整式的乘法学案
- 格式:doc
- 大小:68.00 KB
- 文档页数:2
第十四章 整式的乘法 复习导学案1学习目标:能熟练运用整式乘法的法则、平方差公式和完全平方公式进行整式的乘法运算. 学习重点:熟记公式及法则,并熟练运用法则进行整式乘法运算. 使用说明与学法指导:1、先利用15分钟时间复习教材P85-P113,巩固基础概念;2、利用20分钟时间独立完成导学案中的问题,并用红笔标记出困难问题,作为课堂重点需要解决的问题。
知识链接:一、 知识回顾: 1、幂的运算法则注意:区分前面两个 练习1:直接写出结果:(1)=+-⋅-523)(c c c (2)=-⋅-⋅-)()(52x x x 2、整式的乘法单项式乘以单项式法则:_____________________________________如:222217ab a c ⎛⎫⋅-= ⎪⎝⎭.单项式乘以多项式法则:_____________________________________ 如:-3x(6x-12x+1)= .多项式乘以多项式法则:_____________________________________ 如:(x+3)(2x-3)= 乘法公式:(重点)练习2:直接写出结果:(1)=-12x (2)=-2294b a 二.典例训练:1、选择题:(1)下列计算结果正确的是( )A. 248a a a ⋅=B. 0x x --=C. ()22224xy x y -= D.()437a a -= (2)下列运算结果错误的是( )A.()()22x y x y x y +-=-B.()222a b a b -=-C.()()()2244x y x y x y x y +-+=-D.2(2)(3)6x x x x +-=--(3)给出下列各式:①2211101a a -=,②10102020x x -=,③4354b b b -=,④222910y y y -=-,⑤4c c c c c ----=-,⑥22223a a a a ++=.其中运算正确的有( )A .3个 B.4个 C.5 个 D.6个(4).下列各式计算中,结果正确的是( )A.()()2222x x x -+=-B.()()223234x x x +-=-C.()()22x y x y x y --+=-D.()()222ab c ab c a b c -+=- 2、填空:(1)化简:a 3·a 2b= .(2)若x 2n =4,x 6n = ,(3)计算:4x 2·(-2xy)= . (4)、 3.计算与化简.(1)(-2a 2)(3a b 2-5a b 3). (2)(5x+2y)(3x-2y).(3)()221xy -+ (4)()()()25255x x x ++-(5)若x 2+2(m-3)x+16是完全平方式,求m 的值。
整式的乘法教案一、教学目标1. 能够理解整式的乘法规则,掌握整式的乘法方法。
2. 能够应用整式的乘法方法解决实际问题。
二、教学内容1. 整式的乘法规则2. 整式的乘法方法3. 应用整式的乘法解决实际问题三、教学重难点1. 整式的乘法规则的掌握2. 整式的乘法方法的运用四、教学方法1. 讲授法2. 练习法五、教学过程1. 整式的乘法规则首先,对于两个单项式相乘,应用成分分解方法进行计算,即把两个单项式中的系数和字母分开,然后对系数和字母分别相乘:例如:(3a)(4b) = 3 × 4 × a × b = 12ab对于两个多项式相乘,利用分配律,把两个多项式的各项依次相乘,然后将结果合并:例如:(3a + 2b)(4a − 5b) = 3a × 4a − 3a × 5b + 2b × 4a − 2b × 5b = 12a^2 − 15ab + 8ab − 10b^2= 12a^2 − 7ab − 10b^22. 整式的乘法方法步骤一:分解整式将整式按照单项式分解的方式分解为单项式的乘积。
例如:2x^2 − 3xy + y^2 = (2x − y)(x − y)步骤二:按照公式进行运算根据乘法公式,在相应的位置上写下对应的系数和字母,然后合并同类项。
例如:(2x − y)(x − y) = 2x^2 − 2xy − xy + y^2 = 2x^2 − 3xy + y^2步骤三:检查结果检查结果是否合理,是否有错漏。
3. 应用整式的乘法解决实际问题例题一:甲、乙两人从甲地到乙地需要上车,车费7元,甲要付5元,乙付2元,求甲、乙两人到车站乘车的路程相差3千米,则甲、乙两人到车站乘车的路程分别是多少千米?解题方法:设甲的路程为x千米,则乙的路程为(x + 3)千米。
由题意可得:5/x + 2/(x + 3) = 7/x(x + 3)将上式通分并整理得:3x^2 − 2x − 15 = 0将上式分解得:(3x + 5)(x − 3) = 0得出x = −5/3,3因为路程不能为负数,所以甲的路程为3千米,乙的路程为6千米。
6、整式的乘法第一课时 单项式与单项式相乘教学目标:知识与能力目标:1、经历探索整式乘法运算法则的过程,会进行简单的整式乘法运算。
2、理解整式乘法运算的算理,体会乘法分配率的利用和转化思想,培养思考及表达能力。
