高考理科数学复习题解析 圆的方程
- 格式:doc
- 大小:259.03 KB
- 文档页数:7
高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。
以下是圆的方程专题练习,请考生查缺补漏。
一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。
高中数学高考总复习圆的方程习题及详解一、选择题1.(文)(2010·山东潍坊)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1 D.⎝⎛⎭⎫x -322+(y -1)2=1 [答案] B[解析] 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切得,|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1,故选B.(理)(2010·厦门三中阶段训练)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .x 2+y 2-23x +2=0B .(x -3)2+y 2=9C .x 2+y 2+23x +2=0D .(x -3)2+y 2=3[答案] D[解析] 双曲线右焦点F (3,0),渐近线方程y =±22x ,故圆半径r =3,故圆方程为(x-3)2+y 2=3.2.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△P AB 面积的最大值与最小值分别是( )A .2,12(4-5)B.12(4+5),12(4-5) C.5,4- 5D.12(5+2),12(5-2) [答案] B[解析] 如图圆心(1,0)到直线AB :2x -y +2=0的距离为d =45,故圆上的点P 到直线AB 的距离的最大值是45+1,最小值是45-1.又|AB |=5,故△P AB 面积的最大值和最小值分别是2+52,2-52.3.(文)(2010·延边州质检)已知圆(x +1)2+(y -1)2=1上一点P 到直线3x -4y -3=0距离为d ,则d 的最小值为( )A .1 B.45 C.25D .2[答案] A[解析] ∵圆心C (-1,1)到直线3x -4y -3=0距离为2,∴d min =2-1=1.(理)(2010·安徽合肥六中)已知圆C 的方程为x 2+y 2+2x -2y +1=0,当圆心C 到直线kx +y +4=0的距离最大时,k 的值为( )A.13B.15 C .-13D .-15[答案] D[解析] 圆C 的方程可化为(x +1)2+(y -1)2=1,所以圆心C 的坐标为(-1,1),又直线kx +y +4=0恒过点A (0,-4),所以当圆心C 到直线kx +y +4=0的距离最大时,直线CA 应垂直于直线kx +y +4=0,直线CA 的斜率为-5,所以-k =15,k =-15.4.方程x 2+y 2+4mx -2y +5m =0表示的圆的充要条件是( ) A.14<m <1 B .m >1 C .m <14D .m <14或m >1[答案] D[解析] ∵方程表示圆∴16m 2+4-20m >0,∴m <14或m >1.5.已知f (x )=(x -1)(x +2)的圆象与x 轴、y 轴有三个不同的交点,有一个圆恰好经过这三个点.则此圆与坐标轴的另一个交点的坐标是( )A .(0,1)B .(0,-1)C .(0,2)D .(0,22) [答案] A[解析] f (x )的图象与x 轴交于点A (1,0),B (-2,0),与y 轴交于点C (0,-2),设过A 、B 、C 三点的圆与y 轴另一个交点为D (0,a ),易知a =1.6.(2010·北京海淀区)已知动圆C 经过点F (0,1),并且与直线y =-1相切,若直线3x -4y +20=0与圆C 有公共点,则圆C 的面积( )A .有最大值πB .有最小值πC .有最大值4πD .有最小值4π[答案] D[解析] 由于圆经过点F (0,1)且与直线y =-1相切,所以圆心C 到点F 与到直线y =-1的距离相等,由抛物线的定义知点C 的轨迹方程为x 2=4y ,设C 点坐标为⎝⎛⎭⎫x 0,x 024,∵⊙C 过点F ,∴半径r =|CF |=(x 0-0)2+⎝⎛⎭⎫x 024-12=x024+1,直线3x -4y +20=0与圆C 有公共点,即转化为点⎝⎛⎭⎫x 0,x 024到直线3x -4y +20=0的距离d =|3x 0-4×x 024+20|5≤x 024+1,解得x 0≥103或x 0≤-2,从而得圆C 的半径r =x 024+1≥2,故圆的面积有最小值4π. 7.(文)已知a ≠b ,且a 2sin θ+a cos θ-π4=0,b 2sin θ+b cos θ-π4=0,则连结(a ,a 2),(b ,b 2)两点的直线与单位圆的位置关系是( )A .相交B .相切C .相离D .不能确定[答案] A[解析] ∵A (a ,a 2),B (b ,b 2)都在直线x cos θ+y sin θ-π4=0上,原点到该直线距离d =⎪⎪⎪⎪-π4sin 2θ+cos 2θ=π4<1,故直线AB 与单位圆相交.(理)(2010·温州中学)设圆过双曲线x 29-y 216=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离为( )A .4 B.163 C.473D .5[答案] B[解析] 由题意知圆心在双曲线顶点和焦点连线的垂直平分线上,顶点A 1(-3,0),A 2(3,0),焦点F 1(-5,0),F 2(5,0),A 1F 1的垂直平分线x =-4,代入双曲线方程中得,y =±473,∴圆心⎝⎛⎭⎫-4,473到双曲线中心距离为d =(-4-0)2+⎝⎛⎭⎫473-02=163,A 1F 2的中垂线x=1与双曲线无交点,故选B.8.(2010·吉林省质检)圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)[答案] A[解析] ∵方程x 2+y 2-2x +6y +5a =0表示圆, ∴4+36-20a >0,∴a <2,又圆关于直线y =x +2b 成轴对称图形, ∴圆心(1,-3)在直线上,∴-3=1+2b ,∴b =-2,∴a -b <4. 9.(文)已知不等式组⎩⎪⎨⎪⎧x ≥0y ≥0x +2y -4≤0表示的平面区域恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为( )A .(x -1)2+(y -2)2=5B .(x -2)2+(y -1)2=8C .(x -4)2+(y -1)2=6D .(x -2)2+(y -1)2=5 [答案] D[解析] 由题意知此平面区域表示的是以O (0,0),P (4,0),Q (0,2)为顶点的三角形及其内部,且△OPQ 是直角三角形,所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是5,所以圆C 的方程是(x -2)2+(y -1)2=5.(理)(2010·北京东城区)已知不等式组⎩⎪⎨⎪⎧x +y ≤1x -y ≥-1y ≥0表示的平面区域为M ,若直线y =kx-3k 与平面区域M 有公共点,则k 的取值范围是( )A.⎣⎡⎦⎤-13,0B.⎝⎛⎦⎤-∞,13 C.⎝⎛⎦⎤0,13 D.⎝⎛⎦⎤-∞,-13 [答案] A[解析] 画出可行域如图,直线y =kx -3k 过定点(3,0),由数形结合知该直线的斜率的最大值为k =0,最小值为k =0-13-0=-13.10.已知点P (x ,y )在直线x +2y =3上移动,当2x +4y 取最小值时,过点P (x ,y )引圆C :⎝⎛⎭⎫x -122+⎝⎛⎭⎫y +142=12的切线,则此切线长等于( )A.12B.32C.62D.32[答案] C[解析] 由于点P (x ,y )在直线x +2y =3上移动,得x ,y 满足x +2y =3,又2x +4y =2x+22y ≥22x+2y=42,取得最小值时x =2y ,此时点P 的坐标为⎝⎛⎭⎫32,34.由于点P 到圆心C ⎝⎛⎭⎫12,-14的距离为d =⎝⎛⎭⎫32-122+⎝⎛⎭⎫34+142=2,而圆C 的半径为r =22,那么切线长为d 2-r 2=2-12=62,故选C. 二、填空题11.(文)(2010·金华十校)圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于A 、B ,|AB |=3,则该圆的标准方程是________.[答案] (x -1)2+⎝⎛⎭⎫y -122=1 [解析] 设圆心C (a ,b ),由条件知a =1,取弦AB 中点D ,则CD =AC 2-AD 2=12-⎝⎛⎭⎫322=12,即b =12,∴圆方程为(x -1)2+⎝⎛⎭⎫y -122=1.(理)已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标原点,则△OAB 的外接圆的方程是________________.[答案] (x -4)2+y 2=16[解析] 由抛物线的性质知,A ,B 两点关于x 轴对称,所以△OAB 外接圆的圆心C 在x 轴上.设圆心坐标为(r,0),并设A 点在第一象限,则A 点坐标为⎝⎛⎭⎫32r ,32r ,于是有⎝⎛⎭⎫32r 2=2×32r ,解得r =4,所以圆C 的方程为(x -4)2+y 2=16.12.(2010·南京师大附中)定义在(0,+∞)上的函数f (x )的导函数f ′(x )<0恒成立,且f (4)=1,若f (x 2+y 2)≤1,则x 2+y 2+2x +2y 的最小值是________.[答案] 6-4 2[解析] 依题意得,f (x )在(0,+∞)上单调递减, ∵f (x 2+y 2)≤1,f (4)=1,∴f (x 2+y 2)≤f (4), ∴x 2+y 2≥4,又因为x 2+y 2+2x +2y =(x +1)2+(y +1)2-2,(x +1)2+(y +1)2可以看作是点(x ,y )到点(-1,-1)的距离的平方.由圆的知识可知,最小值为(r -|OC |)2=(2-2)2=6-4 2.13.(文)(2010·浙江杭州市质检)已知A 、B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________.[答案] (x -1)2+(y +1)2=9[解析] ∵M 是以AB 为直径的圆的圆心,|AB |=6,∴半径为3, 又⊙M 经过点C ,∴|CM |=12|AB |=3,∴点M 的轨迹方程为(x -1)2+(y +1)2=9.(理)(2010·胶州三中)以椭圆x 241+y 216=1的右焦点为圆心,且与双曲线x 29-y 216=1的渐近线相切的圆的方程为________.