2018年北师大版数学八年级上册《第三章位置与坐标》单元测试卷含答案
- 格式:doc
- 大小:424.00 KB
- 文档页数:21
第三章位置与坐标单元测试(能力提升)一、单选题1.已知点M(1﹣m,m﹣3),则点M不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】根据各个象限的点的坐标特点,列出不等式组,不等式组无解则点M不可能在该象限.【解析】解:点M不可能在第一象限,理由如下:点M的坐标是(1﹣m,m﹣3),若点M在第一象限,则有:,∴解①得m<1,解②得m>3,∴不等式组无解,符合题意;∴点M不可能在第一象限;点M的坐标是(1﹣m,m﹣3),若点M在第二象限,则有:,∴解①得m>1,解②得m>3,∴不等式组解集是m>3,不符合题意;点M的坐标是(1﹣m,m﹣3),若点M在第三象限,则有:,∴解①得m>1,解②得m<3,∴不等式组解集是1<m<3,不符合题意;点M的坐标是(1﹣m,m﹣3),若点M在第四象限,则有:,∴解①得m<1,解②得m<3,∴不等式组解集是m<1,不符合题意;故选:A.【点睛】本题考查了坐标与图形的性质,熟练掌握平面直角坐标系中的点的坐标特点并正确地列出不等式组或方程是解题的关键.2.已知直角坐标系内有一点M(a,b),且ab=2,则点M的位置在( )A.第一或第三象限B.第一象限C.第三象限D.坐标轴上【答案】A【分析】直接利用各象限内点的坐标特点得出答案.解:∵直角坐标系内有一点M(a,b),且ab=2,∴ab同号,则点M的位置在第一或第三象限.故选:A.【点睛】本题考查点的坐标应用,熟练掌握各象限点的坐标特点是解题关键.3.点P(m+3,m﹣2)在直角坐标系的y轴上,则点P的坐标为()A.(0,5)B.(5,0)C.(﹣5,0)D.(0,﹣5)【答案】D【分析】点P在y轴上则该点横坐标为0,可解得m的值,从而得到点P的坐标.【解析】解:∵P(m+3,m-2)在y轴上,∴m+3=0,解得m=-3,即m-2=-3-2=-5.即点P的坐标为(0,-5).故选:D.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4.若点M位于x轴的下方,距x轴4各单位长,且位于y轴右侧,距y轴5个单位长,则M的坐标是()A.B.C.D.【分析】根据点到y轴的距离是横坐标的绝对值,点到x轴的距离是纵坐标的绝对值,根据点所在象限即可求出.【解析】解:∵M点在x轴下方4个单位,∴,M点在轴右侧5个单位,∴,∴,故选择:D.【点睛】本题考查坐标平面的点的特征,掌握点到y轴的距离是横坐标的绝对值,点到x轴的距离是纵坐标的绝对值是解题关键.5.在平面直角坐标系中,已知线段的两个端点分别是将线段平移后得到线段,若点的坐标为,则点的坐标为()A.B.C.D.【答案】B【分析】根据点平移后得到点,从而得到平移的规律,即可求出点的坐标.【解析】解:∵点平移后得到点,∴线段AB平移的规律是向右平移2个单位,再向上平移3个单位,∴点平移后的坐标为(3,4).故选:B【点睛】本题考查了坐标与图形的变化-平移,根据点A的平移规律得到线段AB平移规律是解题关键.6.如图在平面直角坐标系中,点A、B、C的坐标分别为,,,则的面积是()A.5B.10C.75D.15【答案】A【分析】过点A做垂直于x轴,垂足为D,则,过点C做垂直于x轴,垂足为E,则,再分别求解利用的面积的面积的面积,从而可得答案.【解析】解:,,过点A做垂直于x轴,垂足为D,则,过点C做垂直于x轴,垂足为E,则,的面积的面积的面积,,,,,,,,∴的面积,的面积,∴的面积.故选A.【点睛】本题考查的是坐标与图形,三角形面积的计算,掌握以上知识是解题的关键.7.平面立角坐标系中,点,,经过点A的直线轴,点C是直线a上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,-1)B.(-1,-2)C.(-2,-1)D.(2,3)【答案】D【分析】根据经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.解:∵a∥x轴,点C是直线a上的一个动点,点A(2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短.8.下列说法不正确的是( )A.若,则点一定在第二、第四象限角平分线上B.点到轴的距离为C.若中,则点在轴上D.点可能在第二象限【答案】C【分析】根据点坐标的定义选出不正确的选项.【解析】A选项正确,∵,∴,即点在二、四象限的角平分线上;B选项正确,∵点P的横坐标是,∴到y轴的距离是2;C选项错误,点P也可能在y轴上;D选项正确,∵,,∴点A可能在第二象限内.【点睛】本题考查点坐标,解题的关键是掌握点坐标的定义和所在象限的判断方法.9.如图,在平面直角坐标系中,点A(﹣2,2),B(2,6),点P为x轴上一点,当PA+PB的值最小时,三角形PAB的面积为()A.1B.6C.8D.12【答案】B【分析】如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时PA+PB的值最小.判断出点P的坐标,根据S△PAB=S△AA′B﹣S△AA′P,求解即可.【解析】解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,此时PA+PB 的值最小.∵A(﹣2,2),B(2,6),A′(﹣2,﹣2),P(﹣1,0),∴S△PAB=S△AA′B﹣S△AA′P=×4×4﹣×4×1=6,故选:B.【点睛】本题考查了轴对称,坐标与图形,数形结合是解题的关键.10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中方向排列,如,,,,,,,根据这个规律探索可得,第120个点的坐标为 A.B.C.D.【答案】C【分析】经过观察每个列的数的个数是有规律的分别有1,2,3,4…,n个,而且奇数列点的顺序是由上到下,偶数列点的顺序由下到上,这样就不难找到第120个点的位置,进而可以写出它的坐标.【解析】把第一个点作为第一列,和作为第二列,依此类推,则第一列有一个数,第二列有2个数,,第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为,则第120个数一定在第15列,由上到下是第15个数.因而第120个点的坐标是.答案:C.【点睛】本题考查了点与坐标的关系,需要细心观察才能找到规律,通过此类题目的训练可以提高分析问题的能力以及归纳能力,属于常考题型.二、填空题11.乐清雁荡山以山水奇秀闻名天下,号称“东南第一山”.如图,雁荡山在乐成镇的______.【答案】北偏东27°的处【分析】由图象可得:乐成镇位于坐标原点,雁荡山在乐成镇的北偏东27度的方向,距离原点处,即可求解.【解析】解:由图象可得:乐成镇位于坐标原点,雁荡山在乐成镇的北偏东27度的方向,距离原点处,即雁荡山在乐成镇的北偏东27度的处.故答案为:北偏东27度的处.【点睛】本题主要考查了方向角和方位,熟练掌握方向角和方位的确定是解题的关键.12.将点A(0,3)向右平移3个单位后与点B关于x轴对称,则点B的坐标为_________.【答案】【分析】先根据点坐标的平移变换规律可得点A平移后的点坐标,再根据点坐标关于x轴对称的变换规律即可得.【解析】将点向右平移3个单位后的点坐标为,即,点坐标关于x轴对称的变换规律:横坐标不变,纵坐标变为相反数,则点B的坐标为,故答案为:.【点睛】本题考查了点坐标的平移变换规律、点坐标关于x轴对称的变换规律,熟练掌握点坐标的变换规律是解题关键.13.已知A(2,3),AB=4,且AB∥x轴,则B的坐标是____.【答案】(﹣2,3)或(6,3)【分析】线段AB∥x轴,AB=4,把点A向左或右平移4个单位即可得到B点坐标.【解析】解:∵线段AB∥x轴,∴点B的纵坐标与点A的纵坐标相同,∵AB=4,∴点B的坐标是(﹣2,3)或(6,3).故答案为(﹣2,3)或(6,3).【点睛】本题考查了坐标与图形性质,利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.14.如图,(一周记为360°,一周多10°记为370°)点A1用极坐标表示为_____________;点A2用极坐标表示为_____________;点A3用极坐标表示为_____________;点A n用极坐标表示为____________ .【答案】(2,0°)(4,120°)(8,240°)().【分析】因为一周记为,一周多记为,即而得出点用极坐标表示为,根据规律求出的表示形式.【解析】∵一周记为,一周多记为,∴横坐标为2,纵坐标为,∴点用极坐标表示为;∵横坐标为4,纵坐标为,点用极坐标表示为;∵横坐标为8,纵坐标为,点用极坐标表示为;根据上述规律,∴点用极坐标表示为.【点睛】本题考查了利用角表示坐标的规律性题目,正确读懂题意是解题的关键.15.已知点A(2a+5,a﹣3)在第一、三象限的角平分线上,则a=_____.【答案】﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【解析】点A(2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.16.在平面直角坐标系中,已知点和,现将线段沿着直线平移,使点与点重合,则平移后点坐标是__________.【答案】【分析】点平移到点,横坐标加4,纵坐标加1,点B的平移规律与点A相同,由此可得平移后点坐标.【解析】解:由点平移到点,可知其平移规律为横坐标加4,纵坐标加1,点B的平移规律与点A相同,故平移后点B的坐标为.故答案为:【点睛】本题考查了图形的平移,找准点的平移规律是解题的关键.17.如图,A、B的坐标为(2,0)、(0,1),若将线段AB平移至A1B1,则a+b的值为__________;【答案】3【分析】先确定点A平移都A1确定平移方式,再按此平移方式B,得到B1点的坐标,最后代入求解即可.【解析】解:∵A(2,0)A1(3,1)∴点A平移都A1确定平移方式为先向右平移一个单位、再向上平移一个单位∵B(0,1)∴B1(1,2)∴a=1,b=2∴a+b=1+2=3.故答案为3.【点睛】本题考查了坐标与图形的平移变换,根据题意确定平移方式是解答本题的关键.18.在平面直角坐标系中,若点与点之间的距离是5,则______.【答案】1或【分析】根据纵坐标相同的点平行于x轴,再分点N在点M的左边和右边两种情况讨论求解.【解析】∵,∴M与N两点连线与x轴平行,∴,即,,解得:,.【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论.19.已知点A(-3,2m-2)在x轴上,点B(n+1,4)在y轴上,则点C(m,n)在第__________象限.【答案】四【分析】根据坐标轴上点的坐标特征求得m、n值,再根据各个象限中点的坐标特征解答即可.【解析】解:∵点A(-3,2m-2)在x轴上,点B(n+1,4)在y轴上,∴2m﹣2=0,n+1=0,解得:m=1,n=﹣1,∴点C(1,﹣1)在第四象限,故答案为:四.【点睛】本题考查平面直角坐标系中点的坐标特征,熟知坐标轴上及象限内的点的坐标特征是解答的关键.20.