高中数学 第三章 三角恒等变形 3.3 三角函数的简单应用 3.3.2 半角公式及其应用课件 北师大版必修4
- 格式:ppt
- 大小:1.10 MB
- 文档页数:24
教学资料范本高中数学第三章三角恒等变换3.2倍角公式和半角公式例题与探究编辑:__________________时间:__________________3.2 倍角公式和半角公式典题精讲例1 求下列各式的值:(1)cos 12πcos 125π;(2)(cos -sin)(cos+sin);(3)-cos 2;(4)-+cos 215°.思路分析:本题考查倍角公式的变形及应用.(1)题添加系数2,即可逆用倍角公式;(2)题利用平方差公式之后再逆用倍角公式;(3)中提取系数后产生倍角公式的形式;(4)则需提取系数. 解:(1)cos cos =cos sin =×2cossin=sin =;(2)(cos -sin )(cos +sin )=cos 2-sin 2=cos=;(3)-cos 2=-(2cos 2-1)=-cos=-;(4)-+cos 215°=(2cos 215°-1)=cos30°=.绿色通道:根据式子本身的特征,经过适当变形,进而利用公式,同时制造出特殊角,获得式子的值,在变形中一定要整体考虑式子的特征. 变式训练1 求sin10°sin30°sin50°sin70°的值.思路分析:由sin30°=,原式可化为sin10°sin50°sin70°,再转化为cos20°cos40°cos80°,产生成倍数的角,增加一项sin20°,即可依次逆用倍角公式;也可使用三角中的对偶式,设而不求,达到变形的目的. 解法一:sin10°sin30°sin50°sin70°=cos20°cos40°cos80°=====.解法二:令M=sin10°sin30°sin50°sin70°, N=cos10°cos30°cos50°cos70°,则MN=(sin10°cos10°)(sin30°cos30°)(sin50° cos50°)(sin70° cos70°)=sin20° sin60° sin100° sin140°=cos10° cos30° cos50° cos70° =N,∴M=,即sin10° sin30° sin50° sin70°=.例2(20xx江苏高考卷,10)若sin(-α)=,则cos(+2α)等于( )A.-B.-C.D.思路解析:本题考查三角函数的恒等变换以及运算能力.观察发现+2α=2(+α),而(+α)+(-α)=,则cos(+α)=sin(-α),cos(+2α)=2cos2(+α)-1=2sin2(-α)-1=-.答案:A绿色通道:通过角的形式的变化,生成所求的角或再变形即得所求角,是三角变换的重要方式,求解时应当对所给角有敏锐的感觉,这种感觉的养成要靠平时经验的积累.变式训练1 已知sin(+α)sin(-α)=,且α∈(,π),求sin4α的值.思路分析:发现+α与-α的互余关系,将其中一个角的三角函数变为另一个的余名三角函数,即可产生倍角公式的形式,逆用倍角公式可得2α的三角函数值,进一步可求4α的正弦值.解:∵(+α)+(-α)=,∴sin(-α)=cos(+α).∵sin(+α)sin(-α)= ,∴2sin(+α)cos(+α)=.∴sin(+2α)=.∴cos2α=.又∵α∈(,π),∴2α∈(π,2π).∴sin2α=-=-.∴sin4α=2sin2αcos2α=-.变式训练2 设5π<θ<6π,cos=a,则sin的值等于( )A.-B.-C.-D.-思路解析:显然是的一半,可以直接应用公式.∵5π<θ<6π,∴<<3π,<<.∴sin=-=-.答案:D例3(20xx全国高考卷Ⅱ,理2)函数y=sin2xcos2x的最小正周期是( )A.2πB.4πC.D.思路解析:考查三角函数的周期性.将函数的解析式化为y=Asin(ωx+φ)的形式.y=sin2xcos2x=sin4x,则T==.答案:D绿色通道:讨论三角函数的周期性时,先化简解析式再求周期.化简的手段是:利用和差、倍角、半角等三角公式.化简的结果是:将三角函数的解析式化为y=Asin(ωx+φ)的形式,再利用公式T=得周期.变式训练(20xx陕西高考卷,理17)已知函数f(x)=sin(2x-)+2sin2(x-)(x∈R).(1)求函数f(x)的最小正周期;(2)求使函数f(x)取得最大值的x的集合.思路分析:将三角函数的解析式化为y=Asin(ωx+φ)+b的形式,再讨论周期和最值.解:(1)f(x)=sin(2x-)+1-cos2(x-)=2[sin2(x-)-cos2(x-)]+1=2sin[2(x-)-]+1=2sin(2x-)+1,∴T==π.(2)当f(x)取最大值时,sin(2x-)=1,有2x-=2kπ+(k∈Z).∴x=kπ+,即使函数f(x)取得最大值的x的集合为{x∈R|x=kπ+(k∈Z)}.问题探究问题1 试用tan表示sinα,cosα,tanα.导思:看到α和,联想到α=2(),因此从二倍角公式的角度来探讨.探究:可以由倍角公式直接获得tanα=;正弦、余弦只要在倍角公式中添加分母,再将分子、分母同除以cos2可得:sinα=2sin cos==,cosα=cos2-sin2==.用tan来表示sinα、cosα和tanα的关系式如下:sinα=,cosα=,tanα=.这三个公式统称为“万能公式”.其优点是用正切函数来求二倍角的三角函数值会特别方便,也为一类三角函数的求值提供了一座方便可行的桥梁.如要计算cosα或sin(α+β)的值,可以先设法求得tan或tan的值.由于公式中涉及角的正切,所以使用时要注意限制条件,即要保证式子有意义.所谓的“万能”是指:不论角α的哪一种三角函数,都可以表示成tan的有理式.这样就可以把问题转化为以tan为变量的“一元有理函数”,即如果令tan=t,则sinα、cosα和tanα均可表达为关于t的分式函数,这就实现了三角问题向代数问题的转化,为三角问题用代数方法来处理提供了一条途径.例1:求tan15°+cot15°的值.解法一:tan15°=tan(45°-30°)===2-,∴tan15°+cot15°=2-+=4.解法二:tan15°+cot15°=+===4.很明显解法二比解法一较方便地解决了问题,体现了万能公式的“万能”之处,值得我们借鉴.例2:求函数y=的值域.思路分析:先利用换元法,再利用判别式法求函数的值域.