[答案] (x -5)2+y 2=16[解析] 由c 2=41-16=25得c =5,∴椭圆右焦点F 2(5,0),又双曲线渐近线方程为y =±43x ,∴圆半径r =|4×5+0|42+32=4,∴圆方程为(x -5)2+y 2=16. 14.(文)(2010·天津文,14)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为__________.[答案] (x +1)2+y 2=2[解析] 在直线方程x -y +1=0中,令y =0得,x =-1,∴圆心坐标为(-1,0), 由点到直线的距离公式得圆的半径 R =|-1+0+3|2=2,∴圆的标准方程为(x +1)+y 2=2.(理)(2010·瑞安中学)已知圆x 2+y 2=r 2在曲线|x |+|y |=4的内部(含边界),则半径r 的范围是______.[答案] (0,22][解析] 如图,曲线C :|x |+|y |=4为正方形ABCD ,∵圆x 2+y 2=r 2在曲线C 的内部(含边界) ∴0<r ≤|OM |=2 2. 三、解答题15.(2010·广东华南师大附中)已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5),求: (1)过点A 的圆的切线方程;(2)O 点是坐标原点,连结OA ,OC ,求△AOC 的面积S . [解析] (1)⊙C :(x -2)2+(y -3)2=1.当切线的斜率不存在时,过点A 的直线方程为x =3,C (2,3)到直线的距离为1,满足条件.当k 存在时,设直线方程为y -5=k (x -3), 即kx -y +5-3k =0,由直线与圆相切得, |-k +2|k 2+1=1,∴k =34.∴过点A 的圆的切线方程为x =3或y =34x +114.(2)|AO |=9+25=34,过点A 的圆的切线OA :5x -3y =0, 点C 到直线OA 的距离d =134, S =12·d ·|AO |=12. 16.(文)(2010·烟台诊断)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与椭圆E :x 2a 2+y 2b 2=1(a >b >0)有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究斜率为k 的直线PF 1与圆C 能否相切,若能,求出椭圆E 和直线PF 1的方程;若不能,请说明理由.[解析] (1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3) 将点A 的坐标代入圆C 的方程得,(3-m )2+1=5 即(3-m )2=4,解得m =1,或m =5 ∵m <3,∴m =1∴圆C 的方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切依题意设直线PF 1的方程为y =k (x -4)+4, 即kx -y -4k +4=0若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1= 5 ∴4k 2-24k +11=0,解得k =112,或k =12当k =112时,直线PF 1与x 轴的交点横坐标为3611,不合题意,舍去当k =12时,直线PF 1与x 轴的交点横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0) ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=(3+4)2+12+(3-4)2+12 =52+2=6 2∴a =32,即a 2=18,∴b 2=a 2-c 2=2直线PF 1能与圆C 相切,直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.(理)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标原点O .椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.[解析] (1)设圆C 的圆心为A (p ,q ),则圆C 的方程为(x -p )2+(y -q )2=8. ∵直线y =x 与圆C 相切于坐标原点O , ∴O 在圆C 上,且直线OA 垂直于直线y =x .于是有⎩⎪⎨⎪⎧p 2+q 2=8p q=-1,∴⎩⎪⎨⎪⎧ p =2q =-2,或⎩⎪⎨⎪⎧p =-2q =2. 由于点C (p ,q )在第二象限,故p <0. 所以圆C 的方程为(x +2)2+(y -2)2=8.(2)∵椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点距离之和为10,∴2a =10,∴a =5.故椭圆右焦点为F (4,0).若圆C 上存在异于原点的点Q (x 0,y 0)到椭圆右焦点F 的距离等于线段OF 的长,则有|QF |=|OF |,于是(x 0-4)2+y 02=42,且x 02+y 02≠0①由于Q (x 0,y 0)在圆上,故有(x 0+2)2+(y 0-2)2=8.②解①和②得⎩⎨⎧x 0=45y 0=125,故圆C 上存在满足条件的点Q ⎝⎛⎭⎫45,125.17.(文)设O 点为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q 关于直线x +my +4=0对称,且OP →·OQ →=0.(1)求m 的值; (2)求直线PQ 的方程.[解析] (1)曲线方程为(x +1)2+(y -3)2=9,表示圆心为(-1,3),半径为3的圆. ∵点P ,Q 在圆上且关于直线x +my +4=0对称. ∴圆心(-1,3)在直线上,代入直线方程得m =-1. (2)∵直线PQ 与直线y =x +4垂直,∴设P (x 1,y 1),Q (x 2,y 2),PQ 方程为y =-x +b . 将y =-x +b 代入圆方程得, 2x 2+2(4-b )x +b 2-6b +1=0. Δ=4(4-b )2-8×(b 2-6b +1)>0, ∴2-32<b <2+32, 由韦达定理得,x 1+x 2=b -4,x 1·x 2=b 2-6b +12,y 1·y 2=(-x 1+b )(-x 2+b )=b 2-b (x 1+x 2)+x 1·x 2=b 2+2b +12,∵OP →·OQ →=0,∴x 1x 2+y 1y 2=0, 即b 2-6b +12+b 2+2b +12=0.解得b =1∈(2-32,2+32). ∴所求的直线PQ 方程为y =-x +1.(理)已知动圆P 与定圆B :x 2+y 2+25x -31=0内切,且动圆P 经过一定点A (5,0). (1)求动圆圆心P 的轨迹E 的方程;(2)若已知点D (0,3),M 、N 在曲线E 上,且DM →=λDN →,求实数λ的取值范围. [解析] (1)定圆B 的圆心B (-5,0),半径r =6, ∵动圆P 与定圆B 内切,且过A (5,0), ∴|P A |+|PB |=6.∴动圆圆心P 的轨迹E 是以B 、A 为焦点,长轴长为6的椭圆. 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =6,a =3,c =5,∴b 2=a 2-c 2=4. ∴椭圆的方程为x 29+y 24=1.(2)设M (x 1,y 1),N (x 2,y 2),则由DM →=λDN →,可得(x 1,y 1-3)=λ(x 2,y 2-3),故⎩⎪⎨⎪⎧x 1=λx 2y 1=λ(y 2-3)+3.∵M ,N 在动点P 的轨迹上,∴⎩⎨⎧(λx 2)29+(λy 2+3-3λ)24=1x 229+y224=1,消去x 2得,(λy 2+3-3λ)2-λ2y 224=1-λ2.解得y 2=13λ-56λ(λ≠1)或λ=1.①当λ=1时,M 与N 重合,DM →=DN →,满足条件.高考总复习含详解答案 ②当λ≠1时,∵|y 2|≤2,∴⎪⎪⎪⎪13λ-56λ≤2,解得15≤λ≤5,且λ≠1. 综上可得λ的取值范围是⎣⎡⎦⎤15,5.。
高考数学复习考点题型归类解析专题39圆与方程一、关键能力1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题,初步了解用代数方法处理几何问题的思想.二、教学建议1.处理解决几何问题时,主要表现在两个方面:(1)根据曲线的性质,建立与之等价的方程;(2)根据方程的代数特征洞察并揭示曲线的性质.要重视坐标法,体会用坐标法研究平面几何问题的解析思想.2.帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题.学会借助于坐标系,用代数方法研究几何问题,感受“数”与“形”的对应和统一,不断地体会“数形结合”的思想方法.三、自主梳理1.圆的方程:(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0)是以点(a,b)为圆心,r为半径的圆的方程,叫做圆的标准方程.(2)圆的一般方程:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程. 圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径长为12D 2+E 2-4F .2.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 (1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)有关弦长问题的2种求法3.圆与圆的位置关系(两圆半径为r1,r2,d=|O1O2|)|r-r|<d(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.四、高频考点+重点题型考点一、圆的方程、轨迹方程例1-1.已知圆C的圆心在直线x﹣2y﹣3=0上,且过点A(2,﹣3),B(﹣2,﹣5),则圆C的标准方程为.【解答】解:根据题意,圆C的圆心在直线x﹣2y﹣3=0上,设圆心的坐标为(2t+3,t),圆C经过点A(2,﹣3),B(﹣2,﹣5),则(2t+3﹣2)2+(t+3)2=(2t+3+2)2+(t+5)2,解可得t=﹣2,则2t+3=﹣1,即圆心C的坐标为(﹣1,﹣2),圆的半径为r,则r2=|CA|2=(﹣1﹣2)2+(﹣2+3)2=10,故圆C的标准方程为(x+1)2+(y+2)2=10;故答案为:(x+1)2+(y+2)2=10.例1-2.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A 的上方),且|AB|=2.