥物的纪念品,标价为每件33元,他的身边只带有2元和5元两种面值的人民币各若干张,他买了一件这种商品. 若无需找零钱,则小林付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?参考答案一、填空题1. 52 2. 9,11 3. 甲跑6米,乙跑4米5. 19道题 6.18千米/时,2千米/时. 7. 25,155. 8. -3; 9. 205267x y x y +=⎧⎨+=⎩10. 4. 11.x =62y -;x =32(点拨:把y 作为已知数,求解x ) 12(1),(2);(1),(3);(1)(点拨:将三组数值分别代入方程、方程组进行检验.方程组的解一定是方程组中各个方程共同的解)13.-53(点拨:把⎩⎨⎧=-=54y x 代入方程,求m ) 14.a =-5,b =3(点拨:将⎩⎨⎧-=-=12y x 代入⎩⎨⎧=-=+137by ax by ax 中,原方程组转化为关于a 、b 的二元一次方程组,再解之)15.k =-2,b =2(点拨:把x 、y 的对应值代入,得关于k 、b 的二元一次方程组。
初中数学试卷分类汇编二元一次方程组易错压轴解答题(附答案)一、二元一次方程组易错压轴解答题1.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和辆B型车装满货物一次可运货11吨某公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且每辆车恰好装满货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该公司设计共有几种租车方案?2.青山化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地.已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运费124800元,公路运费19500元.(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表原料x吨产品y吨合计(元)铁路运费124800公路运费19500(2)这批产品的销售款比原料费与运输费的和多多少元?3.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)10001200150024000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).4.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.(1)若万元,求领带及丝巾的制作成本是多少?(2)若用元钱全部用于制作领带,总共可以制作几条?(3)若用元钱恰好能制作300份其他的礼品,可以选择条领带和条丝巾作为一份礼品(两种都要有),请求出所有可能的、的值.5.在平面直角坐标系中,已知点A(a,0),B (b,0),a、b满足方程组,C 为y轴正半轴上一点,且 .(1)求A、B、C三点的坐标;(2)是否存在点D(t,-t)使?若存在,请求出D点坐标;若不存在,请说明理由.(3)已知E(-2,-4),若坐标轴上存在一点P,使,请求出P的坐标.6.菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,(1)当蓄水到吨时,需要截住泉水清理水池。
初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
第八章 二元一次方程组1一、填空题(每题3分,共24分)3、 3与的差不大于x 与2的和的,用不等式表示为____________。
1、 如果a <b ,那么-2a_____-2b 。
3、5+=x y 中,若3-=x 则=y _______。
5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。
二、选择题:(每题3分,共21分)11、如果a >b ,那么下列不等式中不能成立的是( )。
A 、a -3>b -3B 、-3a >-3bC 、D 、-a <-b13、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个 三、解方程组(每题6分,共24分)(3x -1)-3(4x +5) >x -4(x -7) ⎩⎨⎧=-=+113032Y X Y X四、用方程组解应用题(共31分)21、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两 种债券各有多少?( 5分)27、一组同学在校门口拍一张合影。
已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的同学至少有几人?第九章 二元一次方程组2一、填空题(每题3分,共24分)4、 关于x 的方程2x +3(m -1)=x +1的解是正数,则m 的取值范围是_________。
6、 不等式2x -9<0的非负整数解是______________。
2、二元一次方程52=+x y 在正整数范围内的解是 。
4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。
8、已知:10=+b a ,20=-b a ,则2b a -的值是 。
二、选择题:(每题3分,共21分)18、边长是整数,周长不大于12的等边三角形的个数是( )。
(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多.由题意得:,娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?(2013•湘西州)解方程组:.,则原方程组的解为:(2013•巴中)若⊙O 1和⊙O 2的圆心距为4,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,求r 1、r 2的值,并判断两圆的位置关系.是方程组解:∵,∴(2013,成都)解方程组⎩⎨⎧=-=+521y x y x ⎩⎨⎧-==12y x(2013凉山州)已知方程组,则x+y 的值为( )A .﹣1B .0C .2D .3考点:解二元一次方程组. 专题:计算题.分析:把第二个方程乘以2,然后利用加减消元法求解得到x 、y 的值,再相加即可. 解答:解:,②×2得,2x+6y=10③, ③﹣①得,5y=5, 解得y=1, 把y=1代入①得,2x+1=5, 解得x=2, 所以,方程组的解是,所以,x+y=2+1=3. 故选D .点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.(2013凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列一元二次方程组求解即可.解答:解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.点评:本题考查了列二元一次方程组和列一元一次方程解实际问题的运用,二元一次方程组及一元一次方程的解法的运用,解答时认真图画含义是解答本题的关键.(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产。