过程与方法目标:由实例引入整式乘法运算,让学生体会整式运算的必要性,探索整式乘法运算的法则,并会运用。
课堂达标测试☆ 基础练习设计1、计算(1)(5x 3)·(2x 2y) (2)(-3ab)·(-4b 2)(3)(2x 2y)3·(-4xy 2) (4)(3×105)×(5×102)(5)(-3x)·2xy 2·4y (6)2a 2·(-2a )3+(2a 4)·5a2、一种电子计算机每秒可进行4×109次运算,它工作5×102秒可进行多少次运算?3、卫星绕地球运动的速度(即第一宇宙速度)是7.9×103米/秒,求卫星绕地球进行2×109秒走过的路程。
☆ 个性练习设计 若单项式31x n+1y 与单项式3xyz 乘积的结果是一个六次单项式,求n 的值。
第二课时单项式与多项式的乘法教学目标:知识与能力目标:1、经历探索整式乘法运算法则的过程,会进行简单的整式乘法运算。
2、理解整式乘法运算的算理,体会乘法分配率的利用和转化思想,培养思考及表达能力。
过程与方法目标:由实例引入整式乘法运算,让学生体会整式运算的必要性,探索整式乘法运算的法则,并会运用。
课堂达标测试☆基础练习设计1、选择(1)x(1+x)-x(1-x)等于()A、2xB、2x2C、0D、-2x+2x2(2)(-3a2+b2-1)(-2a)等于()A、6a3-2ab2B、6a3-2ab2-2aC、-6a2+2ab-2aD、6a3-2ab2+2a2、计算(1)-6x(x-3y) (2)5x(2x2-3x+4) (3)3x(x2-2x-1)-2x2(x-2)3、计算下面图形的面积。
14.1整式的乘法(第4课时)14.1.4 整式的乘法(第2课时)一、教案目标(一)学习目标1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性.2.理解多项式与多项式相乘的法则,并会用法则进行简单的计算;经历探索多项式与多项式相乘的法则的过程,培养学生观察、归纳、有条理的思考及语言表达等的能力,渗透转化、整体、数形结合等数学思想.3.灵活运用多项式乘多项式的运算法则进行计算.(二)学习重点多项式与多项式相乘的法则的理解及其运用.(三)学习难点探索多项式与多项式相乘的法则,灵活地进行整式的乘法运算.二、教案设计(一)课前设计1.预习任务多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.预习自测(1)计算:(2)(3)x x ++【知识点】多项式与多项式相乘的法则.【数学思想】【解题过程】解:(2)(3)x x ++2322356x x x x x x =+++⨯=++【思路点拨】利用多项式与多项式相乘的法则计算.【答案】 652++x x .(2)计算:2)1(-a【知识点】多项式与多项式相乘的法则.【数学思想】转化思想【解题过程】解:2)1(-a22(1)(1)121a a a a a a a =--=--+=-+【思路点拨】先将乘方运算转化为多项式与多项式相乘的运算,再利用多项式与多项式相乘的法则计算.【答案】 122+-a a .(二)课堂设计1.知识回顾(1)单项式与单项式相乘的法则:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.问题探究探究一:回顾旧知,创设情境,引入新课●活动① 回顾旧知,回忆乘法交换律,乘法结合律,乘法分配律乘法交换律:a b b a =乘法结合律:()()ab c a bc =乘法分配律:()m a b c ma mb mc ++=++【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动② 整合旧知,引出课题问题1:“人人参与,全民健身”,为了适应锻炼人群的需求,市政府决定把原来长为a M,宽为p M 的长方形运动场增长b M,加宽q M.你能用几种方法求出扩大后的运动场面积?学生先独立思考,再小组讨论,可以得出以下四种方法:方法一:(合成一个整体看)()()a b p q ++.方法二:(看作两个长方形之和)()()a p q b p q +++或()()p a b q a b +++.方法三:(分成四个部分看)ap aq bp bq +++.所以,就可以得到:()()()()a b p q a p q b p q ap aq bp bq ++=+++=+++或者()()()()a b p q p a b q a b ap bp aq bq ++=+++=+++.问题2:观察方法一,这是一个多项式与多项式相乘的式子,怎样进行多项式与多项式的乘法运算呢?多项式与多项式的乘法运算能否转化成前面学习的单项式与多项式的乘法运算呢?带着这些问题来学习今天的新课!【设计意图】用熟悉的话题引入课题,调动学生学习积极性.多种方法求面积培养学生的发散思维,也从形的角度让学生感知多项式与多项式相乘的运算.●活动① 大胆猜想,探究多项式与多项式相乘的法则.问题1:你能试着说说()()()()a b p q a p q b p q ++=+++是怎么计算来的吗?