(Ⅰ)求圆C的标准方程;【解答】解:(1)由题意,圆的半径为√1+1=√2,圆心坐标为(1,√2),∴圆C的标准方程为(x﹣1)2+(y−√2)2=2;例1-3.在平面直角坐标系xOy中,O为坐标原点,动点P与两个定点M(1,0),N(4,0)的距离之比为12.(Ⅰ)求动点P的轨迹W的方程;【解答】解:(Ⅰ)设点P坐标为(x,y),依题意得:|PM||PN|=12,又M(1,0),N(4,0),∴2√(x−1)2+y2=√(x−4)2+y2,化简得:x 2+y 2=4,则动点P 轨迹W 方程为x 2+y 2=4;例1-4.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在, 所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知CD =12AB =2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).例1-5.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹方程. 解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为 ⎝ ⎛⎭⎪⎫x 0-32,y 0+42. 因为平行四边形的对角线互相平分, 所以x 2=x 0-32,y 2=y 0+42, 整理得⎩⎨⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.例1-6.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎨⎧ 2x =x 0+42y =y 0-2⇒⎩⎨⎧x 0=2x -4y 0=2y +2, 代入x 20+y 20=4中得(x -2)2+(y +1)2=1.例1-7.若AB =2,AC =√2BC ,则S △ABC 的最大值. 【解答】解:设BC =x ,则AC =√2x ,根据面积公式得S △ABC =12AB •BC sin B =12×2x ×√1−cos 2B , 又根据余弦定理得cos B =AB 2+BC 2−AC 22AB⋅BC =4+x 2−(√2x)24x=4−x 24x,代入上式得: S △ABC =x √1−(4−x 24x)2=√128−(x 2−12)216,由三角形三边关系有:{√2x +x >2x +2>√2x,解得:2√2−2<x <2√2+2.所以当x =2√3时,x 2﹣12=0,此时S △ABC 取得最大值√12816=√8=2√2. 故答案为:2√2例1-8.(多选)设有一组圆C :(x -1)2+(y -k )2=k 4(k ∈N *),下列四个命题正确的是( ) A .存在k ,使圆与x 轴相切 B .存在一条直线与所有的圆均相交 C .存在一条直线与所有的圆均不相交 D .所有的圆均不经过原点 答案 ABD解析对于A,存在k,使圆与x轴相切⇔k=k2(k∈N*)有正整数解⇔k=1,故A正确;对于B,因为圆心(1,k)恒在直线x=1上,故B正确;对于C,当k取无穷大的正数时,半径k2也无穷大,因此所有直线与圆都相交,故C不正确;对于D,将(0,0)代入得1+k2=k4,即1=k2(k2-1),因为右边是两个相邻整数相乘为偶数,而左边为奇数,故方程恒不成立,故D正确.考点二. 直线与圆的位置关系例2-1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定【解答】解:∵M(a,b)在圆x2+y2=1外,∴a2+b2>1,∴圆O(0,0)到直线ax+by=1的距离d=√a2+b21=r,则直线与圆的位置关系是相交.故选:B.例2-2.若过点A(4,0)的直线l与曲线(x﹣2)2+y2=1有公共点,则直线l的斜率的取值范围为[−√33,√33].【解答】解:设直线l的方程为y=k(x﹣4),即kx﹣y﹣4k=0 ∵直线l与曲线(x﹣2)2+y2=1有公共点,∴圆心到直线l的距离小于等于半径即|2k−4k|√k2+1≤1,解得−√33≤k≤√33∴直线l的斜率的取值范围为[−√33,√33]故答案为[−√33,√33]例2-3.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围为( )A.(-∞,2)B.(2,+∞)C.(-∞,-6)D.(-6,+∞)解析:选C ∵x2+y2-2x-2y+b=0表示圆,∴8-4b>0,即b<2.∵直线ax+y+a+1=0过定点(-1,-1),∴点(-1,-1)在圆x2+y2-2x-2y+b=0的内部,∴6+b<0,解得b<-6,∴b的取值范围是(-∞,-6).故选C.例2-4.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点的个数为( )A.1B.2C.3D.4解析:选C 由圆的方程知圆心坐标为(3,3),半径为3,如图所示,因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,故圆上到直线的距离为1的点有3个.题型三切线问题例3-1.已知圆C:(x﹣1)2+(y﹣2)2=2,点P坐标为(2,﹣1),过点P作圆C的切线,切点为A,B.(1)求切线PA,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.【解答】解:(1)根据题意,分析易得切线斜率存在,则设切线的斜率为k,又由切线过点P(2,﹣1),则切线方程为:y+1=k(x﹣2)即:kx﹣y﹣2k﹣1=0,又圆C:(x﹣1)2+(y﹣2)2=2的圆心坐标为(1,2),半径r=√2,=√2,则有√1+k2解可得k=7或k=﹣1,则所求的切线方程为:x+y﹣1=0和7x﹣y﹣15=0;(2)根据题意,圆心C到P的距离d=√(2−1)2+(2+1)2=√10,则切线长为√(√10)2−(√2)2=√8=2√2,(3)以P为圆心,切线长为半径的圆的方程为:(x﹣2)2+(y+1)2=8…①由圆C:(x﹣1)2+(y﹣2)2=2,…②②﹣①可得AB的方程:(x﹣1)2+(y﹣2)2﹣(x﹣2)2﹣(y+1)2=﹣6,可得x﹣3y+3=0.例3-2.直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【解答】解:设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部, 且点A 与圆心O 之间的距离为OA =√10, 圆的半径为r =√2, ∴sin θ=√2√10, ∴cos θ=√2√10,tan θ=12,∴tan2θ=11−14=43,故答案为:43.例3-3.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A .[﹣1,1]B .[−12,12]C .[−√2,√2]D .[−√22,√22] 【解答】解:由题意画出图形如图:点M (x 0,1),要使圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则∠OMN 的最大值大于或等于45°时一定存在点N ,使得∠OMN =45°, 而当MN 与圆相切时∠OMN 取得最大值, 此时MN =1,图中只有M ′到M ″之间的区域满足MN =1, ∴x 0的取值范围是[﹣1,1]. 故选:A .例3-4.在平面直角坐标系xOy 中,已知圆C :x 2+(y ﹣3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围是( ) A .[2√73,2√2)B .[2√143,2√2)C .[2√53,2√3)D .[2√33,2√5) 【解答】解:设AC =x ,则x ≥3,由PC ⊥AP 可知AP =√AC 2−PC 2=√x 2−2, ∵AC 垂直平分PQ , ∴PQ =2PC⋅AP AC=2•√2⋅√x 2−2x=2√2•√1−2x 2.∴当x =3时,PQ 取得最小值2√2•√1−29=2√143. 又√1−2x 2<1, ∴PQ <2√2. ∴2√143≤PQ <2√2.故选:B .例3-5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.【解答】解:∵圆的方程为:x2+y2﹣2x﹣2y+1=0∴圆心C(1,1)、半径r为:1根据题意,若四边形面积最小当圆心与点P的距离最小时,距离为圆心到直线的距离时,切线长PA,PB最小圆心到直线的距离为d=3∴|PA|=|PB|=√d2−r2=2√2|PA|r=2√2∴s PACB=2×12故答案为:2√2考点四直线与圆相交的弦长问题例4-1.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A.√2B.√2C.√6D.2√62【解答】解:∵圆C:x2+y2+4x﹣4y+6=0,即(x+2)2+(y﹣2)2 =2,表示以C (﹣2,2)为圆心、半径等于√2的圆.由题意可得,直线l :kx +y +4=0经过圆C 的圆心(﹣2,2), 故有﹣2k +2+4=0,∴k =3,点A (0,3). 直线m :y =x +3,圆心到直线的距离d =√2=√2,∴直线m 被圆C 所截得的弦长为2√2−12=√6. 故选:C .例4-2.直线y =kx +3与圆(x ﹣3)2+(y ﹣2)2=4相交于M ,N 两点,若MN <2√3,则k 的取值范围是.【解答】解:设圆心(3,2)到直线y =kx +3的距离为d ,则d =√k 2+12,由于(MN 2)2=4﹣d 2,且MN <2√3,求得 d ≥1,∴1≤d <2,即√k 2+1∈[1,2),由d ≥1求得k ≤−34,k ≥0,由d <2 求得 −3−2√65<d <−3+2√65, 即k 的取值范围是{k |−3−2√65<k ≤−34,或0≤k <−3+2√65}, 故答案为:{k |−3−2√65<k ≤−34,或0≤k <−3+2√65}. 例4-3.已知圆C :(x ﹣1)2+(y ﹣2)2=25,直线l :(2m +1)x +(m +1)y ﹣7m ﹣4=0,则直线l 被圆C 截得的弦长的最小值为( ) A .2√5B .4√5C .6√3D .8√3【解答】解:圆C :(x ﹣1)2+(y ﹣2)2=25的圆心坐标为C (1,2),半径为5. 由直线l :(2m +1)x +(m +1)y ﹣7m ﹣4=0,得m (2x +y ﹣7)+x +y ﹣4=0, 联立{2x +y −7=0x +y −4=0,解得{x =3y =1.∴直线l 过定点P (3,1),点P(3,1)在圆内部,则当直线l与线段PC垂直时,直线l被圆C截得的弦长最小.此时|PC|=√(1−3)2+(2−1)2=√5.∴直线l被圆C截得的弦长的最小值为2√52−(√5)2=4√5.故选:B.例4-4.已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,√2),则四边形ABCD的面积的最大值为5.【解答】解:如图连接OA、OD作OE⊥ACOF⊥BD垂足分别为E、F∵AC⊥BD∴四边形OEMF为矩形已知OA=OC=2 OM=√3,设圆心O到AC、BD的距离分别为d1、d2,则d12+d22=OM2=3.•|AC|(|BM|+|MD|),四边形ABCD的面积为:s=12从而:s=1|AC|⋅|BD|=2√(4−d12)(4−d22)≤8−(d12+d22)=5,2当且仅当d12=d22时取等号,故答案为:5.考点五、直线与圆的交点问题例5-1.在平面直角坐标系中,已知圆:,过点且斜率为的直线与圆相交于不同的两点,线段的中点为。