第五章 二元一次方程组单元测试本试卷满分120分,试题共26题.答卷前,请认真读题!一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,是二元一次方程的是( ) A .y =3x ﹣1B .xy =1C .x +1y =2D .x+y+z =12.已知3x −y2=1,用含x 的式子表示y 下列正确的是( ) A .y =6x ﹣2 B .y =2﹣6xC .y =﹣1+3xD .y =−12−32x3.解方程组{2x +y =7①x −y =2②的最佳方法是( )A .代入法消去y ,由①得y =7﹣2xB .代入法消去x ,由②得x =y+2C .加减法消去y ,①+②得3x =9D .加减法消去x ,①﹣②×2得3y =34.若{x =2y =−1是二元一次方程mx+2y =4的解,则m 的值是( )A .3B .﹣3C .2D .﹣25.一次函数y =x+1和一次函数y =2x ﹣2的图象的交点坐标是(3,4),据此可知方程组{x −y =−12x −y =2的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−36.对于实数x ,y :规定一种运算:x △y =ax+by (a ,b 是常数).已知2△3=11,5△(﹣3)=10.则a ,b 的值为( ) A .a =3,b =35B .a =2,b =3C .a =3,b =53D .a =3,b =27.已知实数a ,b 满足:(a ﹣b+3)2+√a +b −1=0,则a 2022+b 6等于( ) A .65B .64C .63D .628.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组( )求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩9.在解方程组2574x y x y -=⎧⎨-=⎩●★时,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩.小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩,则原方程组的正确解是( )A .11x y =⎧⎨=⎩B .11x y =-⎧⎨=⎩C .11x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.由方程组{x +m =−4y −3=m 可得x 与y 之间的关系式是 (用含x 的代数式表示y ).12.已知{x =ay =b 是二元一次方程4x ﹣7y =8的一个解,则代数式17﹣8a+14b 的值是 . 13.如果4a 2x ﹣3y b 4与−23a 3b x+y 是同类项,则xy = .14.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为 . 15.二元一次方程组{x +y =52x −y =1的解为{x =2y =3,则一次函数y =5﹣x 与y =2x ﹣1的交点坐标为 .16.在关于m ,n 的方程()()284370m n m n λ+-++-=中,能使λ无论取何值时,方程恒成立的m ,n 的和为 .17.一次函数y =kx+b (k 、b 是常数)当自变量x 的取值为1≤x ≤5时,对应的函数值的范围为﹣2≤y ≤2,则此一次函数的解析式为 .18.如图,两个形状、大小完全相同的大长方形内放入五个如图③的小长方形后分别得到图①、图②,已知大长方形的长为a ,则图①中阴影部分的周长与图②中阴影部分的周长的差是______.(用含a 的式子表示)三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤) 19.(6分)解方程组:(1){2x −3y =54x −5y =7; (2){x+3y 2=355(x −2y)=−4.20.(6分)《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的12,则有50钱;若乙得到甲所有钱的23,则也有50钱,问甲、乙各持钱多少?请解答此问题.21.(6分)直线l 1:y =2x+1与直线l 2:y =mx+4相交于点P (1,b ). (1)求b 、m 的值,并结合图象求关于x 、y 的方程组{2x −y =−1mx −y =−4的解.(2)垂直于x 轴的直x =a 与直线l 1,l 2分别交于点C 、D ,若线段CD 的长为2,求a 的值.22.(6分)已知关于x ,y 的二元一次方程组 32129x y k x y +=+⎧⎨-=⎩的解互为相反数,求k 的值.23.(8分)如图,直线l 1:y =x+1与直线l 2:y =mx+n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x 、y 的方程组{y =x +1y =mx +n ,请你直接写出它的解;(3)直线l 3:y =nx+m 是否也经过点P ?请说明理由.24.(10分)阅读材料:善于思考的小强同学在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”解法:解:将方程②变形:4x+10y+y =5,即2(2x+5y )+y =5…③,把方程①代入③得:2×3+y =5即y =﹣1,把y =﹣1代入方程①,得x =4,所以方程组的解为{x =4y =−1.请你解决以下问题(1)模仿小强同学的“整体代换”法解方程组{3x +4y =166x +9y =25;(2)已知x ,y 满足方程组{x 2+xy +3y 2=113x 2−5xy +9y 2=49;(i )求xy 的值;(ii )求出这个方程组的所有整数解.25.(12分)某商场计划用50000元从厂家购进60台新型电子产品,已知该厂家生产三种不同型号的电子产品,设甲、乙型设备应各买入x ,y 台,其中每台的价格、销售获利如下表:甲型 乙型 丙型 价格(元/台) 900 700 400 销售获利(元/台)20016090(1)购买丙型设备 60﹣x ﹣y 台(用含x ,y 的代数式表示);(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了50000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,则应选择哪种购进方案,为使销售时获利最大?并求出这个最大值.26.(12分)已知点A (0,4)、C (﹣2,0)在直线l :y =kx+b 上,l 和函数y =﹣4x+a 的图象交于点B (1)求直线l 的表达式;(2)若点B 的横坐标是1,求关于x 、y 的方程组{y =kx +by =−4x +a 的解及a 的值.(3)若点A 关于x 轴的对称点为P ,求△PBC 的面积.。