如图,在平面直角坐标系中,点A、B、C的坐标分别是、、,点P在y轴上,且坐标为,点P关于点A的对称点为,点关于点B的对称点为,点关于点C的对称点为,点关于点A的对称点为,点关于点B的对称点为,点关于点C的对称点为,点关于点A的对称点为,按此规律进行下去,则点的坐标是______.【答案】【分析】本题是对点的变化规律的考查,作出图形,观察出每6次对称为一个循环是解题的关键,也是本题的难点.根据对称依次作出对称点,便不难发现,点与点P重合,也就是每6次对称为一个循环,用2013除以6,根据商和余数的情况确定点的位置,然后写出坐标即可.【解析】解:根据题意画图,如图所示,点与点P重合,,点是第336循环组的第3个点,与点重合,点的坐标为.故答案为:.【点睛】本题主要考查了点的坐标规律探索,解题的关键在于能够准确找到相关规律进行求解.三、解答题21.体检时,医生将结果以(身高/cm,体重/kg)的有序数对进行记录,(185,80)就是身高185cm体重80kg.有一天,唐僧带着三徒弟去体检,医生把结果的有序数对记录在了下图中,唐僧的结果是(180,75),对应图中点B.请回答下列问题.(1)沙僧的结果是(190,110),则对应了图中的点.(2)A点是的结果,D点是的结果.(请填写“悟空”或“八戒”)(3)从这个图中我们还可以得出什么结论?结果越多越好哦!【答案】(1)C;(2)悟空;八戒;(3)见解析.【解析】【分析】(1)由已知可得,前面数字表示身高,后面表示体重;(2)根据两人的体重差别可得;(3)可以从体重和身高关系进行分析.【解析】解:(1)由已知可得,前面数字表示身高,后面表示体重,可得(190,110)对应点C,(2)根据悟空比唐僧轻,八戒比唐僧重,可得A表示悟空、D表示八戒,(3)结论:点的位置越往右下,人越矮胖,点的位置越往左上偏,人越瘦高.【点睛】理解有序数对的意义是解题的关键.22.画平面直角坐标系,标出下列各点:点在轴上,位于原点上方,距离原点2个单位长度;点在轴上,位于原点右侧,距离原点1个单位长度;点在轴上方,轴右侧,距离每条坐标轴都是2个单位长度;点在轴上,位于原点右侧,距离原点3个单位长度;点在轴上方,轴右侧,距离轴2个单位长度,距离轴4个单位长度,依次连接这些点,你能得到什么图形?【答案】见解析.【解析】【分析】根据各点的描述找出各点的坐标,将其标在同一坐标系中,依次连接这些点,由此即可得出结论.【解析】∵点A在y轴上,位于原点上方,距离原点2个单位长度,∴点A的坐标为(0,2);∵点B在x轴上,位于原点右侧,距离原点1个单位长度,∴点B的坐标为(1,0);∵点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度,∴点C的坐标为(2,2);∵点D在x轴上,位于原点右侧,距离原点3个单位长度,∴点D的坐标为(3,0);∵点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,∴点E的坐标为(4,2).将A、B、C、D、E标在同一坐标系中,依次连接这些点,如图所示,得到的图形为W 形.如图,【点睛】本题考查了点的坐标,根据各点的描述找出各点的坐标是解题的关键.23.在平面直角坐标系中.(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m 的值,并确定n的取值范围.【答案】(1)(0,6);(2)n>﹣1.【分析】(1)根据y轴上的点的横坐标为0列出关于a的方程,解之可得;(2)由AB∥x轴知A、B纵坐标相等可得m的值,再根据点B在第一象限知点B的横坐标大于0,据此可得n的取值范围.【解析】解:(1)∵点P(2a﹣4,a+4)在y轴上,∴2a﹣4=0,解得:a=2,∴a+4=6,则点P的坐标为(0,6);(2)∵A(﹣2,m﹣3),B(n+1,4),AB∥x轴,∴m﹣3=4,解得:m=7,∵点B在第一象限,∴n+1>0,解得:n>﹣1.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握坐标轴上点的坐标特点及平行与x 轴的点的坐标特点.24.在网格中建立如图所示的平面直角坐标系,的顶点,,均在格点上,与关于轴对称.(1)画出;(2)直接写出点的坐标;(3)若是内部一点,点关于轴对称点为,且,请直接写出点的坐标.【答案】(1)见解析;(2);(3)【分析】(1)分别作出点A(4,5)、B(1,1)、C(5,3)关于y轴的对称点,依次连接起来即得到;(2)根据关于y轴对称的点的坐标的特征,即可写出点的坐标;(3)由点关于轴对称点为,则可得关于m的表达式,由可得关于m 的方程,解方程即可,从而求得点P的坐标.【解析】(1)如图所示.(2)点与C点关于y轴对称,且点C的坐标为(5,3),则点的坐标为;(3)∵点关于轴对称点为,且∴∵点P在△ABC的内部∴m>0∴∵∴2m=8∴m=4∴.【点睛】本题是坐标与图形问题,考查了画轴对称图形,关于y对称的点的坐标特征,掌握点关于y轴对称的坐标特征是解题的关键.25.如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)画出关于轴的对称图形;(2)若上有一点,那么对应上的点的坐标是______;(3)的面积是______.【答案】(1)见解析;(2);(3)3.【分析】(1)根据轴对称的性质即可作出△A1B1C1;(2)根据点关于x轴对称的性质求解即可;(3)根据网格运用割补法即可求出△ABC的面积.【解析】解:(1)如图,△A1B1C1即为所求;(2)点M1的坐标是(a,-b),故答案为(a,-b);(3)的面积为:故答案为3【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称的性质.26.已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点,请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)画出关于直线x=-1对称的,并写出各点坐标.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P点为(0,5)或(0,-3);【分析】(1)首先在坐标系中确定A、B、C三点位置,然后再连接即可;(2)首先确定A、B、C三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【解析】解:(1)如图:△ABC即为所求;(2)如图:即为所求;各点坐标分别为:,,;(3)解:设P(0,y),∵A(-2,1),B(3,1),∴AB=5,∴,∵=10,∴,∴,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键. 27.如图,三个顶点的坐标分别为、、.(1)若与关于轴成轴对称,请在答题卷上作出,并写出的三个顶点坐标;(2)求的面积;(3)若点为轴上一点,要使的值最小,请在答题卷上作出点的位置.(保留作图痕迹)【答案】(1)图见解析,、、;(2);(3)见解析【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)依据割补法进行计算,即可得到的面积.(3)连接CB1,交y轴于点P,则可得最小值;【解析】解:(1)如图,、、;(2)的面积为;(3)连接(或)与轴交于点,如图,【点睛】本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.28.综合与实践问题背景:(1)已知,,,.在平面直角坐标系中描出这几个点,并分别找到线段和中点、,然后写出它们的坐标,则 , .探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为,,,,则线段的中点坐标为 .拓展应用:(3)利用上述规律解决下列问题:已知三点,,,第四个点与点、点、点中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点的坐标.【答案】(1)、;(2);(3),,【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解析】(1)如图:,,,.在平面直角坐标系中描出它们如下:线段和中点、的坐标分别为、答案:、.(2)若线段的两个端点的坐标分别为,,,,则线段的中点坐标为.答案:.(3),,,、、的中点分别为:、、①过中点时,,解得:,,故;②过中点时,,解得:,,故;③过的中点时,,解得:,,故.点的坐标为:,,.【点睛】本题考查了坐标与图形性质.通过此题,要熟记平面直角坐标系中线段中点的横坐标为对应线段的两个端点的横坐标的平均数,中点的纵坐标为对应线段的两个端点的纵坐标的平均数.29.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y 轴建立平面直角坐标系,点A(0,a),C(b,0)满足+|b﹣2|=0,D为线段AC 的中点.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).(1)则A点的坐标为 ;点C的坐标为 ,D点的坐标为 .(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由.(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA 上运动的过程中,请确定∠OHC,∠ACE和∠OEC的数量关系,并说明理由.【答案】(1),,;(2)存在,;(3)【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,得出点A,C的坐标,再运用中点公式求出点D的坐标;(2)根据题意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列方程求解即可;(3)过点H作HP∥AC交x轴于点P,先证明OG∥AC,再根据角的和差关系以及平行线性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【解析】解:(1),,,,,,,设,为线段的中点.,,,故答案为:,,;(2)存在,.由条件可知:点从点运动到点需要时间为2秒,点从点运动到点需要时间2秒,,点在线段上,,,,,,,,,.(3)如图2,,,,,,,,如图,过点作交轴于点,则,,,,∴.【点睛】本题考查了平行线的性质,三角形面积,非负数的性质,中点坐标公式等,是一道三角形综合题,解题关键是学会添加辅助线,运用转化的思想思考问题.。
第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。