高中数学一轮(y ī l ún)复习资料第十五章 解析几何(ji ě x ī j ǐh é)第三节 圆的HY 方程(f āngch éng)和一般方程A 组1.假设圆x 2+y 2-2kx +2y +2=0(k >0)与两坐标轴无公一共点,那么实数k 的取值范围为________.解析:圆的方程为(x -k )2+(y +1)2=k 2-1,圆心坐标为(k ,-1),半径r =k 2-1,假设圆与两坐标无公一共点,即⎩⎪⎨⎪⎧ k 2-1<|k |k 2-1<1,解得1<k < 2. 2.假设圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,那么该圆的HY 方程是________.解析:由题意,设圆心(x 0,1),∴|4x 0-3|42+(-3)2=1,解得x 0=2或者x 0=-12(舍), ∴所求圆的方程为(x -2)2+(y -1)2=1.3.(2021年调研)D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥02x +y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为________.答案:π4.(2021年高考宁夏、卷改编)圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,那么圆C 2的方程为________________.解析:圆C 1:(x +1)2+(y -1)2=1的圆心为(-1,1).圆C 2的圆心设为(a ,b ),C 1与C 2关于直线x -y -1=0对称,∴⎩⎪⎨⎪⎧ b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,圆C 2的半径为1,∴圆C 2的方程为(x -2)2+(y +2)2=1.5.(原创题)圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,其圆心为P ,假设∠APB =90°,那么实数c 的值是________.解析:当∠APB =90°时,只需保证圆心到y 轴的间隔 等于半径的22倍.由于圆的HY 方程为(x -2)2+(y +1)2=5-c ,即2=22×5-c ,解得c =-3.6.点A (-3,0),B (3,0),动点P 满足(mǎnzú)|P A |=2|PB |.(1)假设(jiǎshè)点P 的轨迹(guǐjì)为曲线C ,求此曲线(qūxiàn)的方程;(2)假设点Q 在直线l :x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公一共点M ,求|QM |的最小值,并求此时直线l 2的方程.解:(1)设点P 的坐标为(x ,y ),那么(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图那么直线l 2是此圆的切线,连结CQ ,那么|QM |=|CQ |2-|CM |2=|CQ |2-16, 当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42, 此时|QM |的最小值为32-16=4,这样的直线l 2有两条,设满足条件的两个公一共点为M 1,M 2,易证四边形M 1CM 2Q 是正方形,∴l 2的方程是x =1或者y =-4.B 组1.(2021年质检)圆心在直线2x -3y -1=0上的圆与x 轴交于A (1,0),B (3,0)两点,那么圆的方程为________________.解析:所求圆与x 轴交于A (1,0),B (3,0)两点,故线段AB 的垂直平分线x =2过所求圆的圆心,又所求圆的圆心在直线2x -3y -1=0上,所以两直线的交点坐标即为所求圆的圆心坐标,解之得圆心坐标为(2,1),进一步可求得半径为2,所以圆的HY 方程为(x -2)2+(y -1)2=2.2.(2021年调研)假设直线ax +by =1过点A (b ,a ),那么以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是___.解析:∵直线ax +by =1过点A (b ,a ),∴ab +ab =1,∴ab =12,又OA =a 2+b 2,∴以O 为圆心,OA 长为半径的圆的面积:S =π·OA 2=(a 2+b 2)π≥2ab ·π=π,∴面积的最小值为π.3.(2021年高考卷改编(gǎibiān))点P (4,-2)与圆x 2+y 2=4上任一点(yī diǎn)连线的中点轨迹方程是________________.解析(jiě xī):设圆上任一点(yī diǎn)坐标为(x 0,y 0),那么x 02+y 02=4,连线中点坐标为(x ,y ),那么⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 02+y 02=4中得(x -2)2+(y +1)2=1. 4.点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,点P 关于直线x +y -3=0的对称点也在圆C 上,那么a =________,b =________.解析:点P (1,4)在圆C :x 2+y 2+2ax -4y +b =0上,所以2a +b +1=0,点P 关于直线x+y-3=0的对称点也在圆C上,所以圆心(-a,2)在直线x+y-3=0上,即-a+2-3=0,解得a=-1,b=1.5.圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,那么四边形ABCD的面积为___________.解析:由题意知,圆心坐标为(3,4),半径r=5,故过点(3,5)的最长弦为AC=2r=10,最短弦BD=252-12=46,四边形ABCD的面积为20 6.6.过圆x2+y2=4外一点P(4,2)作圆的两条切线,切点为A、B,那么△ABP的外接圆的方程是____________________.解析:∵圆心为O(0,0),又∵△ABP的外接圆就是四边形OAPB的外接圆.其直径d=OP=25,∴半径r= 5.而圆心C为(2,1),∴外接圆的方程为(x-2)2+(y-1)2=5.7.动点P(x,y)满足x2+y2-|x|-|y|=0,O为坐标原点,那么PO的取值范围是______.解析:方程x2+y2-|x|-|y|=0可化为(|x|-12)2+(|y|-12)2=12.所以动点P(x,y)的轨迹如图:为原点和四段圆孤,故PO的取值范围是{0}∪[1, 2 ].8.(2021年质检)曲线f(x)=x ln x在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是____________.解析(jiě xī):曲线(qūxiàn)f(x)=x ln x在点P(1,0)处的切线(qiēxiàn)l方程(fāngchéng)为x-y-1=0,与坐标轴围成的三角形的外接圆圆心为(12,-12),半径为22,所以方程为(x-12)2+(y+12)2=12.答案:(x-12)2+(y+12)2=129.设实数x 、y 满足x 2+(y -1)2=1,假设对满足条件的x 、y ,不等式y x -3+c ≥0恒成立,那么c 的取值范围是________.解析:由题意,知-c ≤y x -3恒成立,又y x -3=y -0x -3表示圆上的点与定点(3,0)连线的斜率,范围为[-34,0],所以-c ≤-34,即c 的取值范围是c ≥34. 10.如图,在平面直角坐标系xOy 中,A (a,0)(a >0),B (0,a ),C (-4,0),D (0,4),设△AOB 的外接圆圆心为E .(1)假设⊙E 与直线CD 相切,务实数a 的值;(2)设点P 在圆E 上,使△PCD 的面积等于12的点P 有且只有三个,试问这样的⊙E 是否存在,假设存在?求出⊙E 的HY 方程;假设不存在,说明理由.解:(1)直线CD 方程为y =x +4,圆心E (a 2,a 2),半径r =22a . 由题意得|a 2-a 2+4|2=22a ,解得a =4. (2)∵|CD |=(-4)2+42=42,∴当△PCD 面积为12时,点P 到直线CD 的间隔 为3 2.又圆心E 到直线CD 间隔 为22(定值),要使△PCD 的面积等于12的点P 有且只有三个,只须圆E 半径2a 2=52,解得a =10, 此时,⊙E 的HY 方程为(x -5)2+(y -5)2=50.11.在Rt △ABO 中,∠BOA =90°,OA =8,OB =6,点P 为它的内切圆C 上任一点,求点P 到顶点A 、B 、O 间隔 的平方和的最大值和最小值.解:如下(rúxià)图,以O 为原点,OA 所在(suǒzài)直线为x 轴,OB 所在(suǒzài)直线为y 轴,建立(jiànlì)直角坐标系xOy ,那么A (8,0),B (0,6),内切圆C 的半径r =12(OA +OB -AB )=8+6-102=2.∴内切圆C 的方程为(x -2)2+(y -2)2=4. 设P (x ,y )为圆C 上任一点,点P 到顶点A 、B 、O 的间隔 的平方和为d ,那么d =P A 2+PB 2+PO 2=(x -8)2+y 2+x 2+(y -6)2+x 2+y 2=3x 2+3y 2-16x -12y +100=3[(x -2)2+(y -2)2]-4x +76.∵点P (x ,y )在圆C 上,∴(x -2)2+(y -2)2=4.∴d =3×4-4x +76=88-4x .∵点P (x ,y )是圆C 上的任意点,∴x ∈[0,4].∴当x =0时,d max =88;当x =4时,d min =72.12.(2021年高考卷)在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两个坐标轴有三个交点,经过这三个交点的圆记为C .(1)务实数b 的取值范围;(2)求圆C 的方程;(3)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.