二元一次方程(组)及其应用一、选择题1.(2015•山东东营•一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =523x +2y =20 B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D2.(2015·广东中山·4月调研)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是( )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩3.(2015·山东枣庄·二模)二元一次方程组233x y x y ⎧⎨⎩+=−=的解为( ) A .21x y ⎧⎨⎩== B .21x y ⎧⎨⎩==− C .21x y ⎧⎨⎩=−=− D .21x y ⎧⎨⎩=−=答案:B4.(2015·山东省东营区实验学校一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20C.⎩⎪⎨⎪⎧x +y =202x +3y =52D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D5.(2015·江西省·中等学校招生考试数学模拟)已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=+−.54,23y x y x 的解,则b a 2+的值为( )A . 4B . 5C . 6D . 7答案:选D .命题思路:考查二元一次方程组的解法与消元、整体思想的运用.6.(2015·重点高中提前招生数学练习)在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D )图1A .22B .24C .36D .44答案:D7.(2015•山东潍坊广文中学、文华国际学校•一模)已知一个等腰三角形的两边长a 、b 满足方程组2a b 3a b 3−=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或4答案:A ;8.(2015·广东广州·一模)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.⎩⎪⎨⎪⎧ x =y -18,y -x =18-yB.⎩⎪⎨⎪⎧ y -x =18,x -y =y +18C. ⎩⎪⎨⎪⎧ x +y =18,y -x =18+yD.⎩⎪⎨⎪⎧y =18-x ,18-y =y -x 答案:D9.(2015·江苏江阴长泾片·期中)已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=−=+17by ax by ax 的解,则a b −的值为( )A .-1B .1C .2D .3答案:A二、填空题1.(2015•山东济南•网评培训)方程组257x y x y +=⎧⎨−=⎩,的解是 . 答案:43y x =⎧⎨=−⎩, 2.(2015•山东潍坊广文中学、文华国际学校•一模)如图1,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是_______.答案:(56,57−); 3. (2015·江苏高邮·一模)若a +3b -2=0, 则3a ×27b 的值为 ▲ .答案:9;三、解答题 1.(2015·锡山区·期中)(本题满分10分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列高铁上;根据报名人数,若都买一等座单程火车票需6175元,若都买二等座单程火车票且花钱最少,则需3150元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(高铁学生票只有二等座.....可以打7.5折)如下表所示:运行区间票价上车站下车站一等座二等座无锡上海95(元)60(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?答案:解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,(2分)解得:答:参加社会实践的老师、家长与学生分别有5人、10人、50人.(4分)(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x),即y=-35x+5425(50≤x<65),(5分)②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65-x)张,∴火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75x +95(65-x ),即y =-50x +6175(0<x <50), (6分) 答:购买火车票的总费用(单程)y 与x 之间的函数关系式是y =-35x +5420(50≤x <65)或y = -50x +6175(0<x <50). (7分)(3)由(2)小题知,当50≤x <65时,y = -35x +5425,∵-35<0,y 随x 的增大而减小, ∴当x =64时,y 的值最小,最小值为3185元,当x =50时,y 的值最大,最大值为3675元. (8分) 当0<x <50时,y = -50x +6175,∵-50<0,y 随x 的增大而减小,∴当x =49时,y 的值最小,最小值为3725元,当x =1时,y 的值最大,最大值为6125元. (9分) 所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元. (10分)2.