第三章位置与坐标第一卷(选择题共30分)一、选择题(每题3分,共30分)1.以下关于确信一个点的位置的说法中,能具体确信点的位置的是( )A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.假设点M(x,y)知足(x+y)2=x2+y2-2,那么点M所在的象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确信3.如图1,△ABC与△DFE关于y轴对称,假设点A的坐标为(-4,6),那么点D的坐标为( )图1A.(-4,6) B.(4,6)C.(-2,1) D.(6,2)4.假设A(a,b),B(a,d)表示两个不同的点,且a≠0,那么这两个点在( ) A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同窗用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,那么以下下子方式不正确的选项是[说明:棋子的位置用数对表示,如点A 在(6,3)]( )图2A.黑(3,7),白(5,3) B.黑(4,7),白(6,2)C.黑(2,7),白(5,3) D.黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.依照三人的描述,假设从图书馆动身,其终点是体育馆,那么以下描述正确的选项是( )A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走600米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米7.假设点P(-m,3)与点Q(-5,n)关于y轴对称,那么m,n的值别离为( ) A.-5,3 B.5,3 C.5,-3 D.-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).〞丙说:“以我为坐标原点,乙的位置是(-3,-2).〞那么以乙为坐标原点,甲、丙的坐标别离是(三人所成立的直角坐标系中x轴、y轴的方向一样,且单位长度一致)( )A.(-3,-2),(2,-3) B.(-3,2),(2,3)C.(-2,-3),(3,2) D.(-2,-3),(-2,-3)9.点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,那么点P的坐标为( )图3A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.无法确信10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条滑腻的曲线,点P从原点O动身,沿这条曲线向右运动,速度为每秒π个单位长度,那么第2021秒时,点P的坐标是( )2A.(2021,0) B.(2021,-1)C.(2021,1) D.(2021,0)请将选择题答案填入下表:第二卷(非选择题共70分)二、填空题(每题3分,共18分)11.假设m>0,n<0,那么点P(m,n)关于x轴的对称点在第________象限.12.A(2x-1,3x+2)是第一、三象限角平分线上的点,那么点A的坐标是________.13.在同一直角坐标系中,一同窗误将点A的横、纵坐标的顺序倒置,写成A(a,b);另一同窗误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),那么A,B两点原先的位置关系是__________.14.在平面直角坐标系中,点A(-3,0),B(3,0),点C在座标轴上,且AC+BC=10,写出知足条件的所有点C的坐标:________.15.等边三角形ABC的两个极点的坐标别离为A(-4,0),B(2,0),那么点C 的坐标为____________,△ABC的面积为________.16.如图4是某同窗在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,抵达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你成立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)假设点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所取得的图案Ⅱ沿x轴向上翻折180°后取得一个新图案Ⅲ,试写出它的各极点的坐标;(3)观看图案Ⅰ与图案Ⅲ,比拟各极点的坐标和图案位置,你能取得什么结论?20.(6分)在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答以下问题:(1)在座标系内描出点A,B,C的位置.(2)求出以A,B,C三点为极点的三角形的面积.(3)在y轴上是不是存在点P,使以A,B,P三点为极点的三角形的面积为10?假设存在,请直接写出点P的坐标;假设不存在,请说明理由.图621.(6分)点P(2m+4,m-1).依照以下条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,假设将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的极点在边长为1的正方形网格的格点上.(1)成立平面直角坐标系,使点B,C的坐标别离为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)若是△ABC三个极点的坐标别离是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个极点的坐标;(2)若是点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图91.B 2.B 3.B 4.C 5.C 6.A 7.A 9.C10.B 11.一12.(-7,-7)13.关于x轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C在第二象限时,作CH⊥AB于点H.因为A(-4,0),B(2,0),因此AB=6.因为△ABC是等边三角形,因此AH=BHCH=3 3,因此C(-1,3 3);同理,当点C在第三象限时,C(-1,-3 3).因此△ABC的面积为12×6×3 3=9 3.16.(9,6) 正东(2n+1) [解析] 因为蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),因此蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A5(9,6).抵达A2n后,要向正东方向跳(2n+1)个单位长度落到A2n+1.17.解:答案不唯一,如以BC所在直线为x轴,过点B作BC的垂线为y轴成立平面直角坐标系,由图可知,点A(12,5),B(0,0),C(24,0).18.解:(1)由题意可得5+a+a-3=0,解得a=-1.(2)由题意可得|2-a|=|3a+6|,即2-a=3a+6或2-a=-(3a+6),解得a =-1或a=-4,因此点N的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个极点的坐标别离为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观看图案Ⅰ与图案Ⅲ,不难发觉:①从各极点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB∥x轴,且AB=3-(-2)=5,因此S△ABC=12×5×2=5.(3)存在.因为AB=5,S△ABP=10,因此点P到ABP在y轴上,因此点P的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m+4=0,解得m=-2,那么m-1=-3,因此点P 的坐标为(0,-3).(2)由题意,得m-1=0,解得m=1,那么2m+4=6,因此点P的坐标为(6,0).(3)由题意,得m-1=(2m+4)+3,解得m=-8,那么2m+4=-12,m-1=-9, 因此点P的坐标为(-12,-9).(4)由题意,得m-1=-3,解得m=-2,那么2m+4=0,因此点P的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE 中,AE=OA=10,AB=8,因此BE=AE2-AB2=102-82=6,因此CE=4,因此E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,因此(8-OD)2+42=OD2,因此OD=5,因此D(0,5).23.解:(1)按条件成立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,因此BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个极点的坐标别离是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),因此P1(a,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,因此P 2(6-a ,0),那么PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),因此P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,因此P 2(6-a ,0),那么PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
2018年秋北师大版八年级上册数学第三章位置与坐标单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.P(-1,2)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A. 2B. ﹣4C. ﹣1D. 34.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A. √13B. √5C. 13D. 55.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A. (4,1)B. (﹣1,4)C. (﹣4,﹣1)D. (﹣1,﹣4)6.已知点A(a,2017)与点A′(﹣2018,b)是关于原点O的对称点,则a+b的值为()A. 1B. 5C. 6D. 47.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y 轴翻折到第一象限,则点C的对应点C′的坐标是()A. (3,1)B. (﹣3,﹣1)C. (1,﹣3)D. (3,﹣1)8.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC 向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A. (﹣2,3)B. (3,﹣1)C. (﹣3,1)D. (﹣5,2)9.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A. (4,﹣4)B. (4,4)C. (﹣4,﹣4)D. (﹣4,4)10.雷达二维平面定位的主要原理是:测量目标的两个信息―距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A. (-4, 150°)B. (4, 150°)C. (-2, 150°)D. (2, 150°)第II卷(非选择题)二、解答题(题型注释)11.