解:令tan=t,则t∈R,利用万能公式有sinx=,cosx=,∴y==(t∈R).整理得(2y+1)t2+2yt+2y-1=0.当2y+1=0即y=-时,t=-1∈R.∴y=-符合题意.当2y+1≠0即y≠-时,关于t的一元二次方程(2y+1)t2+2yt+2y-1=0必有实数根.∴Δ=4y2-4(2y+1)(2y-1)≥0.解得-≤y≤,即此时-≤y≤且y≠-.综上所得函数的值域是{y|-≤y≤}.例3:(20xx江西高考卷,文2 已知)tan=3,则cosα等于( )A. B.- C. D.-思路解析:cosα===-.答案:B问题2(1)观察代数式x2+y2=1,联想sin2α+cos2α=1,你发现了什么结论?(2)利用(1)解答下面的问题:已知实数x,y满足x2+y2=1,求xy的最大值和最小值.导思:如果两个实数的平方和等于1,那么这两个实数恰好是同一个角的正弦值和余弦值.探究:(1)可得结论:当实数x,y满足x2+y2=1时,可换元为x=cosα,y=sinα.(2)设x=cosα,y=sinα,α∈R,则有xy=sinαcosα=sin2α.∵α∈R,∴-1≤sin2α≤1.∴xy的最大值是,xy的最小值是-.这种求最值的方法称为三角代换法.在高考中经常用到,我们要逐步学会应用.例如:(20xx重庆高考卷,文14)若x2+y2=4,则x-y的最大值是____________________.思路解析:三角代换法.∵x2+y2=4,∴()2+()2=1.∴可设=cosα,=sinα(α∈R),即x=2cosα,y=2sinα,∴x-y=2cosα-2sinα=sin(-α).∴x-y的最大值是.答案:。
3.3 三角函数的积化和差与和差化积教学分析本节主要包括利用已有的公式进行推导发现.本节的编写意图与特色是教师引导学生发现创造,从而加深理解变换思想,提高学生的推理能力.三角恒等变换所涉及的问题各种各样,内容十分丰富,我们希望能总结出一些有规律性的数学思想、方法和技巧,提高对三角变换的理性认识.科学发现是从问题开始的,没有问题就不可能有深入细致的观察.为了让学生经历一个完整的探索发现过程,教科书从三角函数运算的角度提出了研究课题.这是从数学知识体系的内部发展需要提出问题的方法.用这种方法提出问题可以更好地揭示知识间的内在联系,体会推理论证和逻辑思维在数学发现活动中的作用.从运算的角度提出问题,还可以帮助学生认识到三角变换也是一种运算,丰富对运算的认识,从而把对三角变换的研究纳入整体的数学体系之中.类比对数运算,由两角和与差的正弦公式易推出积化和差公式.在推导了公式sin α+sin β=2sin α+β2cos α-β2以后,可以让学生推导其余的和差化积及积化和差公式.和差化积、积化和差不要求记忆,都在试卷上告诉我们,要注意不应该加大三角变换的难度,不要在三角变换中“深挖洞”.高考在该部分内容上的难度是一降再降.三维目标1.通过类比推导出积化和差与和差化积公式.体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.通过和差化积公式和积化和差公式的推导,让学生经历数学探索和发现过程,激发学生学好数学的欲望和信心.重点难点教学重点:推导积化和差、和差化积公式.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排 1课时教学过程导入新课思路1.(复习导入)在前面的几节课中我们学习了两角和与差的三角函数的计算公式,并运用这些公式解决了一些三角函数的化简、求值以及三角恒等式的证明问题,在我们运用三角函数知识解决一些问题的时候,我们也会遇到形如sin α+sin β,sin α-sin β,cos α+cos β,cos α-cos β的形式,那么,我们能否运用角α、β的有关三角函数值表示它们呢?这就是我们本节课所要研究的问题.思路2.(类比导入)我们知道log a m +log a n =log a (mn),那么sin α+sin β等于什么呢? 推进新课 新知探究 提出问题你能从两角和与差的正、余弦公式中发现些什么?积化和差与和差化积公式的特点是什么?活动:考察公式cos(α+β)=cos αcos β-sin αsin β; cos(α-β)=cos αcos β+sin αsin β; sin(α+β)=sin αcos β+cos αsin β; sin(α-β)=sin αcos β-cos αsin β.从公式结构上看,把cos αcos β,sin αsin β,sin αcos β,cos αsin β分别看成未知数解方程组,则容易得到如下结论:cos αcos β=12[cos(α+β)+cos(α-β)];sin αsin β=-12[cos(α+β)-cos(α-β)];sin αcos β=12[sin(α+β)+sin(α-β)];cos αsin β=12[sin(α+β)-sin(α-β)].从上面这四个公式,又可以得出sin(α+β)+sin(α-β)=2sin αcos β; sin(α+β)-sin(α-β)=2cos αsin β; cos(α+β)+cos(α-β)=2cos αcos β; cos(α+β)-cos(α-β)=-2sin αsin β.设α+β=x ,α-β=y ,则α=x +y 2,β=x -y2.这样,上面得出的四个式子可以写成sinx +siny =2sin x +y 2cos x -y2;sinx -siny =2cos x +y 2sin x -y2;cosx +cosy =2cos x +y 2cos x -y2;cosx -cosy =-2sin x +y 2sin x -y2.利用这四个公式和其他三角函数关系式,我们可把某些三角函数的和或差化成积的形式.教师还可引导学生用向量运算证明和差化积公式. 如图1所示.作单位圆,并任作两个向量图1OP →=(cos α,sin α),OQ →=(cos β,sin β).取的中点M ,则M(cos α+β2,sin α+β2).连接PQ ,OM ,设它们相交于点N ,则点N 为线段PQ 的中点且ON⊥PQ.∠xOM 和∠MOQ 分别为α+β2,α-β2.探索三个向量OP →,ON →,OQ →之间的关系,并用两种形式表达点N 的坐标,以此导出和差化积公式cos α+cos β=2cos α+β2cos α-β2;sin α+sin β=2sin α+β2cos α-β2.