解:(1)显然b ≠0.否那么,二次函数f (x )=x 2+2x +b 的图象与两个坐标轴只有两个交点(0,0),(-2,0),这与题设不符.由b ≠0知,二次函数f (x )=x 2+2x +b 的图象与y 轴有一个非原点的交点(0,b ),故它与x 轴必有两个交点,从而方程x 2+2x +b =0有两个不相等的实数根,因此方程的判别式4-4b >0,即b <1.所以(suǒyǐ)b 的取值范围(fànwéi)是(-∞,0)∪(0,1).(2)由方程(fāngchéng)x 2+2x +b =0,得x =-1±1-b .于是(yúshì),二次函数f (x )=x 2+2x +b 的图象与坐标轴的交点是(-1-1-b ,0),(-1+1-b ,0),(0,b ).设圆C 的方程为x 2+y 2+Dx +Ey +F =0.因圆C 过上述三点,将它们的坐标分别代入圆C 的方程,得 ⎩⎪⎨⎪⎧ (-1-1-b )2+D (-1-1-b )+F =0,(-1+1-b )2+D (-1+1-b )+F =0,b 2+Eb +F =0.解上述方程组,因b ≠0,得⎩⎪⎨⎪⎧ D =2,E =-(b +1),F =b .所以,圆C 的方程为x 2+y 2+2x -(b +1)y +b =0.(3)圆C 过定点.证明如下:假设圆C 过定点(x 0,y 0)(x 0,y 0不依赖于b ),将该点的坐标代入圆C 的方程,并变形为x 02+y 02+2x 0-y 0+b (1-y 0)=0.(*)为使(*)式对所有满足b <1(b ≠0)的b 都成立,必须有1-y 0=0,结合(*)式得x 02+y 02+2x 0-y 0=0.解得⎩⎪⎨⎪⎧ x 0=0,y 0=1,或者⎩⎪⎨⎪⎧x 0=-2,y 0=1.经检验知,点(0,1),(-2,1)均在圆C 上, 因此,圆C 过定点. 内容总结。
专专9.2圆的专专一、单选题1. 已知圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,a ,b为正实数,则ab 的最大值为 ( )A. B.94C.32D.22. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是( )A. [2,6]B. [4,8]C.D.3. 已知圆2260x y x +-=,过点(1,2)D 的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 44. 已知圆M 的方程为22680x y x y +--=,过点(0,4)P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( )A. 30B. 40C. 60D. 805. 在平面直角坐标系xOy 中,已知点,,若动点M 满足||2||MA MO =,则OM ON ⋅的取值范围是( )A.B.C.D.6. 若平面内两定点A ,B 之间的距离为2,动点P 满足|||PB PA =,则tan ABP∠的最大值为( )A.2B. 1C.D. 7. 已知圆22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点,过点P 作圆M 的切线PA ,PB ,且切点为A ,B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++= 8. 已知圆221x y +=,点(1,0)A ,ABC 内接于圆,且60BAC ︒∠=,当B ,C 在圆上运动时,BC 中点的轨迹方程是( )A. 2212x y +=B. 2214x y +=C. 2211()22x y x +=<D. 2211()44x y x +=<9. 已知线段AB 是圆C :224x y +=上的一条动弦,且||23AB =,若点P 为直线40x y +-=上的任意一点,则的最小值为( )A. 1B. 1C. 2D. 2二、多选题10. 已知点P 在圆22(5)(5)16x y -+-=上,点(4,0)A ,(0,2)B ,则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB 的距离大于2C. 当PBA ∠最小时,||PB =D. 当PBA ∠最大时,||PB =11. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1:2,则圆C的方程为( )A. 224()33x y ++= B. 224(33x y +-=C. 224(3x y +=D. 224(3x y ++=12. 关于圆2221:2104C x y kx y k k +-++-+=,下列说法正确的是( ) A. k 的取值范围是0k >B. 若4k =,过(3,4)M 的直线与圆C 相交所得弦长为125160x y --=C. 若4k =,圆C 与圆221x y +=相交D. 若4k =,0m >,0n >,直线10mx ny --=恒过圆C 的圆心,则128m n+恒成立13. 圆C :224630x y x y ++--=,直线:3470l x y --=,点P 在圆C 上,点Q在直线l 上,则下列结论正确的是( )A. 直线l 与圆C 相交B. ||PQ 的最小值是1C. 若P 到直线l 的距离为2,则点P 有2个D. 从Q 点向圆C 引切线,切线长的最小值是314. 已知222{(,)|}A x y x y r =+=,222{(,)|()()}B x y x a y b r =-+-=,1122{(,),(,)}A B x y x y ⋂=,则( )A. 22202a b r <+<B. 1212()()0a x x b y y -+-=C. 1212,x x a y y b +=+=D. 221122a b ax by +=+三、填空题15. 已知P ,Q 分别为圆M :22(6)(3)4x y -+-=与圆N :22(4)(2)1x y ++-=上的动点,A 为x 轴上的动点,则||||AP AQ +的最小值为__________.16. 在平面直角坐标系xOy 中,A 为直线l :2y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点.D 若0AB CD ⋅=,则点A 的横坐标为__________.17. 已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________.18. 已知圆O :221x y +=和点(2,0)A -,若定点(,0)(2)B b b ≠-和常数λ满足,对圆O 上任意一点M ,都有||||MB MA λ=,则λ=__________.19. 在平面直角坐标系xOy 中,已知直角ABC 中,直角顶点A 在直线60x y -+=上,顶点B ,C 在圆2210x y +=上,则点A 横坐标的取值范围是__________. 四、解答题20. 已知两个定点(4,0)A -,(1,0)B -,动点P 满足||2||.PA PB =设动点P 的轨迹为曲线E ,直线l : 4.y kx =-()Ⅰ求曲线E 的轨迹方程;()Ⅱ若l 与曲线E 交于不同的C ,D 两点,且90(COD O ︒∠=为坐标原点),求直线l的斜率;()Ⅲ若12k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点.答案和解析1.【答案】B解:由已知,得圆1C :22()(2)1x a y ++-=的圆心为1(,2)C a -,半径1 1.r = 圆2C :22()(2)4x b y -+-=的圆心为2(,2)C b ,半径2 2.r =圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,1212,||C C r r ∴=+即3a b +=, 由基本不等式,得29()24a b ab +=,取等号时32a b ==, 故选:.B2.【答案】A解:直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,∴令0x =,得2y =-,令0y =,得2x =-,(2,0)A ∴-,(0,2)B -,||4422AB =+=,点P 到直线20x y ++=的距离为ABP 的高h , 圆的圆心为(2,0),半径为2,圆心到直线的距离为:,所以点P 到直线的距离h 的最大值为22232+=,最小值为2222-=,则ABP 面积为,最大值为1223262⨯⨯=, 最小值为122222⨯⨯=, 所以ABP 面积的取值范围为[2,6]. 故选.A解:由圆的方程可得圆心坐标(3,0)C ,半径3r =,且点D 在圆内,设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ===所以最小的弦长||2AB ==, 故选.B4.【答案】B解:圆 M 的标准方程为 22(3)(4)25x y -+-=, 即圆是以 (3,4)M 为圆心,5为半径的圆,且由 22(03)(44)925-+-=<,即点 (0,4)P 在圆内, 则最短的弦是以 (0,4)P 为中点的弦, 所以 225()92AC =+,所以 8AC =, 过 (0,4)P 最长的弦 BD 为直径, 所以 10BD =,且 AC BD ⊥, 故而故选.B5.【答案】D解:设(,)M x y ,因为动点M 满足||||MA MO = 则222222(2)22(2)8x y x y x y ++=+⇒+-=,即(,)(1,0)[OM ON x y x ⋅=⋅=∈-, 故选.D解:以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系, 如图,则(1,0)A ,(1,0)B -,设,2222(1)2(1)x y x y ++=-+,整理得:2222610(3)8x y x x y +-+=⇒-+=,根据图象可知,当BP 为圆C 切线时,tan ABP ∠取得最大值, 此时BP == 则tan 1PC ABP PB ∠===, 故选:.B7.【答案】D解:圆M 方程的圆心(1,1)M ,半径2r =, 根据切线的性质及圆的对称性可知PM AB ⊥, 则||||42||||PAMPM AB SPA AM ⋅==⋅,要使||||PM AB ⋅最小,只需最小,即最小,此时PM l ⊥,min |212|||55PM ++∴==,22||||||1PA PM AM =-=, 过点M 且垂直于l 的方程为11(1)2y x -=-,将其与l 的方程联立,解得(1,0)P -, 以PM 为直径的圆的方程为,结合圆M 的方程两式相减可得直线AB 的方程为210x y ++=, 故选.D(,)P x y8.