问题2:你能说说()()a p q b p q ap aq bp bq +++=+++计算的依据吗?学生小组讨论师生共同得出:()()a b p q ++可以把p q +看成一个整体,利用乘法分配律把多项式与多项式相乘的问题转化成了单项式与多项式相乘的的问题,再利用单项式与多项式的相乘法则得到()()()()a b p q a p q b p q ++=+++,进而继续用单项式与多项式相乘法则得到()()a p q b p q ap aq bp bq +++=+++.师:最后就可以得到:()()a b p q ap aq bp bq ++=+++.学生在回答了两个问题后,也可以让学生根据前面获得的经验继续说说)()())((b a q b a p q p b a +++=++和bp ap bq aq b a q b a p +++=+++)()(是怎么计算得到的.【设计意图】从数的角度引导学生对()()a b p q ap aq bp bq ++=+++的理解,培养了学生的观察、有条理的思考和语言表达能力,也渗透了转化、整体、数形结合的思想.●活动② 集思广益,归纳多项式与多项式相乘的法则.问题1:观察式子()()a b p q ap aq bp bq ++=+++,左边是多项式与多项式的乘法,怎么得到右边的几个单项式之和呢?问题2:你能用语言叙述多项式与多项式相乘的法则吗?学生独立思考,再小组讨论,小组派代表发表看法学生发言,师完善,得出结论:多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.追问:你能用字母表示这个法则吗?学生能很快回答:()()a b p q ap aq bp bq ++=+++.【设计意图】由前面形和数两个角度的理解,再让学生用文字语言叙述多项式与多项式相乘的法则,及字母表示法则,培养学生的观察,独立思考,归纳能力和小组合作意识.探究三 运用新知,典例精析●活动① 基础性例题例1计算:(1)(31)(2)x x ++; (2)(8)()x y x y --;(3)22()()x y x xy y +-+.【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】解:(1)(31)(2)x x ++22362372x x x x x =+++=++(2)(8)()x y x y --22228898x xy xy y x xy y =--+=-+(3)22()()x y x xy y +-+ 32222333x x y xy x y xy y x y =-++-+=+【思路点拨】利用多项式与多项式相乘的法则计算,计算过程中注意:(1)不要漏项,两个多项式相乘,在没有合并之前的项数应该是两个多项式项数的积,最后才合并同类项;(2)每项符号的确定.【答案】(1)2372x x ++;(2)2298x xy y -+;(3)33x y +练习:(1)(21)(3)x x ++;(2)(2)(3)m n n m +-;(3)22()()a b a ab b -++.【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】解:(1)(21)(3)x x ++22263273x x x x x =+++=++(2)(2)(3)m n n m +-22223626mn m n mnn m mn =-+-=-+(3)22()()a b a ab b -++32222333a a b ab a b ab b a b =++---=-【思路点拨】利用多项式与多项式相乘的法则计算,计算过程中注意:不要漏项和每项符号的确定.【答案】(1)2273x x ++;(2)226n m mn -+;(3)33a b -.【设计意图】巩固多项式与多项式相乘的法则,特别是第3题的类型是两项与三项相乘,要注意每一项都要和每一项相乘,不要漏项,也要注意每项的符号确定.●活动2 提升型例题例2化简求值:(2)(23)(1)x x x x +-+-,其中12x =- 【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】解:(2)(23)(1)x x x x +-+-222222(2233)222333x x x x x x x x x x x x =+--+-=+-+-+=-++ 当12x =-时,221193()3224x x -++=---+= 【思路点拨】先利用多项式与多项式相乘的法则化简,再将12x =-代入式子求解. 【答案】94练习: 化简求值:222(2)(32)(25)3()a a a a a b a ab +-+-+-,其中1a =-,12b =-. 【知识点】多项式与多项式相乘,单项式与多项式相乘,单项式与单项式相乘的法则,合并同类项法则.【数学思想】【解题过程】解:222(2)(32)(25)3.