讨论结果:略应用示例例 1已知sinx -cosx =12,求sin 3x -cos 3x 的值.活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a -b)3=a 3-3a 2b +3ab 2-b 3=a 3-b 3-3ab(a -b),∴a 3-b 3=(a -b)3+3ab(a -b).解完此题后,教师引导学生深挖本例的思想方法,由于sinxcosx 与sinx±cosx 之间的转化,提升学生的运算、化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x -cos 3x =(sinx-cosx)3+3sinxcosx(sinx -cosx)=1116.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx -cosx =12,得(sinx -cosx)2=14,即1-2sinxcosx =14,∴sinxcosx=38.∴sin 3x -cos 3x =(sinx -cosx)(sin 2x +sinxcosx +cos 2x)=12(1+38)=1116.例 2已知cos 4A cos 2B +sin 4A sin 2B =1,求证:cos 4B cos 2A +sin 4Bsin 2A=1.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A 、B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A 、B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证法一:∵cos 4A cos 2B +sin 4A sin 2B=1,∴cos 4A·sin 2B +sin 4A·cos 2B =sin 2B·cos 2B.∴cos 4A(1-cos 2B)+sin 4A·cos 2B =(1-cos 2B)cos 2B ,即cos 4A -cos 2B(cos 4A -sin 4A)=cos 2B -cos 4B.∴cos 4A -2cos 2Acos 2B +cos 4B =0.∴(cos 2A -cos 2B)2=0.∴cos 2A =cos 2B.∴sin 2A =sin 2B.∴cos 4B cos 2A +sin 4B sin 2A=cos 2B +sin 2B =1. 证法二:令cos 2A cosB =cos α,sin 2A sinB =sin α,则cos 2A =cosBcos α,sin 2A =sinBsin α.两式相加得1=cosBcos α+sinBsin α,即cos(B -α)=1.∴B-α=2k π(k∈Z ),即B =2k π+α(k∈Z ).∴cos α=cosB ,sin α=sinB.∴cos 2A =cosBcos α=cos 2B ,sin 2A =sinBsin α=sin 2B.∴cos 4B cos 2A +sin 4B sin 2A =cos 4B cos 2B +sin 4B sin 2B =cos 2B +sin 2B =1.例3 证明1+sinx cosx =tan(π4+x 2).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x ,三角函数的种类为正弦,余弦,右边是半角x2,三角函数的种类为正切.证法一:从右边入手,切化弦,得tan(π4+x 2)=π4+x 2π4+x 2=sin π4cos x 2+cos π4sin x 2cos π4cos x 2-sin π4sin x 2=cos x 2+sinx 2cos x 2-sinx 2,由左右两边的角之间的关系,想到分子分母同乘以cos x 2+sin x2,得x 2+sin x 22x 2+sin x 2x 2-sin x 2=1+sinxcosx.证法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得 1+sinxcosx=x 2+sin x 22x 2+sin x 2x 2-sin x 2=cos x 2+sin x 2cos x 2-sin x 2.由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos x2,得1+tan x 21-tan x 2=tan π4+tanx 21-tan π4tanx 2=tan(π4+x 2). 变式训练求证:1+sin4θ-cos4θ2tan θ=1+sin4θ+cos4θ1-tan 2θ. 分析:运用比例的基本性质,可以发现原式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=2tan θ1-tan 2θ,此式右边就是tan2θ. 证明:原等式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=tan2θ.而上式左边=sin4θ+-cos4θsin4θ++cos4θ=2sin2θcos2θ+2sin 22θ2sin2θcos2θ+2cos 22θ=2sin2θθ+sin2θ2cos2θθ+cos2θ=tan2θ=右边.∴上式成立,即原等式得证.课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛:本节学习的数学方法:公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.作业课本本节习题3—3A 组1~4,B 组1~4.设计感想1.本节主要学习了怎样推导积化和差,和差化积公式,在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用.备课资料一、一道给值求角类问题错解点击. 解决给值求角这类问题时,要注意根据问题给出的三角函数值及角的范围,选择适当的三角函数,确定所求角的恰当范围,利用函数值在此范围内的单调性求出所求角.解答此类问题一定要重视角的范围对三角函数值的制约关系,常见的错误为不根据已知条件确定角的范围而盲目求值,造成增解.例题:若sin α=55,sin β=1010,α、β均为锐角,求α+β的值. 