【答案】D解:设BC 中点是D ,圆周角等于圆心角的一半,120BOC ︒∴∠=,60BOD ︒∠=,在直角三角形BOD 中,有12OD =, 故中点D 的轨迹方程是:2214x y +=, 考虑A ,B 重合的极限情况,此时30OAC ︒∠=, 则直线AC 所在的方程为3333y x =-, 联立,得或故C 的横坐标为12-,AC 的中点横坐标为1.4因为A ,B 不重合,所以D 点横坐标14x <, 故选:.D9.【答案】C解:由题意,过圆心C 作CD AB ⊥交AB 于点D ,又圆C :224x y +=,圆心为(0,0)C ,半径2r =, 所以,则||||2||2||PA PB PC CA PC CB PC CD PD +=+++=+=, 当PC AB ⊥时,且D 在线段PC 上时,||PD 取最小值, 由点C 到直线40x y +-=的距离,所以,所以的最小值为42 2.-故选.C10.【答案】ACD解:由点(4,0)A ,(0,2)B , 可得直线AB 的方程为240.x y +-=则圆心(5,5)=,故P 到直线AB 410<,42<,所以A 正确,B 错误.由题意可知,当直线PB 与圆相切时,PBA ∠最大或最小, 由于圆心到B 的距离为,此时,故C ,D 都正确.故选.ACD11.【答案】AB解:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π, 设圆心(0,)a ,半径为 r , 则sin13r π=,cos||3r a π=,解得r =243r =,||3a =,即3a =±,故圆C 的方程为224(.33x y +±= 故选.AB12.【答案】ACD解:对于A ,若方程22212104x y kx y k k +-++-+=表示圆,则,化简得0k >,故A 正确;对于B ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.过(3,4)M 的直线的斜率不存在时,直线方程为3x =,圆心到直线3x =的距离为1,则过(3,4)M 的直线与圆 C 相交所得弦长为2222123-=; 过(3,4)M 的直线的斜率存在时,设直线的斜率为k , 则直线方程为,即430kx y k -+-=,设圆心到直线430kx y k -+-=的距离为d ,因为弦长为23,则222223d -=,解得1d =, 故,解得125k =, 所以直线方程为,即125160x y --=,故满足条件的直线方程为3x =或125160x y --=, 故B 错误;对于C ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.圆221x y +=的圆心为,半径为1,所以两圆心间的距离为,又21521-<<+,故两圆相交,故C 正确;对于D ,若4k =,则圆C 的圆心为,又直线10mx ny --=恒过圆C 的圆心,则21m n +=,又0m >,0n >, 则444248m n m n m n m=++⨯= 当且仅当224n m =,即11,42m n ==时等号成立, 故D 正确. 故选.ACD13.【答案】BCD解:圆的方程化为标准形式为,圆心为,半径 4.r =圆心C 到直线l 的距离为22|3(2)437|543(4)d ⨯--⨯-==>+-,∴直线l 与圆C 相离,不相交,故选项A 错误;||PQ 的最小值为541-=,故选项B 正确;圆C 上的点到l 的距离最小值为541-=,最大值为549+=,2(1,9)∈,∴圆C 上到直线l 的距离为2的点P 有2个,故选项C 正确;Q 到圆C 的切线QT ,T 为切点,则,当||QC 最小时||QT 最小,||QC 的最小值等于C 到直线l 的距离5d =,22||543QT ∴=-=最小值,故选项D 正确.故选.BCD14.【答案】BCD解:设两圆相交于111(,)P x y ,222(,)P x y ,圆,圆C :222()()x a y b r -+-=,则02||OC r <<,即22204a b r <+<,故A 错误,两圆方程相减可得直线12P P 的方程为:22220a b ax by +--=,即2222ax by a b +=+, 分别把111(,)P x y ,222(,)P x y 两点代入2222ax by a b +=+得:221122ax by a b +=+,222222ax by a b +=+,两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,故BD 正确; 由圆的性质可知:线段12P P 与线段OC 互相平分,12x x a ∴+=,12y y b +=,故C 正确,故选:.BCD15.【答案】3解:如图所示,因为圆N :22(4)(2)1x y ++-=关于x 轴对称的圆为圆G :22(4)(2)1x y +++=, 则||||AP AQ +的最小值为22||12105355 3.MG --=+-=-故答案为55 3.-16.【答案】3解:设(,2)A a a ,0a >,(5,0)B ,5(,)2a C a +∴, 则圆C 的方程为(5)()(2)0.x x a y y a --+-=联立2(5)()(2)0y x x x a y y a =⎧⎨--+-=⎩,解得(1,2).D223215(5,2)(,2)240.22a a a AB CD a a a a a ----∴⋅=--⋅-=+-= 解得:3a =或 1.a =-又0a >, 3.a ∴=即A 的横坐标为3.故答案为:3.17.【答案】22(1)(2)4x y -+-=解:圆C 的圆心在第一象限,且在直线2y x =上,故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故有|1||2|a a +=,解得1a =,或1(3a =-舍去),故半径为2, 则圆C 的方程为22(1)(2)4x y -+-=,故答案为:22(1)(2) 4.x y -+-=18.【答案】12解:根据题意,设(,)M x y ,若||||MB MA λ=,变形可得222||||MB MA λ=,即222222()(2)x b y x y λλ-+=++,又由221x y +=,则变形可得:2221245b bx x λλ+-=+, 则有2225142b bλλ⎧=+⎨=-⎩, 解可得1(2λ=负值舍去),12b =-; 故答案为:1.219.【答案】[4,2]--解:如图过直线60x y -+=上点P 作圆2210x y +=的切线,当两条切线垂直时,根据,得4OPB π∠=, 所以, 则由题意得,设(,6)A x x +,则22(6)25x x ++,即2680x x ++,解得42x --,所以点A 横坐标的取值范围是[4,2].--故答案为[4,2].--20.【答案】解:(1)设点P 坐标为(,)x y ,由||2||PA PB ==, 平方可得22228164(21)x y x x y x +++=+++,整理得:曲线E 的轨迹方程为224x y +=; (2)直线l 的方程为4y kx =-,依题意可得三角形COD 为等腰直角三角形,圆心到直线的距离为1||2CD =则d ==,k ∴=;(3)由题意可知:O ,Q ,M ,N 四点共圆且在以OQ 为直径的圆上, 设1(,4)2Q t t -,以OQ 为直径的圆的方程为1()(4)02x x t y y t -+-+=, 即:22(4)02t x tx y y -+--=,又M ,N 在曲线E :224x y +=上,可得MN 的方程为1(4)402tx t y +--=, 即()4(1)02y x t y +-+=,由0210y x y ⎧+=⎪⎨⎪+=⎩得121x y ⎧=⎪⎨⎪=-⎩, ∴直线MN 过定点1(,1).2-。
章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。
课时过关检测(四十八)圆的方程【原卷版】1.圆心为(2,1)且和x轴相切的圆的方程是()A.(x-2)2+(y-1)2=1B.(x+2)2+(y+1)2=1C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=52.设a∈R,则“a>2”是“方程x2+y2+ax-2y+2=0的曲线是圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若x2+y2=8,则2x+y的最大值为()A.8B.4C.210D.54.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则t的取值范围是()A.(0,2]B.[1,2]C.[2,3]D.[1,3]5.点M为圆C:(x+2)2+(y+1)2=1上任意一点,直线(1+3λ)x+(1+2λ)y=2+5λ过定点P,则|MP|的最大值为()A.23B.13C.23+1D.13+16.(多选)已知圆x2+y2-4x-1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=438.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)12.写出一个关于直线x +y -1=0对称的圆的方程____________.13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.14.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.15.(多选)设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π16.已知曲线T :F (x ,y )=0,对坐标平面上任意一点P (x ,y ),定义F [P ]=F (x ,y ),若两点P ,Q 满足F [P ]·F [Q ]>0,称点P ,Q 在曲线T 同侧;F [P ]·F [Q ]<0,称点P ,Q 在曲线T 两侧.(1)直线过l 原点,线段AB 上所有点都在直线l 同侧,其中A (-1,1),B (2,3),求直线l 的斜率的取值范围;(2)已知曲线F (x ,y )=(3x +4y -5)4-x 2-y 2=0,O 为坐标原点,求点集S ={P |F [P ]·F [O ]>0}的面积.课时过关检测(四十八)圆的方程【解析版】1.圆心为(2,1)且和x 轴相切的圆的方程是()A .(x -2)2+(y -1)2=1B .(x +2)2+(y +1)2=1C .(x -2)2+(y -1)2=5D .(x +2)2+(y +1)2=5解析:A 圆心为(2,1)且和x 轴相切的圆,它的半径为1,故它的方程是(x -2)2+(y -1)2=1,故选A .2.