()a a a a a b a ab +-+-+-22323232643225362a a a a a b a b a a b =-+-+-+=--当1a =-,12b =-时,3232115626(1)2(1)()22a ab --=-----= 【思路点拨】利用多项式与多项式相乘,单项式与多项式相乘,单项式与单项式相乘的法则,合并同类项法则计算,再将1a =-,12b =-代入式子求解,注意计算过程中各项符号的确定,及不要漏项.【答案】152例3 解下列不等式:2(32)(24)9(1)(3)3x x x x x +-≥-+-【知识点】多项式与多项式相乘的法则,解不等式的方法【数学思想】【解题过程】解:2(32)(24)9(1)(3)3x x x x x +-≥-+-22222222612489(33)36889182736886182726191926x x x x x x x x x x x x x x x x x x -+-≥+-----≥+----≥+--≥-≤【思路点拨】利用多项式与多项式相乘的法则左右两边化简,再利用解不等式的方法求不等式的解集,化简求解过程中注意:不要漏项和每项符号的确定,及移项变号. 【答案】1926x ≤ 练习 解下列方程:2(2)(3)2(5)(6)3(715)x x x x x x -+++-=-+【知识点】多项式与多项式相乘,单项式与多项式相乘的法则,解方程的方法.【数学思想】【解题过程】解:2(2)(3)2(5)(6)3(715)x x x x x x -+++-=-+222222222223262(6530)3214562(30)321456226032145366321452011111120x x x x x x x x x x x x x x x x x x x x x x x x x x +--+-+-=-++-+--=-++-+--=-+--=-+==【思路点拨】利用多项式与多项式相乘,单项式与多项式相乘的法则计算,再利用解方程的方法求方程的解,计算过程中注意:不要漏项,每项符号的确定,解方程过程中移项要变号. 【答案】11120x = 【设计意图】在化简求值和解方程及解不等式的计算中,巩固多项式与多项式相乘的法则.●活动3(探究型例题)例4 某零件如图所示(上、下宽度相同,左、右宽度相同),(1)求图中空白部分面积;(2)求图中阴影部分的面积.【知识点】多项式与多项式相乘的法则【数学思想】数形结合思想【解题过程】解:(1)(22)(22)22b a a b a b +-+- 22(2)(2)()()2a b b a b a a b a b a ab b =+-+-=++=++ (2)22(2)(2)(2)a b a b a ab b ++-++22222224223a ab ab b a ab b a ab b =+++---=++【思路点拨】根据图形提示,表示出各边的长,再求各部分面积.【答案】(1)222a ab b ++;(2)223a ab b ++练习 一块长x M ,宽y M 的玻璃,长宽各裁掉m M 后恰好能覆盖一张办公桌的台面(玻璃与台面一样大小),求台面面积是多少?【知识点】多项式与多项式相乘的法则【数学思想】数形结合思想【解题过程】2()()x m y m xy mx my m --=--+【思路点拨】将长和宽分别减去m M ,得到的图形仍然是长方形,利用多项式与多项式相乘的法则计算求得面积.【答案】2xy mx my m --+【设计意图】通过求面积的计算来巩固多项式与多项式相乘的法则,同时渗透数形结合思想.3. 课堂总结知识梳理(1)多项式与多项式相乘的法则:多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(2)计算时要注意:(1)不要漏项;(2)注意每一项的符号的确定.重难点归纳(1)多项式与多项式相乘的法则的理解,三个法则的灵活运用;(2)学习和运用法则过程中,渗透了转化、整体、数形结合等数学思想.(三)课后作业基础型 自主突破1.计算(2)(3)x x +-的结果是( )A .26x -B .26x -C .26x x --D .26x x +-【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】22(2)(3)3266x x x x x x x +-=-+-=--【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项符号的确定【答案】C .2.下列各式中,计算正确的是( )A .2(2)(2)44x x x x -+=--B .22(3)69x x x -=-+C .2(23)(3)29x x x +-=-D .2(32)(31)932x x x x --=+-【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】222(3)(3)(3)33969x x x x x x x x -=--=--+=-+【思路点拨】利用多项式与多项式相乘的法则计算每个选项,注意不要漏项和各项符号的确定【答案】B .3.下列计算结果为223x x --( )A .