错解:∵α为锐角, ∴cos α=1-sin 2α=255.又β为锐角,∴cos β=1-sin 2β=31010.∴sin(α+β)=sin αcos β+cos αsin β=22. ∵α,β均为锐角, ∴0°<α+β<180°. ∴α+β=45°或135°.点评:上述解法欠严密,仅由sin(α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的.但题设中sin α=55<12,sin β=1010<12,使得0°<α+β<60°,故上述结论是错误的.事实上,由0°<α+β<180°,应选择求cos(α+β)=22(∵余弦函数在此范围内是单调的),易求得cos(α+β)=22,则α+β=45°,因此,解决给值求角这类问题一般分三步:第一步是确定角所在的范围;第二步是求角的某一个三角函数值(要尽量使所选择的三角函数在所确定的范围内单调);第三步是得到结论,求得所求角的值.二、如何进行三角恒等变式的证明. 三角恒等式证明的基本方法:(1)可从一边开始,证得它等于另一边,一般是由繁到简. (2)可用左右归一法,即证明左右两边都等于同一个式子. (3)可采用切割化弦,将其转化为所熟知的正、余弦. (4)可用分析法,即假定结论成立,经推理论证,找到一个显然成立的式子(或已知条件). (5)可用拼凑法,即针对题设与结论间的差异,有针对性地变形,以消除其差异,简言之,即化异求同.(6)可采用比较法,即“左边右边=1”或“左边-右边=0”.证明三角恒等式的实质是消除等式两边的差异,就是有目的地进行化简,因此,在证明时要注意将上述方法综合起来考虑,要灵活运用公式,消除差异,其思维模式可归纳为三点:(1)发现差异:观察角、函数、运算结构的差异;(2)寻求联系:运用相关公式,找出转化差异的联系; (3)合理转化:选择恰当的公式,实现差异的转化.二、备用习题1.已知tanx =-3,则sin2x =________,cos2x =________. 2.已知tan α=2,则cos2α等于( )A .-13B .±13C .-35D .±353.下列各式化成和差的形式分别是: (1)sin(π3+2x)cos(π3-2x);(2)cos α+β2sin α-β2.4.设α、β≠k π+π2(k∈Z ),且cos2α+sin 2β=0.求证:tan 2α=2tan 2β+1.5.已知△ABC 的三个内角A 、B 、C 满足A +C =2B ,且1cosA +1cosC =-2cosB ,试求cosA -C2的值.6.不查表求值: tan6°tan42°tan66°tan78°. 参考答案:1.-35 -452.C3.(1)34+12sin4x ;(2)12(sin α-sin β). 4.证明:∵cos2α+sin 2β=0, ∴1-tan 2α1+tan 2α+sin 2βsin 2β+cos 2β=0, 即1-tan 2α1+tan 2α+tan 2β1+tan 2β=0. 化简得tan 2α=2tan 2β+1.5.由题设条件,知B =60°,A +C =120°,设A -C2=α,则A =60°+α,C =60°-α.代入1cosA +1cosC =-2cosB ,可得1+α+1-α=-22,即2cos α-3sin α+2cos α+3sin α=-2,可化为4cos 2α+2cos α-3=0, 解得cos α=22或-324(舍去). ∴cos A -C 2=22.6.原式=tan54°tan6°tan66°tan42°tan78°tan54°=-+tan54°=tan18°tan42°tan78°tan54°=-+tan54°=tan54°tan54°=1.。
第2课时半角的正弦、余弦和正切学习目标:1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.(重点)2.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.(难点)[自主预习·探新知]半角公式(1)sin α2=(2)cos α2=(3)tan α2==1-cos αsin α.思考:利用tan α=sin αcos α和倍角公式能得到tan α2与sin α,cos α有怎样的关系?提示:tan α2=sinα2cosα2=sinα2·2cosα2cosα2·2cosα2=sin α1+cos α,tan α2=sinα2cosα2=sinα2·2sinα2cosα2·2sinα2=1-cos αsin α.[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)半角公式对任意角都适用.()(2)tan α2=sin α1+cos α,只需满足α≠2kπ+π(k∈Z).()(3)sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4.( ) (4)sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3.( )[答案] (1)× (2)√ (3)√ (4)√2.若cos α=13,且α∈(0,π),则sin α2的值为( ) A .-33 B .33 C .63 D .-63B3.已知cos α=23,α∈⎝ ⎛⎭⎪⎫-π2,π2,则cos α2的值为( )A .66 B .306 C .-66 D .-306 B4.tan 15°等于( ) A .2+ 3 B .2- 3 C.3+1D.3-1 B [由tan α2=sin α1+cos α,得tan 15°=sin 30°1+cos 30°=2- 3.][合 作 探 究·攻 重 难]已知cos α=13,α为第四象限角,求sin α2、cosα2、tanα2.[解]sin α2=±1-cos α2=±1-132=±33,cos α2=±1+cos α2=±1+132=±63,tan α2=±1-cos α1+cos α=±1-131+13=±22.∵α为第四象限角,∴α2为第二、四象限角. 当α2为第二象限角时,sin α2=33,cos α2=-63,tan α2=-22; 当α2为第四象限角时,sin α2=-33,cos α2=63,tan α2=-22.