(2015·江苏无锡崇安区·一模)解方程组:⎩⎪⎨⎪⎧3x -y =7,x +3y =-1.答案:由①得y =3x -7代入②,x +3(3x -7)=-1,得x =2……………………………(2分)于是y =-1……………… (3分) 故原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1…………………(4分) 3. (2015•山东东营•一模) 某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:, 解得:, 答:A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,解得:a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.1.(2015·广东从化·一模)(本小题满分9分解方程组:533x y x y +=⎧⎨−=⎩答案:解: 533x y x y +=⎧⎨−=⎩ (2)(1) (1)+(2)得:48x = ……………………………………………2分 解得:2=x (3) ……………………………………………4分 把(3)代入(1)得: 52=+y ………………………………………6分 解得:3=y ………………………………………8分所以原方程组的解为:⎩⎨⎧==32y x …………………………………9分 4.( 2015·呼和浩特市初三年级质量普查调研)(5分)解方程组:211342x y y x −=⎧⎪⎨+−=⎪⎩答案:解原方程可化为:21618x y x y −=⎧⎨−−=⎩,48,2x x ==两式相减得:,2213x x y y =−==把代入得;23x y =⎧⎨=⎩所以方程组得解为; 5. (2015·山东省济南市商河县一模) (本小题满分4分)解方程组:⎩⎨⎧=−=+②①72552y x y x解:⎩⎨⎧=−=+②①72552y x y x ①+② 得: ···································································· 1分 6x =12,x =2, ···································································································· 2分 把x =2代入①得:y =23, ················································································ 3分 ∴方程组的解为:⎪⎩⎪⎨⎧==232y x ··············································································· 4分6. (2015·辽宁盘锦市一模)20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:20002400x y y x +=⎧⎨−=⎩ 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件7.(2015·网上阅卷适应性测试)(1)计算:()21342|8|−−−⨯+−⎩⎨⎧=+=+1137y x y x (2)⎩⎪⎨⎪⎧3x +y =3,①x +y =1.② 答案:(1)()21342|8|−−−⨯+−=9―2+8=15(2)解:由①—②,得2x =2,x =1. ③将③代入②中,得 y =0.所以,方程组的解为:⎩⎪⎨⎪⎧x =1,y =0.8. (2015·福建漳州·一模)请从以下三个二元一次方程: x +y =7, 173+−=x y , x +3y =11中,任选两个方程构成一个方程组,并解该方程组.(1)所选方程组是: .(2)解方程组:答案:(1) ①② …………………………………………………………2分(2)解:②-①得:42=y …………………………………………………………4分 ∴2=y …………………………………………………………………5分把2=y 代入①得 :5x = ………………………………………………7分∴⎩⎨⎧==25y x …………………………………………………………………8分 9.(2015·广东广州·二模)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件? 解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:---------1分 20002400x y y x +=⎧⎨−=⎩ -----------------------------------------------------------------------------5分 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件 --------- ---------7分10. (2015·安庆·一摸)某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2015年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这-年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2015年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本答案:解:(1)设每条全自动生产线的成本为x 万元,每条半自动生产线的成本为y 万元,根据题意,得⎩⎨⎧=+=+283262y x y x ,解得⎩⎨⎧==610y x . 答:每条全自动生产线的成本为10万元,每条半自动生产线的成本为6万元.…………5分(2)设2015年该加工厂需兴建全自动生产线a 条,根据题意,得(26-10)a +(16-6)(10-a )≥120,解得a ≥331,由于a 是正整数,所以a 至少取4.即2015年该加工厂至少需投资兴建4条全自动生产线.…………10分。
七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;□x +5y =13 ①4x -□y =-2 ② 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
二元一次方程组
1、(2013杭州)若a+b=3,a﹣b=7,则ab=()
A.﹣10 B.﹣40 C.10 D.40
考点:完全平方公式.