在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标系并确定点C的位置;(2)若同学们打算从点B处直接赶往C处,请用方位角和距离描述点C相对于点B的位置.12.如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B(2,﹣1).(1)作出线段AB关于y轴对称的线段CD.(2)怎样表示线段CD上任意一点P的坐标?13.在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)建立平面直角坐标系,描出A、B、C三点,求出三角形ABC的面积;(2)求出三角形ABO(若O是你所建立的坐标系的原点)的面积.14.如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积.15.在平面直角坐标系xOy 中,对于点P (x ,y ),若点Q 的坐标为(ax+y ,x+ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”.例如,点P (1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q (7,13).(1)已知点A (﹣2,6)的“12级关联点”是点A 1,点B 的“2级关联点”是B 1(3,3),求点A 1和点B 的坐标;(2)已知点M (m ﹣1,2m )的“﹣3级关联点”M′位于y 轴上,求M′的坐标;(3)已知点C (﹣1,3),D (4,3),点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,请直接写出n 的取值范围.16.对于平面直角坐标系xOy 中的点P (a ,b ),若点P′的坐标为(a+kb ,ka+b )(其中k 为常数,且k≠0),则称点P′为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P (﹣2,3)的“3属派生点”P′的坐标为 ;(Ⅱ)若点P 的“5属派生点”P′的坐标为(3,﹣9),求点P 的坐标;(Ⅲ)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P′点,且线段PP′的长度为线段OP 长度的2倍,求k 的值.17.在直角坐标系中,△ABO 的顶点坐标分别为O (0,0)、A (2a ,0)、B (0,﹣a ),线段EF两端点坐标为E(﹣m,a+1),F(﹣m,1)(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD与NM关于直线l对称.(1)求点N、M的坐标(用含m、a的代数式表示);(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)18.在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B的对应点为N,则点N的坐标为.(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.19.如图,在平面直角坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0,b),且a,b满足|a﹣2|+√b+5=0,延长BC交x轴于点E.(1)填空:点A(,),点B(,),∠DAE=;(2)求点C和点E的坐标;(3)设点P是x轴上的一动点(不与点A、E重合),且PA>AE,探究∠APC与∠PCB的数量关系?写出你的结论并证明.三、填空题“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为_____.21.在平面直角坐标系中,O为坐标原点,点A(-a,a)(a>0),点B(-a-4,a+3),C为该直角坐标系内的一点,连结AB,OC.若AB∥OC且AB=OC,则点C的坐标为________ 22.在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.23.如图,△ABO中,AB⊥OB,OB=√3,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为_____.参考答案1.B【解析】1.:∵点P(-1,2)的横坐标-1<0,纵坐标2>0,∴点P在第二象限.故选B 2.D【解析】2.直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选:D.3.C【解析】3.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.∵点A(m,−2),B(3,m−1),直线AB//x轴,∴m−1=−2,解得m=−1.故选:C.4.A【解析】4.先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB=√OA2+OB2=√22+32=√13.故选:A.5.A【解析】5.直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号即可得出答案.∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.6.A【解析】6.根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.∵点A(a,2017)与点A′(-2018,b)是关于原点O的对称点,∴a=2018,b=-2017,∴a+b=1,故选A.7.A【解析】7.由A点坐标,得C(-3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选A.8.C【解析】8.根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.9.A【解析】9.首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论.∵点P(﹣5,4)向右平移9个单位得到点P1,∴P1(4,4).∵将点P1绕原点顺时针旋转90°得到点P2,∴点P2的坐标是(4,﹣4).故选A.10.B【解析】10.分析:按已知可得:表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.详解:∵(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度,∴用这种方法表示目标B的位置为(4,150°).故选B.11.(1)作图见解析;(2)5√2km.【解析】11.(1)、利用点A和点B的坐标得出原点所在的位置,建立平面直角坐标系,进而得出点C的位置;(2)、利用所画的图形,根据勾股定理得出答案.解:(1)根据A(﹣3,1),B(﹣2,﹣3)画出直角坐标系,描出点C(3,2),如图所示;(2)BC=5√2,所以点C在点B北偏东45°方向上,距离点B的5√2 km处.12.(1)见解析;(2)P(﹣2,y).【解析】12.先求出A,B的对称点C,D,再连接CD;因为CD∥AB,且CD⊥x轴,所以线段CD上的点坐标是(-2,y).解:(1)如图线段CD;(2)P(﹣2,y)(﹣1≤y≤3).13.(1)8(2)72【解析】13.(1)由题意可先描点,如图,然后根据点的坐标特征和三角形面积公式求解;(2)利用面积的和差计算三角形ABO 的面积即可.(1)如图,S △ABC =12×(3+1)(8﹣4)=8;(2)S △ABO =4×4﹣12×3×4﹣12×4×3﹣12×1×1=72.14.(1)见解析(2)44【解析】14.(1)根据题意先补充成网格平面直角坐标系,然后确定出点B 、C 、D 的位置,再与点A 顺次连接即可;(2)利用四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.(1)四边形ABCD 如图所示;(2)四边形的面积=9×7﹣12×2×7﹣12×2×5﹣12×2×7,=63﹣7﹣5﹣7,=63﹣19,=44.15.(1)(1,1)(2)(0,﹣16)(3)−13≤n ≤43【解析】15.(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M (m ﹣1,2m )的“﹣3级关联点”M ′位于y 轴上,即可求出M ′的坐标;(3)因为点C (﹣1,3),D (4,3),得到y=3,由点N (x ,y )和它的“n 级关联点”N ′都位于线段CD 上,可得到方程组,解答即可.(1)∵点A (﹣2,6)的“12级关联点”是点A 1,∴A 1(﹣2×12+6,﹣2+12×6),即A 1(5,1).设点B (x ,y ),∵点B 的“2级关联点”是B 1(3,3),∴{2x +y =3x +2y =3解得{x =1y =1 ∴B (1,1).(2)∵点M (m ﹣1,2m )的“﹣3级关联点”为M′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)M′位于y 轴上,∴﹣3(m ﹣1)+2m=0,解得:m=3∴m ﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,∴N′(nx+y ,x+ny ),∴{−1≤x ≤4−1≤nx +y ≤4 ,{y =3x +ny =3, ∴x=3-3n, ∴{−1≤3−3n ≤4−43≤n −n 2≤13 ,解得−13≤n ≤43. 16.(Ⅰ)(7,﹣3);(Ⅱ)点P (﹣2,1)(Ⅲ)k=±2【解析】16.(Ⅰ)根据“k 属派生点”计算可得;(Ⅱ)设点P 的坐标为(x 、y ),根据“k 属派生点”定义及P ′的坐标列出关于x 、y 的方程组,解之可得;(Ⅲ)先得出点P ′的坐标为(a ,ka ),由线段PP ′的长度为线段OP 长度的2倍列出方程,解之可得.(Ⅰ)点P (﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(Ⅱ)设P (x ,y ),依题意,得方程组:{x +5y =35x +y =−9 , 解得{x =−2y =1, ∴点P (﹣2,1).(Ⅲ)∵点P (a ,b )在x 轴的正半轴上,∴b=0,a >0.∴点P 的坐标为(a ,0),点P′的坐标为(a ,ka ),∴线段PP′的长为点P′到x 轴距离为|ka|,∵P 在x 轴正半轴,线段OP 的长为a ,根据题意,有|PP'|=2|OP|,∴|ka|=2a ,∴|k|=2.从而k=±2.17.(1)M(2a﹣m,a+1),N(2a﹣m,1);(2)能重合【解析】17.(1)先根据EF与CD关于y轴对称,得到C,D两端点坐标,再设CD与直线l之间的距离为x,根据CD与MN关于直线l对称,l与y轴之间的距离为a,求得M的横坐标即可;(2)先判定△ABO≌△MFE,得出△ABO与△MFE通过平移能重合,再根据对应点的位置,写出平移方案即可.(1)∵EF与CD关于y轴对称,EF两端点坐标为E(﹣m,a+1),F(﹣m,1),∴C(m,a+1),D(m,1),设CD与直线l之间的距离为x,∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a﹣x,∵x=m﹣a,∴M的横坐标为a﹣(m﹣a)=2a﹣m,∴M(2a﹣m,a+1),N(2a﹣m,1);(2)能重合.