已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2. [解] ∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2 θ2-1 得cos 2θ2=1+cos θ2=15.∵5π4<θ2<32π. ∴cos θ2=-1+cos θ2=-55.tan θ2=sin θ1+cos θ=2.化简:⎝ ⎛⎭⎪⎫sin α2-cos α2(1+cos α+sin α)2+2cos α⎝ ⎛⎭⎪⎫3π2<α<2π. [思路探究] 利用半角公式将角进一步统一为α2,注意角的取值范围. [解] ∵3π2<α<2π,∴3π4<α2<π,∴原式=⎝ ⎛⎭⎪⎫sin α2-cos α2⎝ ⎛⎭⎪⎫2cos 2α2+2sin α2cos α24cos 2 α2=2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2-2cos α2=cos 2α2-sin 2α2=cos α.1.半角公式适用的条件是什么? 提示:cos α2=±1+cos α2,sin α2=±1-cos α2,α∈R .tan α2=±1-cos α1+cos α=sin α1+cos α中,α≠2k π+π,k ∈Z ,tan α2=1-cos αsin α中,α≠k π,k ∈Z .2.如何理解倍角公式与半角公式中的倍角与半角? 提示:例如α可以看成α2的倍角,也可以看成2α的半角. 3.怎样把a sin x +b cos x 化成A sin(ωx +φ)形式? 提示:a sin x +b cos x =a 2+b 2·⎝ ⎛⎭⎪⎫aa 2+b 2sin x +ba 2+b 2cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin (x +φ)⎝⎛⎭⎪⎫其中sin φ=ba 2+b 2,cos φ=aa 2+b 2. 已知函数f (x )=23sin x cos x +2cos 2x -1.(1)求函数f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的最大值及相应的x 值.[思路探究] 把f (x )化成A sin(ωx +φ)的形式,再研究其性质.[解] f (x )=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.(1)令2k π-π2≤2x +π6≤2k π+π2(k ∈Z ), 得k π-π3≤x ≤k π+π6(k ∈Z ),∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)由x ∈⎣⎢⎡⎦⎥⎤0,π2,可得π6≤2x +π6≤7π6.所以,当2x +π6=π2,即x =π6时, f (x )取最大值,最大值为2.1.若cos α=13,α∈(0,π),则cos α2的值为( ) A .63B .-63C .±63D .±33A [由题意知α2∈⎝⎛⎭⎪⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63.]2.函数f (x )=2sin x 2 sin ⎝ ⎛⎭⎪⎫π3-x 2的最大值等于( )A .12 B .32 C .1D .2A [∵f (x )=2sin x 2⎝ ⎛⎭⎪⎫sin π3cos x 2-cos π3sin x 2 =32sin x -sin 2x 2=32sin x -1-cos x 2=32sin x +12cos x -12 =sin ⎝ ⎛⎭⎪⎫x +π6-12.∴f (x )max =12.]3.计算:tan 12°-3(4cos 212°-2)sin 12°=________.[解析] 原式=sin 12°-3cos 12°2sin 12°cos 12°cos 24°=2sin (12°-60°)12sin 48°=-4.[答案] -44.设5π<θ<6π,cos θ2=13,则sin θ4=________. [解析] ∵5π4<θ4<3π2,∴sin θ4<0. ∴sin θ4=- 1-cos θ22=-1-132=-33.[答案] -33 5.已知π<α<3π2,化简1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α.[解] 原式=⎝ ⎛⎭⎪⎫sin α2+cos α222⎪⎪⎪⎪⎪⎪cos α2-2⎪⎪⎪⎪⎪⎪sin α2+⎝ ⎛⎭⎪⎫sin α2-cos α2 22⎪⎪⎪⎪⎪⎪cos α2+2⎪⎪⎪⎪⎪⎪sin α2,∵π<α<3π2,∴π2<α2<3π4, ∴cos α2<0,sin α2>0. ∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.。
3.2.2 半角的正弦余弦和正切课堂导学三点剖析一、运用半角公式求值由二倍角公式可得cos α=cos(2×2α)=1-2sin 22α=2cos 22α-1, 即sin 22α=2cos 1α-,cos 22α=2cos 1α+. ∴sin 2cos 12αα-±=,cos 2cos 12αα+±=,tan 2α=±ααcos 1cos 1+-. 在应用以上半角公式时,根号前的正负号由角2α所在的象限确定. 【例1】 已知cosθ=53-,且180°<θ<270°,求tan 2θ. 思路分析:先判断2θ所在象限,再用半角公式求值. 解:∵180°<θ<270°, ∴90°<2θ<135°.∴tan 2θ<0. ∴tan 2θ=)53(1)53(1cos 1cos 1-+---=+--θθ=-2. 各个击破类题演练 1设5π<θ<6π,cos2θ=a,|a|≤1,求sin 4θ的值. 思路分析:先由θ的范围确定角4θ的范围,再用半角公式求值. 解:∵5π<θ<6π,∴25π<2θ<3π,45π<4θ<23π. ∴sin 4θ=2122cos 1a --=--θ. 变式提升 1已知cosα=21,求sin 2α,cos 2α. 思路分析:∵cosα=21,∴α是第一或第四象限角,2α可能为任何象限角,如果不能确定角的象限,用半角公式计算时,根号前保持正、负两个符号.解:sin 2α=±22112cos 1-±=-α=±21. cos 2α=±2322112cos 1±=+±=+α. 