设a ∈R ,则“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A方程x 2+y 2+ax -2y +2=0的曲线是圆,则有D 2+E 2-4F =a 2+4-8>0,解得a >2或a <-2,则“a >2”是“a >2或a <-2”的充分不必要条件,所以“a >2”是“方程x 2+y 2+ax -2y +2=0的曲线是圆”的充分不必要条件.故选A .3.若x 2+y 2=8,则2x +y 的最大值为()A .8B .4C .210D .5解析:C 设2x +y =t ,则y =t -2x ,当直线y =t -2x 与x 2+y 2=8相切时,t 取到最值,所以|t |5≤22,解得-210≤t ≤210,所以2x +y 的最大值为210,故选C .4.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是()A .(0,2]B .[1,2]C .[2,3]D .[1,3]解析:D圆C :(x -3)2+(y -1)2=1的圆心C (3,1),半径为1,因为圆心C 到O (0,0)的距离为2,所以圆C 上的点到O (0,0)的距离最大值为3,最小值为1,又因为∠APB =90°,则以AB 为直径的圆和圆C 有交点,可得|PO |=12|AB |=t ,所以有1≤t ≤3,故选D .5.点M 为圆C :(x +2)2+(y +1)2=1上任意一点,直线(1+3λ)x +(1+2λ)y =2+5λ过定点P ,则|MP |的最大值为()A .23B .13C .23+1D .13+1解析:D 整理直线方程得:(x +y -2)+(3x +2y -5)λ=0+y -2=0,x +2y -5=0得=1,=1,∴P (1,1),由圆的方程知圆心C (-2,-1),半径r =1,∴|MP |max =|CP |+r =(-2-1)2+(-1-1)2+1=13+1.故选D .6.(多选)已知圆x 2+y 2-4x -1=0,则下列关于该圆说法正确的有()A .关于点(2,0)对称B .关于直线y =0对称C .关于直线x +3y -2=0对称D .关于直线x -y +2=0对称解析:ABCx 2+y 2-4x -1=0⇒(x -2)2+y 2=5,所以圆心的坐标为(2,0),半径为5.A项,圆是关于圆心对称的中心对称图形,而点(2,0)是圆心,所以本选项正确;B 项,圆是关于直径所在直线对称的轴对称图形,直线y =0过圆心,所以本选项正确;C 项,圆是关于直径所在直线对称的轴对称图形,直线x +3y -2=0过圆心,所以本选项正确;D 项,圆是关于直径所在直线对称的轴对称图形,直线x -y +2=0不过圆心,所以本选项不正确.故选A 、B 、C .7.(多选)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 可能的方程为()A .x 2=43B .x 2=43C .(x -3)2+y 2=43D .(x +3)2+y 2=43解析:AB由题意知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心C (0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C的方程为x 2=43.8.已知三个点A (0,0),B (2,0),C (4,2),则△ABC 的外接圆的圆心坐标是________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0,则=0,+2D +F =0,+4D +2E +F =0,解得=-2,=-6,=0,所以圆的方程为x 2-2x +y 2-6y =0,即(x -1)2+(y -3)2=10,所以圆心坐标为(1,3).答案:(1,3)9.已知点P 为圆C :x 2+y 2-4x -2y +1=0上任意一点,A ,B 为直线3x +4y +5=0上的两动点,且|AB |=2,则△ABP 的面积的取值范围是________.解析:圆C 的标准方程为(x -2)2+(y -1)2=4,圆心C (2,1),半径r =2,圆心C 到直线3x +4y +5=0的距离d =|6+4+5|32+42=3,设P 到直线AB 的距离为h ,则S △ABP =12·|AB |·h=h ,∵d -r ≤h ≤d +r ,∴1≤h ≤5,∴S △ABP ∈[1,5],即△ABP 的面积的取值范围为[1,5].答案:[1,5]10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2).所以直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又直径|CD |=410,所以|PA |=210.所以(a +1)2+b 2=40.②=-3,=6=5,=-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.11.瑞士数学家欧拉在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.若已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是()A .(1,3)B .(3,1)C .(-2,0)D .(0,-2)解析:D ∵A (-4,0),B (0,4),∴AB 的垂直平分线方程为x +y =0,又外心在欧拉线x-y +2=0+y =0,-y +2=0,解得三角形ABC 的外心为G (-1,1),又r =|GA |=(-1+4)2+(1-0)2=10,∴△ABC 外接圆的方程为(x +1)2+(y -1)2=10.设C (x ,y ),则三角形ABC 即x -43-y +43+2=0.整理得x -y -2=0.联x +1)2+(y -1)2=10,-y -2=0,=0,=-2=2,=0.∴顶点C 的坐标可以是(0,-2).故选D .12.写出一个关于直线x +y -1=0对称的圆的方程____________.解析:设圆心坐标为C (a ,b ),因为圆C 关于x +y -1=0对称,所以C (a ,b )在直线x +y -1=0上,则a +b -1=0,取a =1⇒b =0,设圆的半径为1,则圆的方程(x -1)2+y 2=1.答案:(x -1)2+y 2=1(答案不唯一)13.已知A (-2,0),B (2,0),动点M 满足|MA |=2|MB |,则点M 的轨迹方程是____________________;又若MA ―→·MB ―→=0,此时△MAB 的面积为________.解析:设M (x ,y ),由|MA |=2|MB |,得(x +2)2+y 2=2(x -2)2+y 2,整理得3x 2+3y 2-20x +12=0.以AB 为直径的圆的方程为x 2+y 2=4,x 2+3y 2-20x +12=0,2+y 2=4,解得|y |=85.即M 点的纵坐标的绝对值为85.此时△MAB 的面积为S =12×4×85=165.答案:3x 2+3y 2-20x +12=016514.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求点M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:圆C :x 2+(y -4)2=42,故圆心为C (0,4),半径为4.(1)当C ,M ,P 三点均不重合时,∠CMP =90°,所以点M 的轨迹是以线段PC 为直径的圆(除去点P ,C ),线段PC 中点为(1,3),12|PC |=12(2-0)2+(2-4)2=2,故M 的轨迹方程为(x -1)2+(y -3)2=2(x ≠2,且y ≠2或x ≠0,且y ≠4).当C ,M ,P 三点中有重合的情形时,易求得点M 的坐标为(2,2)或(0,4).综上可知,点M 的轨迹是一个圆,轨迹方程为(x -1)2+(y -3)2=2.(2)由(1)可知点M 的轨迹是以点N (1,3)为圆心,2为半径的圆.法一(几何法):由于|OP |=|OM |,故O 在线段PM 的垂直平分线上.又P 在圆N 上,从而ON⊥PM.因为ON的斜率为3,所以直线l的斜率为-13,故直线l的方程为y=-13x+83,即x+3y-8=0.又易得|OM|=|OP|=22,点O到直线l的距离为812+32=4105,|PM|==4105,所以△POM的面积为12×4105×4105=165.法二(代数法):设M(x,y),由|OM|=|OP|=22得x2+y2=8,2+y2=8,①-1)2+(y-3)2=2,②①-②得直线l方程为x+3y-8=0,将x=8-3y代入①得5y2-24y+28=0,解得y1=145,y2=2.从而x1=-25,x2=2.所以M-25,|PM|==4105.又点O到l距离d=812+32=4105,所以△POM的面积S=12|PM|·d=12×4105×4105=165.15.(多选)设有一组圆C k:(x-k)2+(y-k)2=4(k∈R),下列命题正确的是()A.不论k如何变化,圆心C始终在一条直线上B.所有圆C k均不经过点(3,0)C.经过点(2,2)的圆C k有且只有一个D.所有圆的面积均为4π解析:ABD圆心坐标为(k,k),在直线y=x上,A正确;令(3-k)2+(0-k)2=4,化简得2k2-6k+5=0,∵Δ=36-40=-4<0,∴2k2-6k+5=0无实数根,B正确;由(2-k)2+(2-k)2=4,化简得k2-4k+2=0,∵Δ=16-8=8>0,有两不等实根,∴经过点(2,2)的圆C k有两个,C错误;由圆的半径为2,得圆的面积为4π,D正确.故选A、B、D.16.已知曲线T:F(x,y)=0,对坐标平面上任意一点P(x,y),定义F[P]=F(x,y),若两点P,Q满足F[P]·F[Q]>0,称点P,Q在曲线T同侧;F[P]·F[Q]<0,称点P,Q在曲线T 两侧.(1)直线过l原点,线段AB上所有点都在直线l同侧,其中A(-1,1),B(2,3),求直线l 的斜率的取值范围;(2)已知曲线F(x,y)=(3x+4y-5)4-x2-y2=0,O为坐标原点,求点集S={P|F[P]·F[O]>0}的面积.解:(1)由题意,显然直线l斜率存在,设方程为y=kx,则F(x,y)=kx-y=0,因为A(-1,1),B(2,3),线段AB上所有点都在直线l同侧,则F[A]·F[B]=(-k-1)(2k-3)>0,解得-1<k<3 2.(2)因为F[O]<0,所以F[P]=(3x+4y-5)·4-x2-y2<0,x+4y-5<0,2+y2<4,点集S为圆x2+y2=4在直线3x+4y-5=0下方内部,如图所示,设直线与圆的交点为A,B,则O到AB的距离为1,故∠AOB=2π3,因此,所求面积为S=12·4π3·22+12·32·22=8π3+3.。