(21)(3)x x -+B .(23)(1)x x +-C .(23)(1)x x -+D .(21)(3)x x --【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】22(23)(1)223323x x x x x x x -+=+--=--【思路点拨】利用多项式与多项式相乘的法则计算每个选项,最后确定【答案】C .4.关于x 的一次二项式的积(7)()x x m +-中常数项为21,则m 的值为( )A .3-B .7-C .3D .7【知识点】多项式与多项式相乘的法则【数学思想】【解题过程】22(7)()77(7)77213x x m x mx x m x m x mm m +-=-+-=----==-【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定【答案】A .5.若4a b +=,3ab =,则代数式(1)(1)a b --的值为( )A .1B .7-C .0D .7【知识点】多项式与多项式相乘的法则【数学思想】整体代换思想【解题过程】(1)(1)1()13410a b ab a b ab a b --=--+=-++=-+=【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定,把4a b +=,3ab =分别当作整体代入原式,从而求解.【答案】C .6.一个长方形的长为m ,宽为n ,把长减少1,宽增加2,则面积增加( )A .2mn m n +-B .22m n --C .22m n -+D .22m n +-【知识点】多项式与多项式相乘的法则,合并同类项法则【数学思想】数形结合思想【解题过程】(1)(2)2222m n mnmn m n mn m n -+-=+---=--【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定【答案】B .能力型 师生共研7.化简求值:22(2)(23)(1)y y y y y y -++---,其中1y =-【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】【解题过程】22(2)(23)(1)y y y y y y -++---322322232466y y y y y y y yy =++----++=-当1y =-时,26165y -=-=- 【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定.【答案】5-.8.解方程:2(23)(1)(2)(3)6x x x x x +--+-=+.【知识点】多项式与多项式相乘的法则,合并同类项法则,解方程的方法.【数学思想】【解题过程】2(23)(1)(2)(3)6x x x x x +--+-=+2222222222233(326)623(6)62366023032x x x x x x x x x x x x x x x x x x x -+---+-=++----=++--++--=-==【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定,注意移项变号. 【答案】32x =.探究型 多维突破9.如果22(2)(3)x bx x x c ++-+的乘积中不含2x 和3x 的项,求b 和c 的值.【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】方程思想【解题过程】22(2)(3)x bx x x c ++-+43232243233262(3)(32)(6)2x x cx bx bx bcx x x cx b x c b x bc x c =-++-++-+=+-++-++-+因为乘积中不含2x 和3x 的项,所以30320b c b -+=⎧⎨-+=⎩,解得:37b c =⎧⎨=⎩ 【思路点拨】利用多项式与多项式相乘的法则计算,注意不要漏项和各项的符号的确定.【答案】37b c =⎧⎨=⎩. 10.有一种打印纸长为xcm ,宽为ycm ,在打印(纵向)某文档设置边距时,上,下均设置为2.5cm ,左右均设置为2.6cm ,那么一张这样的打印纸的实际打印面积是多少?【知识点】多项式与多项式相乘的法则,合并同类项法则【数学思想】数形结合思想【解题过程】根据题意得:【思路点拨】弄清题意,利用多项式与多项式相乘的法则计算,从而求出面积.【答案】自助餐1.若2(2)(3)x x x mx n +-=++,则m n +的值为( )2(2 2.5)(2 2.6)(5)( 5.2)5.252626526()5x y x y xy x y xy x y cm -⨯-⨯=--=--+=--+226526()5xy x y cm --+A .5B .7-C .1-D .7【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】对应思想【解题过程】22(2)(3)3266x x x x x x x +-=-+-=--又因为2(2)(3)x x x mx n +-=++,所以226x mx n x x ++=--即1m =-,6n =-,所以7m n +=-【思路点拨】利用多项式与多项式相乘的法则计算【答案】B .2.