二、运用公式化简三角函数式在三角恒等变形中,所涉及的三角公式要求做到灵活运用,既要会正用,又要会逆用,更要会变用.特别要注意根号前正负号的选择,要由2α所在的象限来确定. 【例2】 若23π<α<2π,化简:α2cos 21212121++. 思路分析:在逐层去根号时,要根据角的范围确定被开方数的符号. 解:∵23π<α<2π,∴43π<2α<π. ∴原式=αααcos 2121cos 212122cos 121212+=+=++ 2cos )cos 1(212αα=+==-cos 2α. 类题演练 2化简:8cos 228sin 12+=+等于( )A.2sin4B.2sin4-4cos4C.-2sin4-4cos4D.4cos4-2sin4解析:原式=)14cos 2(22)4cos 4(sin 222-+++-2(sin4+cos4)-2cos4=-2sin4-4cos4.答案:C变式提升 2 化简:cosα·cos2α·cos 22α·…·cos 12-n α. 解:原式=1112sin 22sin 22cos 2cos cos ---••••n n n αααααΛ 12222sin 22sin 2cos 2cos 2cos cos ---•••••=n n n ααααααΛ=11112322sin 22sin 2sin 2sin cos 2sin 22sin 2cos 2coscos -----=••=••••n n n n n n ααααααααααΛ.。
3.3 几个三角恒等式整体设计教学分析本节主要内容为利用已有的公式进行推导发现.本节的编写意图与特色是教师引导学生发现创造,从而加深理解变换思想,提高学生的推理能力.三角恒等变换所涉及的问题各种各样,内容十分丰富,我们希望能总结出一些有规律性的数学思想、方法和技巧,提高对三角变换的理性认识.科学发现是从问题开始的,没有问题就不可能有深入细致的观察.为了让学生经历一个完整的探索发现过程,教科书从三角函数运算的角度提出了研究课题.这是从数学知识体系的内部发展需要提出问题的方法.用这种方法提出问题可以更好地揭示知识间的内在联系,体会推理论证和逻辑思维在数学发现活动中的作用.从运算的角度提出问题,还可以帮助学生认识到三角变换也是一种运算,丰富对运算的认识,从而把对三角变换的研究纳入整体的数学体系之中.类比对数运算,由两角和与差的正弦公式易推出积化和差公式.在推导出了公式sin α+sin β=2sin α+β2cos α-β2以后,可以让学生推导其余的和差化积及积化和差公式.本节后面的练习中之所以用证明的形式给出这个问题,只是为了让学生有一个正确完整的结论.和差化积、积化和差、万能代换以及半角公式都不要求记忆和运用,要注意不应该加大三角变换的难度,不要在三角变换中“深挖洞”.高考在该部分内容上的难度一降再降几乎不涉及了.三维目标1.通过类比推导出积化和差与和差化积公式及万能公式.体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.体会三角恒等变换在数学中的应用.2.通过和差化积公式和积化和差公式的推导,让学生经历数学探索和发现过程,激发学生数学发现的欲望和信心.重点难点教学重点:推导积化和差、和差化积公式.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排 1课时教学过程导入新课思路1.(复习导入)在前面的几节课中我们学习了两角和与差的三角函数的计算公式,并运用这些公式解决了一些三角函数的化简、求值以及三角恒等式的证明问题,在我们运用三角函数知识解决一些问题的时候,我们也会遇到形如sin α+sin β,sin α-sin β,cos α+cos β,cos α-cos β的形式,那么,我们能否运用角α、β的有关三角函数值表示它们呢?这就是我们本节课所要研究的问题.思路2.(类比导入)我们知道log a m +log a n =log a (mn),那么sin α+sin β等于什么呢? 推进新课新知探究和差化积公式的推导、万能公式的应用.在引入对数概念以后,我们还研究了它的运算,并得到了一些重要的结论,如log a m +log a n =log a (mn).同样,在定义了三角函数以后,我们也应该考虑它的运算,如 sin α+sin β=? 观察和角公式sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 容易得到sin(α+β)+sin(α-β)=2sin αcos β.① 由此,有sin αcos β=12[sin(α+β)+sin(α-β)].①的左边已经是两个正弦的和,因此,只要进行简单的变形,就可以回答sin α+sin β=?这个问题了.令α+β=θ,α-β=φ,代入①得 sin θ+sin φ=2sin θ+φ2cos θ-φ2,从而有sin α+sin β=2sin α+β2cos α-β2.②为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sin αcos β呢?想到sin(α+β)=sin αcos β+cos αsin β.从方程角度看这个等式,sin αcos β,cos αsin β分别看成两个未知数.二元方程要求得确定解,必须有两个方程,这就促使学生考虑还有没有其他包含sin αcos β的公式,列出sin(α-β)=sin αcos β-cos αsin β后,解相应地以sin αcos β,cos αsin β为未知数的二元一次方程组,就容易得到所需要的结果.得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与前者没有什么区别.只需做个变换,令α+β=θ,α-β=φ,则α=θ+φ2,β=θ-φ2,代入①式即得②式.证明:(1)因为sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β,将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 即sin αcos β=12[sin(α+β)+sin(α-β)].(2)由(1)可得sin(α+β)+sin(α-β)=2sin αcos β.① 设α+β=θ,α-β=φ,那么α=θ+φ2,β=θ-φ2.把α、β的值代入①,即得sin θ+sin φ=2sin θ+φ2cos θ-φ2.