∵EM=2a﹣m﹣(﹣m)=2a=OA,EF=a+1﹣1=a=OB,又∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:将△ABO向上平移(a+1)个单位后,再向左平移m个单位,即可重合.18.(1)(﹣3,﹣1)(2)22【解析】18.(1)由点M及其对应点A的坐标得出平移方向和距离,据此可得点N的坐标;(2)根据题意画出图形,利用割补法求解可得.(1)由点A(7,3)的对应点是M(3,﹣2)知,由A先向左平移4个单位、再向下平移5个单位,可得到点M,∴点B(1,4)的对应点N的坐标为(﹣3,﹣1),故答案为:(﹣3,﹣1).(2)如图,描出点N并画出四边形BCMN,S=12×4×5+12×6×1+12×1×2+2×1+12×3×4=10+3+1+2+6=22.19.(1)2,0,0,﹣5,45°;(2)C(4,﹣1),E(5,0)(3)45°或135°【解析】19.(1)根据非负数的性质求出A、B两点的坐标,根据tan∠DAE=1,得出∠DAE=45°;(2)利用平移的性质求出C点坐标,根据待定系数法求出直线BC的解析式,进而得到点E的坐标;(3)分两种情况讨论求解即可解决问题.(1)∵a,b满足|a﹣2|+√b+5=0,∴a﹣2=0,b+5=0,∴a=2,b=﹣5,∴A(2,0),B(0,﹣5);∵tan∠DAE=4=1,6−2∴∠DAE=45°,故答案为2,0,0,﹣5,45°;(2)∵AD∥BC,AD=BC,∴点B先向右平移4个单位再向上平移4个单位得到点C,∵B(0,﹣5),∴C(4,﹣1).∴直线BC的解析式为y=x﹣5,∴E(5,0).(3)①当点P在点A的左侧时,如图1,连接PC.∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;②当P在直线BC与x轴交点的右侧时,如图2,连接PC.∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.20.(﹣2,﹣2)【解析】20.先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).21.(-4,3),(4,-3)【解析】21.根据题意画出图形,由AB∥OC,AB=OC,易证△ABD≌△OCE≌△OFC,可得出BD=CE,AD=OE,再根据点A、B的坐标求出AD、BD的长,根据点C的位置(在第二象限和第四象限),写出点C的坐标,即可求解.如图∵AB∥OC,AB=OC易证△ABD≌△OCE≌△OFC∴BD=CE,AD=OE∵点A(-a,a)(a>0),点B(-a-4,a+3)∴AD=-a-(-a-4)=4,BD=a+3-a=3∴OE=4,CE=3∵点C 在第二象限,∴点C 的坐标为(-4,3)∵点C 和点C 关于原点对称∴C 的坐标为(4,-3)故答案为:(-4,3),(4,-3).22.(5,1)【解析】22.根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标. ∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为:(5,1).23.(﹣√32,32)【解析】23.过B 1作B 1C ⊥y 轴于C ,由把△ABO 绕点O 逆时针旋转120°后得到△A 1B 1O ,根据旋转的性质得到∠BOB 1=120°,OB 1=OB=√3,解直角三角形即可得到结果. 过B 1作B 1C ⊥y 轴于C ,∵把△ABO 绕点O 逆时针旋转120°后得到△A 1B 1O ,∴∠BOB 1=120°,OB 1=OB=√3,∵∠BOC=90°, ∴∠COB 1=30°, ∴B 1C=12OB 1=√32,OC=12, ∴B 1(-√32,32).故答案为:(-√32,32).。
(考试真题)第三章位置与坐标数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,直角坐标系中,O为原点,A(12,0),在等腰三角形ABO中,OB=BA=10,点B在第一象限,C为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连接AD并延长与y轴交于点M(0,m),则m的值为().A. B. C. D.2、在平面直角坐标系xOy中,点P在第二象限,且点P到x轴的距离是4,到y轴的距离是5,则点P坐标是()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)3、如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A. B. C. D.4、如图,线段两个端点的坐标分别为、,以原点为位似中心,将线段放大得到线段,若点的坐标为,则点的坐标为()A. B. C. D.5、如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上6、平面直角坐标系中,的横坐标与纵坐标的绝对值之和叫做的勾股值,记为,即.若点B在第一象限且满足,则满足条件的所有B点与坐标轴围成的图形的面积为()A.2B.4C.6D.87、课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)8、如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2 ),则点C的坐标为()A.(,1)B.(1,)C.(1,2)D.(2,1)9、点M在第二象限内,M到x轴是距离是3,到y轴距离是2,那么点M的坐标是( )A.(-3,2)B.(-2,-3)C.(-2,3)D.(2,-3)10、在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)11、以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米12、下列选项所给数据,能让你在地图上准确找到位置的是()A.东经128°B.西经71°C.南纬13°D.东经118°,北纬24°13、如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A坐标是()A.(2,1)B.(1,﹣2)C.(1,2)D.(2,﹣1)14、如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A. B. C. D.15、已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1B.-4C.2D.3二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,正六边形的边长是2,则它的外接圆圆心的坐标是________.17、在平面直角坐标系中,点P(2t+8,5﹣t)在y轴上,则与点P关于x轴对称的点的坐标是________.18、如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点________.19、如图,半径为且坐标原点为圆心的圆交轴、轴于点、、、,过圆上的一动点(不与重合)作,且在右侧)⑴连结,当时,则点的横坐标是________.⑵连结,设线段的长为,则的取值范围是________.20、如图,写出各点的坐标:A(________,________ ),B(________,________ ),C(________,________ )。
北师大版八年级上册数学第三章位置与坐标含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,点在第三象限内,则a的取值范围是()A. B. C. D.2、如图,若“马”所在的位置的坐标为(-2,-1),“象”所在位置的坐标为(-1,1),则“兵”所在位置的坐标为()A.(-2,1)B.(-2,2)C.(1,-2)D.(2,-2)3、已知点A(﹣1,2)和点B(3,m﹣1),如果直线AB∥x轴,那么m的值为()A.1B.﹣4C.﹣1D.34、如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B (3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,则点A的坐标为()A.(,0)B.(,0)C.(,0)D.(2,0)5、象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)6、如图,线段两个端点的坐标分别为、,以原点为位似中心,将线段放大得到线段,若点的坐标为,则点的坐标为()A. B. C. D.7、如图,矩形的顶点A、B分别在x轴、y轴上,,,将矩形绕点O顺时针旋转,每次旋转,则第次旋转结束时,点C的坐标为()A. B. C. D.8、点P(2,3)到y轴的距离是()A.3B.2C.1D.09、下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示地安门的点的坐标为,表示广安门的点的坐标为时,那么表示左安门的点的坐标为()A. B. C. D.10、如图,等边△ABC的顶点A,B的坐标分别为(﹣2,﹣1),(2,﹣1),则顶点C坐标为()A.(0,)B.(,0)C.(0,)D.(,0)11、如图,已知点A的坐标为(3,4),⊙A的半径为3,延长OA交⊙A于点B,过点B作⊙A的切线,交y轴于点C,则OC长为()A.8B.9C.10D.1112、在平面直角坐标系中,点P(-3,b)到x轴的距离为4,则P点坐标为( )A.(-3,4)B.(-3,-4)C.(-3,4)或(-3,-4)D.(3,4)或(3,-4)13、在平面直角坐标系中,点A(-4,0)在()A.x轴正半轴上;B.x轴负半轴上;C.y轴正半轴上;D.y轴负半轴上14、在直角坐标中,点(﹣1,2)第()象限.A.一B.二C.三D.四15、一只小虫从点A(﹣2,1)出发,先向右跳4个单位,再向下跳3个单位,到达点B处,则点B的坐标是()A.(﹣5,5)B.(2,﹣2)C.(1,5)D.(2,2)二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为________.17、若点P(m,3)与点Q(1,n)关于y轴对称,则m=________;n=________.18、在平面直角坐标系中,点绕原点旋转180°后所得到的点的坐标为________.19、已知x能使得+ 有意义,则点P(x+2,x﹣3)关于原点的对称点P′在第________象限.20、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有________个.21、点(2017,-2018)关于x轴对称的点的坐标为________22、已知:如图,在平面直角坐标系中,点B的坐标为(1,0),以OB为边,在第一象限内作等边三角形OAB,过点A作AB的垂线,交x轴于点,过点作的垂线,交y轴于点,过点作的垂线,交x轴于点,过点作的垂线,交y轴于点,…,这样一直作下去,则点的坐标为________.23、已知点P(﹣2,1),则点P关于x轴对称的点的坐标是________.24、如图:观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:________25、如图,小明在平面直角坐标系中先作边长为1的正方形OABC,再用圆规以A为圆心,AC为半径画弧交x轴正半轴于点P,则点P的坐标为________.三、解答题(共5题,共计25分)26、已知点P(2x,y2+4)与Q(x2+1,-4y)关于原点对称,求x+y的值。