专题:计算题.
分析:联立已知两方程求出a与b的值,即可求出ab的值.
解答:解:联立得:,
解得:a=5,b=﹣2,
则ab=﹣10.
故选A.
点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.
2、(2013凉山州)已知方程组,则x+y的值为()
A.﹣1 B.0 C.2 D.3
考点:解二元一次方程组.
专题:计算题.
分析:把第二个方程乘以2,然后利用加减消元法求解得到x、y的值,再相加即可.
解答:解:,
②×2得,2x+6y=10③,
③﹣①得,5y=5,
解得y=1,
把y=1代入①得,2x+1=5,
解得x=2,
所以,方程组的解是,
所以,x+y=2+1=3.
故选D.
点评:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.
3、(2013•广安)如果a3x b y与﹣a2y b x+1是同类项,则()
B
解:∵a
∴
所以,方程组的解是
4、(2013年广州市)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()
A
10
32
x y
y x
+=
⎧
⎨
=+
⎩
B
10
32
x y
y x
+=
⎧
⎨
=-
⎩
C
10
32
x y
x y
+=
⎧
⎨
=+
⎩
D
10
32
x y
x y
+=
⎧
⎨
=-
⎩
分析:根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可
解:根据题意列方程组,得:.故选:C.
点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.
5、(2013鞍山)若方程组,则3(x+y)﹣(3x﹣5y)的值是.
考点:解二元一次方程组.
专题:整体思想.
分析:把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.
解答:解:∵,
∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.
故答案为:24.
点评:本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.
6、(2013•咸宁)已知是二元一次方程组的解,则m+3n的立方根为2.
代入方程组
代入方程组,
,解得,
+3
7、(2013•毕节地区)二元一次方程组的解是.
解:
所以,方程组的解是
故答案为:
8、(2013安顺)4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .
考点:二元一次方程的定义;解二元一次方程组.
分析:根据二元一次方程的定义即可得到x、y的次数都是1,则得到关于a,b的方程组求得a,b的值,则代数式的值即可求得.
解答:解:根据题意得:,
解得:.
则a﹣b=0.
故答案是:0.
点评:主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
9、(2013•遵义)解方程组.
,
所以,方程组的解是
10、(2013•湘西州)解方程组:.
,
则原方程组的解为:
11、(2013成都市)解方程组:
x+y=1 2x-y=5
⎧⎨⎩. 解析:x+y=1 2x-y=5 ⎧⎨⎩
(1)(2) ①式+②式有3x=6⇒x=2 代入①得y=-1
∴方程解为x=2 y=-1
⎧⎨
⎩ 12、(2013•黄冈)解方程组:. 解:方程组可化为所以,原方程组的解是
13、(13年山东青岛、16)(1)解方程组:⎩
⎨⎧=-=+032y x y x 解析:(1)两式相加,得:x =1,把x =1代入第2式,得y =1,
所以原方程组的解:11
x y =⎧⎨=⎩ 14、(2013年广东省5分、17)解方程组⎩
⎨⎧=++=821y x y x
答案:⎩⎨⎧==2
3y x 解析:用代入消元法可求解。