类似的还能得到sin α-sin β=2cos α+β2sin α-β2,cos α+cos β=2cos α+β2cos α-β2,cos α-cos β=-2sin α+β2sin α-β2.以上四个公式我们称其为和差化积公式.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中,用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sin αcos β看作x ,cos αsin β看作y ,把等式看作x ,y 的方程,通过解方程求得x ,这就是方程思想的体现.利用前面所学的三角函数公式还能推出很多有用的恒等式,我们先来探究一个具体问题.设tan α2=t.(1)求证:sin α=2t 1+t 2,cos α=1-t 21+t 2,tan α=2t1-t 2;①(2)当t =2时,利用以上结果求3cos 2α2-2sin α+sin 2α2的值. (1)证明:由二倍角公式,得sin α=2sin α2cos α2=2sin α2cos α2cos 2α2+sin 2α2=2tanα21+tan2α2=2t1+t 2,tan α=2tanα21-tan2α2=2t1-t 2.再由同角三角函数间的关系,得 cos α=sin αtan α=2t 1+t 22t 1-t 2=1-t21+t2.(2)解:3cos2α2-2sin α+sin 2α2=2cos 2α2+1-2sin α=2+cos α-2sin α =2+1-t 21+t 2-4t1+t 2=3+t 2-4t 1+t =-15. 公式①称为万能代换公式,利用万能代换公式,可以用tan α2的有理式统一表示α角的任何三角函数值.图1中的直角三角形可以帮助你更好地理解万能代换公式.图1应用示例思路1例1已知sinx -cosx =12,求sin 3x -cos 3x 的值.活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a -b)3=a 3-3a 2b +3ab 2-b 3=a 3-b 3-3ab(a -b),∴a 3-b 3=(a -b)3+3ab(a -b).解完此题后,教师引导学生深挖本例的思想方法,由于sinxcosx 与sinx±cosx 之间的转化,提升学生的运算、化简能力及整体代换思想.本题也可直接应用上述公式求解,即sin 3x -cos 3x =(sinx -cosx)3+3sinxcosx(sinx -cosx)=1116.此方法往往适用于sin 3x±cos 3x 的化简问题.解:由sinx -cosx =12,得(sinx -cosx)2=14,即1-2sinxcosx =14,∴sinxcosx=38.∴sin 3x -cos 3x =(sinx -cosx)(sin 2x +sinxcosx +cos 2x) =12(1+38)=1116. 点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法.例2已知cos A cos 2B +sin A sin 2B =1,求证:cos B cos 2A +sin Bsin 2A=1.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A 、B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A 、B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证法一:∵cos 4A cos 2B +sin 4A sin 2B =1,∴cos 4Asin 2B +sin 4Acos 2B =sin 2Bcos 2B.∴cos 4A(1-cos 2B)+sin 4Acos 2B =(1-cos 2B)cos 2B , 即cos 4A -cos 2B(cos 4A -sin 4A)=cos 2B -cos 4B. ∴cos 4A -2cos 2Acos 2B +cos 4B =0.∴(cos 2A -cos 2B)2=0.∴cos 2A =cos 2B.∴sin 2A =sin 2B. ∴cos 4B cos 2A +sin 4B sin 2A =cos 2B +sin 2B =1. 证法二:令cos 2A cosB =cos α,sin 2AsinB =sin α,则cos 2A =cosBcos α,sin 2A =sinBsin α.两式相加得1=cosBcos α+sinBsin α,即cos(B -α)=1.∴B-α=2k π(k∈Z ),即B =2k π+α(k∈Z ).∴cos α=cosB ,sin α=sinB. ∴cos 2A =cosBcos α=cos 2B ,sin 2A =sinBsin α=sin 2B. ∴cos 4B cos 2A +sin 4B sin 2A =cos 4B cos 2B +sin 4B sin 2B=cos 2B +sin 2B =1. 点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元.思路2例题 证明1+sinx cosx =tan(π4+x2).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x ,三角函数的种类为正弦,余弦,右边是半角x2,三角函数的种类为正切.证法一:从右边入手,切化弦,得 tan(π4+x 2)=π4+x 2π4+x 2=sin π4cos x 2+cos π4sin x 2cos π4cos x 2-sin π4sin x 2=cos x 2+sinx 2cos x 2-sinx 2,由左右两边的角之间的关系,想到分子分母同乘以cos x 2+sin x2,得x 2+sin x 22x 2+sin x 2x 2-sin x 2=1+sinxcosx. 证法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得 1+sinxcosx=x 2+sin x 22x 2+sin x 2x 2-sin x 2=cos x 2+sin x 2cos x 2-sin x 2.