下列结算个结果正确的是( )A .2(2)(3)6x x x x -+=+-B .2(3)(2)5x x x x -+=+-C .2(3)(2)66x x x x ++=++D .2(2)(3)56x x x x --=--【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】【解题过程】22(2)(3)3266x x x x x x x -+=+--=+-.【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定.【答案】A .3.用如图所示的A 类、B 类、C 类卡片若干张,拼成一个长为32a b +,宽为4a b +的矩形,则分别需要A 类卡片_______张,B 类卡片_________张,C 类卡片_______张.【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】数形结合思想,对应思想【解题过程】2222(32)(4)312283148a b a b a ab ab b a ab b ++=+++=++又因为2A S a =,B S ab =,2C S c =所以2231483148A B C a ab b S S S ++=++,即需要A 类卡片3张, B 类卡片14张,C 类卡片8张.【思路点拨】利用多项式与多项式相乘的法则计算,根据各类卡片的面积确定各类卡片的张数.【答案】A 类卡片3张,B 类卡片14张,C 类卡片8张.4.若232(1)()61116x x mx n x x x -++=--+,则_____m =,_____n =.【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】对应思想,方程思想.【解题过程】232232(1)()(1)()x x mx n x mx nx x mx n x m x n m x n-++=++---=+-+--又因为232(1)()61116x x mx n x x x -++=--+, 所以3232(1)()61116x m x n m x n x x x +-+--=--+ 即1616m n -=-⎧⎨-=⎩,得516m n =-⎧⎨=-⎩【思路点拨】利用多项式与多项式相乘的法则计算,注意各项的符号的确定.【答案】5m =,16n =-.5.已知223m m -=,将下式化简,再求值.2(1)(3)(3)(3)(1)m m m m m -++-+--【知识点】多项式与多项式相乘的法则,合并同类项法则.【数学思想】整体代换思想【解题过程】22222(1)(3)(3)(3)(1)21943365m m m m m m m m m m m m -++-+--=-++-+-+=-- 又因为223m m -=,所以223653(2)53354m m m m --=--=⨯-= 【思路点拨】利用多项式与多项式相乘的法则计算,把22m m -看作一个整体,再用整体代换思想代入从而求解.【答案】4.6.甲、乙二人共同计算一道整式乘法:()(2)x m x n +-,由于甲抄错了第一个多项式中的m 的符号,得到的结果为22918x x +-。
整式的乘法公式教案一、教学目标:1. 知识与技能:(1)理解并掌握整式的乘法公式,包括平方差公式和完全平方公式;(2)能够运用整式的乘法公式进行简便计算。
2. 过程与方法:(1)通过实例演示和练习,引导学生发现整式乘法公式;(2)培养学生运用公式进行计算的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动探究问题的习惯。
二、教学重点与难点:1. 教学重点:(1)掌握整式的乘法公式;(2)能够运用整式的乘法公式进行计算。
2. 教学难点:(1)整式乘法公式的推导过程;(2)灵活运用整式乘法公式解决实际问题。
三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)练习题。
2. 学生准备:(1)预习整式乘法公式;(2)准备笔记本,记录重点知识。
四、教学过程:1. 导入:(1)复习相关知识,如整式的加减法;(2)提问:能否将整式的加减法推广到乘法?2. 知识讲解:(1)通过实例演示,引导学生发现整式乘法公式;(2)讲解平方差公式和完全平方公式的推导过程;(3)强调公式中的各项系数和指数的变化规律。
3. 练习与讲解:(1)让学生分组讨论,互相解答疑问;(2)选取典型题目进行讲解,分析解题思路;(3)引导学生运用整式乘法公式进行计算。
4. 课堂小结:(1)回顾本节课所学内容,总结整式乘法公式的特点;(2)强调学生在练习中需要注意的问题。