北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。
北师大版八年级上册数学第三章测试题(附答案)一、单选题(共12题;共24分)1.如图,用坐标(1,﹣2)表示学校的位置,用(3,2)表示书店的位置,则表示邮局位置的点的坐标是( )A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)2.如图是在方格纸上画出的小旗图案,若用(2,1)表示A点,(2,5)表示B点,那么C点的位置可表示为()A. (3,5)B. (4,3)C. (3,4)D. (5,3)3.平面直角坐标系xOy中,如果有点P(﹣2,1)与点Q(2,﹣1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在y=-的图象上,前面的四种描述正确的是( )A. ①②B. ②③C. ①④D. ③④4.已知点A的坐标为(0,0),点B的坐标为(4,0),点C在y轴上,△ABC的面积是10,则点C的坐标可能是()A. (0,10)B. (5,0)C. (0,﹣5)D. (0,4)5.在平面直角坐标系中,点(-1,m2+1)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.已知点P(x,|x|),则点P一定()A. 在第一象限B. 在第一或第二象限C. 在x轴上方D. 不在x轴下方7.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)8.若点P关于x轴对称点为P1(2a+b,3),关于y轴对称点为P2(9,b+2),则点P坐标为()A. (9,3)B. (﹣9,3)C. (9,﹣3)D. (﹣9,﹣3)9.已知点M到x轴的距离为1,到y轴的距离为2,则M点的坐标可能是()A. (1,2)B. (-1,-2)C. (1,-2)D. (-2,1)10.如图,半径为1个单位长度的圆从点P(﹣2,0)沿x轴向右滚动一周,圆上的一点由P点到达P′点,则点P′的横坐标是( )A. 4B. 2πC. π﹣2D. 2π﹣211.定义:平面内的直线l1与l2相交于点O ,对于该平面内任意一点M ,点M到直线l1、l2的距离分别为a、b ,则称有序非实数对(a ,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( ).A. 2个B. 3个C. 4个D. 5个12.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共12分)13.把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为________.14.同学们玩过五子棋吗?它的比赛规则是只要同色五子先成一条直线就算胜.如图是两人玩的一盘棋,若白①的位置是(1,-5),黑②的位置是(2,-4),现在轮到黑棋走,你认为黑棋放在_______位置就可获胜.15.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是________ 。
第3章测试卷(满分120分,时间90分钟)项是符合要求的)1.根据下列表述,能确定位置的是( )A.光明剧院2排B.某市人民路C.北偏东40°D.东经112°,北纬36°2.在平面直角坐标系中,点 A(-3,0)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上3.如图,小明从点O出发,先向西走40米,再向南走30米到达点M.如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点 BC.点 CD.点 D4.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)5.已知A(6,0),B(2,1),O(0,0),则△ABO的面积为( )A.1B.2C.3D.46.已知M(1,—2),N(—3,—2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交7.已知点A(a,2019)与点A'(-2 020,b)是关于原点 O的对称点,则a+b的值为( )A.1B.5C.6D.48.雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标 B的位置,正确的是( )A.(-4,150°)B.(4,150°)C.(-2,150°)D.(2,150°)9.无论m为何值,点A(m,5-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10.一个小球从点 A(3,3)出发,经过y轴上点C 反弹后经过点B(1,0),则小球从A 点经过点 C 到B 点经过的最短路线长是( )A.4B.5C.6D.7二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.点A(−√3,0)关于y轴的对称点的坐标是 .12.已知点 A(m-1,3)与点 B(2,n+1)关于x轴对称,则m=. .13.在平面直角坐标系中,点A₁(1,1),A₂(2,4),A₃(3,9),A₄(4,16),…,用你发现的规律确定点.A₉的坐标是14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点 A'的坐标为 .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有个.16.如图,在△ABC中,点A的坐标为(0,1),点 B 的坐标为(0,4),点 C 的坐标为(4,3),如果要使△ABD与.△ABC全等,那么点 D的坐标是 .17.如图,在△ABC中,点 A 的坐标为(0,1),点C的坐标为(4,3)如果要使以点 A、B、D为顶点的三角形与△ABC全等,那么点 D的坐标是 .18.在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依次类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除余数是1时,则向右走1个单位长度,当n被3除余数为2时,则向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(8分)在平面直角坐标系中,点A关于y轴的对称点为点B,点B关于x轴的对称点为点C.(1)若点 A 的坐标为(1,2),请你在给出的坐标系中画出△ABC,设的值;AB 与y轴的交点为D,求S ADOS ABC(2)若点 A的坐标为(a,b)(ab≠0),判断△ABC的形状.20.(8分)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B(2,-1).(1)作出线段AB 关于y 轴对称的线段C、D.(2)怎样表示线段CD 上任意一点 P 的坐标?21.(10分)长阳公园有四棵古槐A,B,C,D(单位:m).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定净如图所示的四边莆EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.(10分)在平面直角坐标系xOy中,点M的坐标为((3,−2),,线段AB的位置如图所示,其中点 A 的坐标为(7,3),点 B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点 A 的对应点为M(3,−2),点 B 的对应点为N,则点 N的坐标为 .(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点 N 并顺次连接BC,CM,MN,NB,然后求出四边形 BCMN的面积S.23.(10分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4₄(),A₈(),A₁₂();(2)写出点.A₄ₙ的坐标(n是正整数);(3)指出蚂蚁从点.A₁₀₀至点A₁₀₁的移动方向.24.(12分)(1)在平面直角坐标系中,将点A(−3,4)向右平移5个单位长度到点.A₁,再将点A₁绕坐标原点顺时针旋转90°到点 A₂,求点A₁,A₂的坐标;(2)在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位长度得到第一象限内的点.B₁,再将点B₁绕坐标原点顺时针旋转90°到点B₂,写出点B₁,B₂的坐标;(3)在平面直角坐标系中,将点P(c,d)沿水平方向平移n个单位长度到点.P₁,,再将点P₁绕坐标原点顺时针旋转90°到点 P₂,写出点 P₂的坐标.第3章测试卷1. D2. B3. B4. A5. C6. D7. A8. B9. C 10. B11.(√3,0) 12.3 —4 13.(9,81) 14.(1,2) 15.8016.(4,2)或(-4,2)或(-4,3)17.(4,-1)、(-1,3)、(-1,-1) 18.(100,33)19.解(1)如图所示,14.(2)直角三角形.20.解(1)如图线段CD;(2)P(-2,y)(-1≤y≤3).21.解(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则保护区的面积S=S矩形MNHO−S△GMF−S△GNH−S△EHO=60×50−12×20×50−12×10×50−12×10×60=3000−500−250−300=1950(m²)22.解(1)由点M(3,-2)的对应点A(7,3)知先向右平移4个单位、再向上平移5个单位,∴点B(1,4)的对应点N的坐标为(-3,-1),故答案为:(-3,-1).(2)如图,描出点 N并画出四边形BCMN,S=12×4×5+12×6×1+12×1×2+2×1+12×3×4=10+3+1+2+6=22.23.解(1)2 0 4 0 6 0;(2)A₄n(2n,0);(3)向上.24.解(1)∵将点A(-3,4)向右平移5个单位长度到点A₁,∴点A₁的坐标为(2,4),∵又将点 A₁绕坐标原点顺时针旋转90°到点A₂,∴A₂的坐标为(4,-2).(2)根据(1)中的规律,得B₁的坐标为(a+m,b),B₂的坐标为(b,-a-m).(3)分两种情况:①当把点P(c,d)沿水平方向向右平移n个单位长度到点P₁时,P₁的坐标为((c+n,d),P₂的坐标为(d,-c-n);②当把点P(c,d)沿水平方向向左平移n个单位长度到点P₁时,P₁的坐标为(c-n,d),然后将点P₁绕坐标原点顺时针旋转90°到点 P₂,则 P₂的坐标为(d,-c+n).。