高考数学复习第三节圆的方程[考纲传真] 1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.1.圆的定义及方程定义平面内与定点的距离等于定长的点的集合(轨迹)标准方程(x-a)2+(y-b)2=r2(r>0)圆心(a,b),半径r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0)圆心⎝⎛⎭⎪⎫-D2,-E2,半径12D2+E2-4F点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[常用结论]1.圆的三个性质(1)圆心在过切点且垂直于切线的直线上;(2)圆心在任一弦的中垂线上;(3)两圆相切时,切点与两圆心三点共线.2.两个圆系方程具有某些共同性质的圆的集合称为圆系,它们的方程叫圆系方程(1)同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b为定值,r是参数;(2)半径相等的圆系方程:(x-a)2+(y-b)2=r2(r>0),其中r为定值,a,b是参数.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.( )(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF >0.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( )[答案] (1)√ (2)× (3)√ (4)√2.(教材改编)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4A [AB 的中点坐标为(0,0),|AB |=[1--1]2+-1-12=22,所以圆的方程为x 2+y 2=2.]3.点(m 2,5)与圆x 2+y 2=24的位置关系是( ) A .点在圆外 B .点在圆内 C .点在圆上D .不能确定A [将点(m 2,5)代入圆方程,得m 4+25>24.故点在圆外,故选A.] 4.若x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是( ) A .R B .(-∞,1) C .(-∞,1]D .[1,+∞)B [由方程x 2+y 2-4x +2y +5k =0可得(x -2)2+(y +1)2=5-5k ,此方程表示圆,则5-5k >0,解得k <1.故实数k 的取值范围是(-∞,1).故选B.]5.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1 B .(x -2)2+(y +1)2=1 C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1A [由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切,∴|4a -3|5=1,解得a =2或a =-12(舍去).∴圆的标准方程为(x -2)2+(y -1)2=1.故选A.]求圆的方程1. 过点A (1,-1)( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4C [AB 的中垂线方程为y =x ,所以由y =x ,x +y -2=0的交点得圆心(1,1),半径为2,因此圆的方程是(x -1)2+(y -1)2=4,故选C.]2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________.(x -1)2+(y +4)2=8 [过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =3-12+-2+42=22,故所求圆的方程为(x -1)2+(y +4)2=8.]3.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.x 2+y 2-2x =0 [法一:设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0.法二:画出示意图如图所示,则△OAB 为等腰直角三角形,故所求圆的圆心为(1,0),半径为1,所以所求圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0.][规律方法] 求圆的方程的方法1直接法:直接求出圆心坐标和半径,写出方程. 2待定系数法①若已知条件与圆心a ,b 和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.与圆有关的最值问题►考法1 【例1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0,则yx的最大值为________,最小值为________.3 -3 [原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率,所以设y x =k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =± 3.(如图所示)所以y x的最大值为3,最小值为- 3. ►考法2 截距型最值问题【例2】 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. [解] 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+-3-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. ►考法3 距离型最值问题【例3】 已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).求|MQ |的最大值和最小值;[解] (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=2+22+7-32=42,∴|MQ |m ax =42+22=62, |MQ |min =42-22=2 2.[规律方法] 与圆有关的最值问题的三种几何转化法 1形如形式的最值问题可转化为动直线斜率的最值问题.2形如t =ax +by 形式的最值问题可转化为动直线截距的最值问题. 3形如m =x -a2+y -b2形式的最值问题可转化为动点到定点的距离的平方的最值问题.(1)如果实数x ,y 满足圆(x -2)2+y 2=1,那么y +3x -1的取值范围是________. (2)由直线y =x +1上的一点向圆x 2-6x +y 2+8=0引切线,则切线长的最小值为________.(1)⎣⎢⎡⎭⎪⎫43,+∞ (2)7 [(1)(x ,y )在圆上,y +3x -1表示的是圆上的点(x ,y )与点(1,-3)连线的斜率,结合图象(图略),求出过点(1,-3)与圆相切的一条切线的斜率不存在,另一条切线斜率设为k ,切线方程为kx -y -3-k =0,圆心到直线的距离等于半径,即|k -3|1+k2=1,k =43,故取值范围是⎣⎢⎡⎭⎪⎫43,+∞.(2)切线长的最小值在直线y =x +1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d =|3-0+1|2=22,圆的半径为1,故切线长的最小值为d 2-r 2=8-1=7.]与圆有关的轨迹问题【例4】 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. [解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt△PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON (图略),则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. [规律方法] 求与圆有关的轨迹问题的四种方法 1直接法:直接根据题设给定的条件列出方程求解. 2定义法:根据圆的定义列方程求解. 3几何法:利用圆的几何性质得出方程求解.4代入法相关点法:找出要求的点与已知点的关系,代入已知点满足的关系式求解.已知点A (-1,0),点B (2,0),动点C 满足|AC |=|AB |,求点C 与点P (1,4)所连线段的中点M 的轨迹方程.[解] 由题意可知:动点C 的轨迹是以(-1,0)为圆心,3为半径长的圆,方程为(x +1)2+y 2=9.设M (x 0,y 0),则由中点坐标公式可求得C (2x 0-1,2y 0-4), 代入点C 的轨迹方程得4x 20+4(y 0-2)2=9, 化简得x 20+(y 0-2)2=94,故点M 的轨迹方程为x 2+(y -2)2=94.1.(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10C [设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),∴|MN |=46,故选C.]2.(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.⎝ ⎛⎭⎪⎫x -322+y 2=254 [由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,4-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.]3.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. [解] (1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2,由⎩⎪⎨⎪⎧x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=y 1y 224=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB ,故坐标原点O 在圆M 上. (2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4,故圆心M 的坐标为(m 2+2,m ), 圆M 的半径r =m 2+22+m 2.由于圆M 过点P (4,-2),因此AP →·BP →=0, 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可知y 1y 2=-4,x 1x 2=4,所以2m 2-m -1=0,解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10, 圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。