由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos x2,得1+tan x 21-tan x 2=tan π4+tanx 21-tan π4tanx 2=tan(π4+x 2). 点评:本题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法.变式训练求证:1+sin4θ-cos4θ2tan θ=1+sin4θ+cos4θ1-tan 2θ. 分析:运用比例的基本性质,可以发现原式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=2tan θ1-tan 2θ,此式右边就是tan2θ. 证明:原等式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=tan2θ.而上式左边=sin4θ+-cos4θsin4θ++cos4θ=2sin2θcos2θ+2sin 22θ2sin2θcos2θ+2cos 22θ=2sin2θθ+sin2θ2cos2θ2θ+cos2θ=tan2θ=右边.∴上式成立,即原等式得证.知能训练1.若sin α=513,α在第二象限,则tan α2的值为( )A .5B .-5 C.15 D .-152.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a2B.1-a2 C .-1+a2D .-1-a23.已知sin θ=-35,3π<θ<7π2,则tan θ2=__________.答案:1.A 2.D 3.-3课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛:本节学习的数学方法:公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.作业课本复习题9、10.设计感想1.本节主要学习了怎样推导半角公式,积化和差,和差化积公式,在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用.备课资料一、1.一道给值求角类问题错解点击.解决给值求角这类问题时,要注意根据问题给出的三角函数值及角的范围,选择适当的三角函数,确定所求角的恰当范围,利用函数值在此范围内的单调性求出所求角.解答此类问题一定要重视角的范围对三角函数值的制约关系,常见的错误为不根据已知条件确定角的范围而盲目求值,造成增解.例题:若sin α=55,sin β=1010,α、β均为锐角,求α+β的值. 错解:∵α为锐角, ∴cos α=1-sin 2α=255.又β为锐角,∴cos β=1-sin 2β=31010.∴sin(α+β)=sin αcos β+cos αsin β=22. ∵α,β均为锐角, ∴0°<α+β<180°. ∴α+β=45°或135°.点评:上述解法欠严密,仅由sin(α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的.但题设中sin α=55<12,sin β=1010<12,使得0°<α+β<60°,故上述结论是错误的.事实上,由0°<α+β<180°,应选择求cos(α+β)=22(∵余弦函数在此范围内是单调的),易求得cos(α+β)=22,则α+β=45°,因此,解决给值求角这类问题一般分三步:第一步是确定角所在的范围;第二步是求角的某一个三角函数值(要尽量使所选择的三角函数在所确定的范围内单调);第三步是得到结论,求得所求角的值.2.如何进行三角恒等变式的证明. 三角恒等式证明的基本方法:师:如何利用同角三角函数的基本关系式对三角恒等式进行证明呢? (1)可从一边开始,证得它等于另一边,一般是由繁到简. (2)可用左右归一法,即证明左右两边都等于同一个式子. (3)可采用切割化弦,将其转化为所熟知的正、余弦.(4)可用分析法,即假定结论成立,经推理论证,找到一个显然成立的式子(或已知条件). (5)可用拼凑法,即针对题设与结论间的差异,有针对性地变形,以消除其差异,简言之,即化异求同.(6)可采用比较法,即“左边右边=1”或“左边-右边=0”.证明三角恒等式的实质是消除等式两边的差异,就是有目的地进行化简,因此,在证明时要注意将上述方法综合起来考虑,要灵活运用公式,消除差异,其思维模式可归纳为三点:(1)发现差异:观察角、函数、运算结构的差异; (2)寻求联系:运用相关公式,找出转化差异的联系; (3)合理转化:选择恰当的公式,实现差异的转化. 二、备用习题1.已知tanx =-3,则sin2x =________,cos2x =________. 2.已知tan α=2,则cos2α等于( ) A .-13 B .±13C .-35D .±353.下列各式化成和差的形式分别是: (1)sin(π3+2x)cos(π3-2x);(2)cos α+β2sin α-β2.4.设α、β≠k π+π2(k∈Z ),且cos2α+sin 2β=0.求证:tan 2α=2tan 2β+1.5.已知△ABC 的三个内角A 、B 、C 满足A +C =2B ,且1cosA +1cosC =-2cosB ,试求cosA -C2的值.6.不查表求值: tan6°tan42°tan66°tan78°. 参考答案: 1.-35 -45 2.C3.(1)34+12sin4x ;(2)12(sin α-sin β). 4.证明:∵cos2α+sin 2β=0,∴1-tan 2α1+tan 2α+sin 2βsin 2β+cos 2β=0,即1-tan 2α1+tan 2α+tan 2β1+tan 2β=0. 化简得tan 2α=2tan 2β+1.5.解:由题设条件,知B =60°,A +C =120°, 设A -C2=α,则A =60°+α,C =60°-α. 代入1cosA +1cosC =-2cosB ,可得1+α+1-α=-22,即2cos α-3sin α+2cos α+3sin α=-22,可化为4cos 2α+2cos α-3=0, 解得cos α=22或-324(舍去). ∴co s A -C 2=22.6.解:原式=tan54°tan6°tan66°tan42°tan78°tan54°=-+tan54°=tan18°tan42°tan78°tan54°=-+tan54°=tan54°tan54°=1.。