第三章位置与坐标一、选择题(共16小题;共48分)1. 根据下列表述,能确定位置的是A. 红星电影院排B. 北京市四环路C. 北偏东D. 东经,北纬2. 若点与点关于轴对称,则A. ,B. ,C. ,D. ,3. 根据下列表述,能确定位置的是A. 国际影城排B. A 市南京路口C. 北偏东D. 东经,北纬4. 如图,在平面直角坐标系中,点的坐标为A. C. D.5. 在平面直角坐标系中,点关于轴的对称点的坐标是A. B. D.6. 由所有到已知点的距离大于或等于,并且小于或等于的点组成的图形的面积为A. B. C. D.7. 在平面直角坐标系中,若点坐标为,点坐标为,则三角形的面积为A. B. C. D.8. 将的三个顶点的横坐标乘以,纵坐标不变,则所得图形A. 与原图形关于轴对称B. 与原图形关于轴对称C. 与原图形关于原点对称D. 向轴的负方向平移了一个单位9. 如图,两个三角形的面积分别是和,对应阴影部分的面积分别是,则等于A. B. C. D. 无法确定10. 如果点在直线上,点的坐标是,点的坐标是,那么三角形的面积A. 等于B. 大于C. 小于D. 无法确定11. 正方形的边长为,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形内投一粒米,则米粒落在阴影部分的概率为D.12. 在直角坐标系中,将点向左平移个单位长度,再向下平移个单位长度后,得到的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限13. 在平面直角坐标系中,若点的坐标为,点的坐标为,则的面积为A. B. C. D.14. 如图,阴影部分的面积是A. B. C. D.15. 在某台风多影响地区,有互相垂直的两条主干线,以这两条主干线为轴建立直角坐标系,单位长为万米.最近一次台风的中心位置是,其影响范围的半径是万米,则下列四个位置中受到了台风影响的是A. B. C. D.16. 将的各顶点的横坐标都乘以,则所得三角形与的关系A. 关于轴对称B. 关于轴对称C. 关于原点对称D. 将三角形向左平移了一个单位二、填空题(共7小题;共35分)17. 如果点在直线上,点的坐标是,点的坐标是,那么三角形的面积为.18. 如果用表示电影院的座位号是排号,那么表示;排号可表示为.19. 已知点在第二象限,且到轴的距离是,到轴的距离是,则点的坐标为.20. 如图是由边长为和的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是.21. 在平面直角坐标系中,已知点在第二象限,则点关于直线(直线上各点的横坐标都是)对称的点的坐标是.22. 如图,在平面直角坐标系中,的顶点在轴的正半轴上,顶点的坐标为,点的坐标为,点为斜边上的一动点,则的最小值为.23. 的各顶点坐标为,,,则的面积为.三、解答题(共5小题;共67分)24. 如图,在中,,为上一点,且,过点作,垂足为,且,,交于点.(1)判断线段与的数量关系和位置关系,并说明理由.(2)连接,,若设,,,请利用四边形的面积证明勾股定理.25. 如图,是中国象棋棋盘的一部分,棋盘中“马”所在的位置用表示.(1)图中“象”的位置可表示为.(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角,“象”只能从“田”字的一角走到与它相对的另一角,请按此规则分别写出“马”和“象”下一步可能到达的位置.26. 已知在平面直角坐标系中有三点,,.请回答如下问题:(1)在坐标系内描出点,,的位置,并求的面积;(2)在平面直角坐标系中画出,使它与关于轴对称,并写出三顶点的坐标;(3)若是内部任意一点,请直接写出这点在内部的对应点的坐标.27. 如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为,点在第一象限内,点从原点出发,以每秒个单位的速度沿着的路线移动(即沿着长方形移动一周).(1)写出点的坐标.(2)当点移动了秒时,指出此时点的位置,并写出点的坐标.(3)在移动过程中,当点到轴距离为个单位长度时,求点移动的时间.28. 如图,,,点在轴上,且.(1)求点的坐标;(2)求的面积;(3)在轴上是否存在点,使以,,三点为顶点的三角形的面积为?若存在,请直接写出点的坐标;若不存在,请说明理由.答案第一部分1. D2. D3. D4. A5. A6. C7. D8. A9. B10. A11. A12. C13. D14. B 【解析】阴影部分面积为:.15. B16. B第二部分17.18. 排号,19.【解析】图形的总面积为,阴影部分面积为,小孔出现在阴影部分的概率是.21.23.第三部分24. (1),,理由如下,因为,所以,在和中,所以,所以,,又因为,所以,所以,即.(2),即.25. (1)(2)“马”下一步可能到达的位置:,,,,,;“象”下一步可能到达的位置:,,,.26. (1)描点如图,顺次连接点,,,由题意得,,且,.(2)如图,,.(3).27. (1).(2)点在中点处,坐标为.(3)当点在上时,则,(秒);当点在上时,则,(秒),综上所述,点移动的时间为秒或秒.28. (1)如图,点在点,点在点,所以,的坐标为或.(2)的面积.(3)设点到轴的距离为,则,解得,点在轴正半轴时,,点在轴负半轴时,,综上所述,点的坐标为或.。
2018年秋八年级上学期第三章位置与坐标单元测试卷数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(4分)已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.2 B.﹣4 C.﹣1 D.34.(4分)如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.13B.5C.13 D.55.(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)6.(4分)已知点A(a,2017)与点A′(﹣2018,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.47.(4分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是()A.(3,1) B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)8.(4分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)9.(4分)在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4) C.(﹣4,﹣4)D.(﹣4,4)10.(4分)雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A 的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B 的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)二.填空题(共4小题,满分20分,每小题5分)11.(5分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为.12.(5分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.13.(5分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.14.(5分)如图,△ABO中,AB⊥OB,OB=3,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为.三.解答题(共9小题,满分90分)15.(8分)在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标系并确定点C的位置;(2)若同学们打算从点B处直接赶往C处,请用方向角和距离描述点C相对于点B的位置.16.(8分)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B (2,﹣1).(1)作出线段AB关于y轴对称的线段CD.(2)怎样表示线段CD上任意一点P的坐标?17.(8分)在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)建立平面直角坐标系,描出A、B、C三点,求出三角形ABC的面积;(2)求出三角形ABO(若O是你所建立的坐标系的原点)的面积.18.(8分)如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积.19.(10分)在平面直角坐标系xOy 中,对于点P (x ,y ),若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”.例如,点P (1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q (7,13).(1)已知点A (﹣2,6)的“21级关联点”是点A 1,点B 的“2级关联点”是B 1(3,3),求点A 1和点B 的坐标;(2)已知点M (m ﹣1,2m )的“﹣3级关联点”M′位于y 轴上,求M′的坐标;(3)已知点C (﹣1,3),D (4,3),点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,请直接写出n 的取值范围.20.(10分)对于平面直角坐标系xOy 中的点P (a ,b ),若点P′的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P′为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为;(Ⅱ)若点P的“5属派生点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.21.(12分)在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为(﹣m,a+1),F(﹣m,1),(2a>m>a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD与NM关于直线l对称.(1)求点N、M的坐标(用含m、a的代数式表示);(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)22.(12分)在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B的对应点为N,则点N的坐标为.(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.23.(14分)如图,在平面直用坐标系中,A(a,0),D(6,4),将线段AD平移得到BC,使B(0.b),且a,b满足|a﹣2|+5b=0,延长BC交x轴于点E.(1)填空:点A(,),点B(,),∠DAE=;(2)求点C和点E的坐标;(3)设点P是x轴上的一动点(不与点A、E重合),且PA>AE,探究∠APC与∠PCB 的数量关系?写出你的结论并证明.2018年秋八年级上学期第三章位置与坐标单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.【解答】解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故选:C.【点评】本题考查了坐标与图形性质,熟记平行于x 轴的直线上的点的纵坐标相同是解题的关键.4.【分析】先根据A 、B 两点的坐标求出OA 及OB 的长,再根据勾股定理即可得出结论.【解答】解:∵A (2,0)和B (0,3),∴OA=2,OB=3,∴AB=13322222=+=+OB OA .故选:A .【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.【分析】直接利用关于x 轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B 的坐标是(4,﹣1),点A 与点B 关于x 轴对称,∴点A 的坐标是:(4,1).故选:A .【点评】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a 、b 的值,然后再计算a +b 即可.【解答】解:∵点A (a ,2017)与点A′(﹣2018,b )是关于原点O 的对称点, ∴a=2018,b=﹣2017,∴a +b=1,故选:A.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.7.【分析】根据A点坐标,可得C点坐标,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:由A点坐标,得C(﹣3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选:A.【点评】本题考查了坐标与图形变化﹣对称,关于y轴对称的点的坐标:横坐标互为相反数,纵坐标相等.8.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.10.【分析】根据点A、C的位置结合其表示方法,可得出相邻同心圆的半径差为1,结合点B在第四个圆上且在150°射线上,即可表示出点B.【解答】解:∵A(5,30°),C(3,300°),∴B(4,150°).故选:B.【点评】本题考查了坐标确定位置,根据点A、C的坐标找出点B的坐标是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置.12.【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.13.【分析】直接利用平移的性质得出平移后点的坐标即可.【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).【点评】此题主要考查了平移变换,正确掌握平移规律是解题关键.14.【分析】过B 1作B 1C ⊥y 轴于C ,由把△ABO 绕点O 逆时针旋转120°后得到△A 1B 1O ,根据旋转的性质得到∠BOB 1=120°,OB 1=OB=3,解直角三角形即可得到结果.【解答】解:过B 1作B 1C ⊥y 轴于C ,∵把△ABO 绕点O 逆时针旋转120°后得到△A 1B 1O ,∴∠BOB 1=120°,OB 1=OB=3,∵∠BOC=90°,∴∠COB 1=30°,∴B 1C=21OB 1=23,OC=23,∴B 1(﹣23,23). 故答案为:(﹣23,23).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标是解题的关键.三.解答题(共9小题,满分90分)15.【分析】(1)利用A ,B 点坐标得出原点位置,建立坐标系,进而得出C 点位置;(2)利用所画图形,进而结合勾股定理得出答案.【解答】解:(1)根据A (﹣3,1),B (﹣2,﹣3)画出直角坐标系,描出点C (3,2),如图所示;(2)BC=52,所以点C 在点B 北偏东45°方向上,距离点B 的52 km 处.【点评】此题主要考查了坐标确定位置以及勾股定理等知识,得出原点的位置是解题关键.16.【分析】(1)据关于y 轴对称的点的横坐标互为相反数确定出点C 、D 的位置,然后连接CD 即可;(2)线段CD 上所有点的横坐标都是﹣2;【解答】解:(1)如图线段CD ;(2)P (﹣2,y )(﹣1≤y ≤3).【点评】考查了关于x 轴、y 轴对称的点的坐标.关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P (x ,y )关于y 轴的对称点P′的坐标是(﹣x ,y ).17.【分析】(1)先描点,如图,然后根据点的坐标特征和三角形面积公式求解;(2)利用面积的和差计算三角形ABO 的面积.【解答】解:(1)如图,S △ABC =21×(3+1)(8﹣4)=8;(2)S △ABO =4×4﹣21×3×4﹣21×4×3﹣21×1×1 =27.【点评】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.18.【分析】(1)补充成网格平面直角坐标系,然后确定出点B 、C 、D 的位置,再与点A 顺次连接即可;(2)利用四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)四边形ABCD 如图所示;(2)四边形的面积=9×7﹣21×2×7﹣21×2×5﹣21×2×7, =63﹣7﹣5﹣7,=63﹣19,=44.【点评】本题考查了坐标与图形性质,三角形的面积,补充成网格平面直角坐标系更容易确定点的位置.19.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义和点M (m ﹣1,2m )的“﹣3级关联点”M′位于y 轴上,即可求出M′的坐标.(3)因为点C (﹣1,3),D (4,3),得到y=3,由点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,可得到方程组,解答即可.【解答】解:(1)∵点A (﹣2,6)的“21级关联点”是点A 1, ∴A 1(﹣2×21+6,﹣2+21×6), 即A 1(5,1).设点B (x ,y ),∵点B 的“2级关联点”是B 1(3,3),∴⎩⎨⎧=+=+3232y x y x 解得⎩⎨⎧==11y x ∴B (1,1).(2)∵点M (m ﹣1,2m )的“﹣3级关联点”为M′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)×2m ),M′位于y 轴上,∴﹣3(m ﹣1)+2m=0,解得:m=3∴m ﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,∴N′(nx +y ,x +ny ),【点评】本题考查一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【分析】(Ⅰ)根据“k 属派生点”计算可得;(Ⅱ)设点P 的坐标为(x 、y ),根据“k 属派生点”定义及P′的坐标列出关于x 、y 的方程组,解之可得;(Ⅲ)先得出点P′的坐标为(a ,ka ),由线段PP′的长度为线段OP 长度的2倍列出方程,解之可得.【解答】解:(Ⅰ)点P (﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(Ⅱ)设P (x ,y ),依题意,得方程组:⎩⎨⎧-=+=+9535y x y x ,解得⎩⎨⎧=-=12y x ,∴点P(﹣2,1).(Ⅲ)∵点P(a,b)在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka),∴线段PP′的长为点P′到x轴距离为|ka|,∵P在x轴正半轴,线段OP的长为a,根据题意,有|PP'|=2|OP|,∴|ka|=2a,∵a>0,∴|k|=2.从而k=±2.【点评】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.21.【分析】(1)先根据EF与CD关于y轴对称,得到EF两端点坐标,再设CD与直线l之间的距离为x,根据CD与MN关于直线l对称,l与y轴之间的距离为a,求得M的横坐标即可;(2)先判定△ABO≌△MFE,得出△ABO与△MFE通过平移能重合,再根据对应点的位置,写出平移方案即可.【解答】解:(1)∵EF与CD关于y轴对称,EF两端点坐标为(﹣m,a+1),F(﹣m,1),∴C(m,a+1),D(m,1),设CD与直线l之间的距离为x,∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a﹣x,∵x=m﹣a,∴M的横坐标为a﹣(m﹣a)=2a﹣m,∴M(2a﹣m,a+1),N(2a﹣m,1);(2)能重合.∵EM=2a﹣m﹣(﹣m)=2a=OA,EF=a+1﹣1=a=OB又∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:将△ABO向上平移(a+1)个单位后,再向左平移m个单位,即可重合.【点评】本题主要考查了坐标与图形变化,解题时注意:关于y轴对称的两点,纵坐标相等,横坐标互为相反数;向上平移时,纵坐标增加,向左平移时,横坐标减小.22.【分析】(1)由点M及其对应点A的坐标得出平移方向和距离,据此可得点N的坐标;(2)根据题意画出图形,利用割补法求解可得.【解答】解:(1)由点M(3,﹣2)的对应点A(7,3)知先向右平移4个单位、再向上平移5个单位,∴点B(1,4)的对应点N的坐标为(﹣3,﹣1),故答案为:(﹣3,﹣1).(2)如图,描出点N并画出四边形BCMN,S=21×4×5+21×6×1+21×1×2+2×1+21×3×4 =10+3+1+2+6=22.【点评】本题主要考查坐标与图形的变化﹣平移,用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.23.【分析】(1)根据非负数的性质求出A 、B 两点的坐标,根据tan ∠DAE=1,得出∠DAE=45°;(2)利用平移的性质求出C 点坐标,根据待定系数法求出直线BC 的解析式,进而得到点E 的坐标;(3)分两种情况讨论求解即可解决问题.【解答】解:(1)∵a ,b 满足|a ﹣2|+5+b =0,∴a ﹣2=0,b +5=0,∴a=2,b=﹣5,∴A (2,0),B (0,﹣5);∵tan ∠DAE=264-=1, ∴∠DAE=45°,故答案为2,0,0,﹣5,45°;(2)∵AD ∥BC ,AD=BC ,∴点B 向右平移4个单位向上平移4个单位得到点C ,∵B(0,﹣5),∴C(4,﹣1).∴直线BC的解析式为y=x﹣5,∴E(5,0).(3)①当点P在点A的左侧时,如图1,连接PC.∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;②当P在直线BC与x轴交点的右侧时,如图2,连接PC.∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.【点评】本题考查了坐标与图形变化﹣平移,平移的性质,非负数的性质,三角形的外角的性质等知识,正确的画出图形是解题的关键.。