五、课后作业:1. 请学生完成课后练习题,巩固整式乘法公式的运用;2. 鼓励学生自主探究,发现整式乘法公式的拓展应用。
六、教学拓展:1. 平方差公式的拓展:(1)引导学生发现平方差公式的推广形式;(2)举例说明平方差公式在实际问题中的应用。
2. 完全平方公式的拓展:(1)引导学生发现完全平方公式的推广形式;(2)举例说明完全平方公式在实际问题中的应用。
七、课堂练习:1. 请学生独立完成练习题,检验对整式乘法公式的掌握程度;2. 教师选取部分学生的作业进行点评,指出优点和不足。
整式的乘法教案(通用3篇)整式的乘法篇1内容:整式的乘法单项式乘以多项式 P58—59课型:新授时间:学习目标:1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:单项式乘以多项式的法则学习难点:对法则的理解学习过程1、学习准备1、叙述单项式乘以单项式的法则2、计算(1)(— a2b)(2ab)3=(2)(—2x2y)2 (— xy)—(—xy)3(—x2)3、举例说明乘法分配律的应用。
2、合作探究(一)独立思考,解决问题1、问题:一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3天共修筑路面 m2。
算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2。
因此,有 = 。
3、你能用字母表示乘法分配律吗?4、你能尝试总结单项式乘以多项式的法则吗?(二)师生探究,合作交流1、例3 计算:(1)(—2x)(—x2x+1)(2)a(a2+a)— a2 (a—2)2、练一练(1)5x(3x+4)(2)(5a2 a+1)(—3a)(3)x(x2+3)+x2(x—3)—3x(x2x—1)(4)(a)(—2ab)+3a(ab—b—1))(三)学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?(四)自我测试1、教科书P59 练习 3,结合解题,体会单项式乘以多项式的几何意义。
2、判断题(1)—2a(3a—4b) =—6a2—8ab ()(2)(3x2—xy—1) x =x3 —x2y—x ()(3)m2—(1— m) = m2—— m ()3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于()A、—1B、0C、1D、无法确定4、计算(20xx贺州中考)(—2a)( a3 —1) =5、(3m)2(m2+mn—n2)=(五)应用拓展1、计算(1)2a(9a2—2a+3)—(3a2)(2a—1)(2)x(x—3)+2x(x—3)=3(x2—1)2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
初中数学《整式的乘法》教案设计初中数学《整式的乘法》教案设计「篇一」15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,•那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ch.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、 ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a2;正方体的体积为长宽高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的'定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、• ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为32、43,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是 ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。
整式的乘法导学案【学习目标】1、整式的乘法的运算;2、灵活运用法则进行计算和化简;3、培养学生转化思想;【学习重点难点】重点:整式乘法的运算;难点:灵活运用法则进行运算和化简;【学法指导】幂的运算性质、乘法的运算律;【知识链接】有关幂的运算、乘法的运算律;【自主学习】阅读教材第144—148页的有关内容,回答下列问题;1、(1)系数相乘—乘法(注意符号及运算的准确性)(2)相同字母相乘—的乘法;(3)对于只在一个单项式含有的字母,;(4)若某个单项式有乘方运算,应先算,再算;(5)单项式与单项式相乘,其结果是;2、(1)单项式与多项式相乘,其实质是利用,把单项式与多项式相乘转化为;(2)单项式乘以多项式,积是一个式,其项数与多项式的项数;3、(1)(3×102)(5×105)=(2)m(a+b+c)=【合作探究】1、计算(1) (-5a2b)(-3a) (2) (2x) 3 (-5xy2)(3) (-x2y)(-3xyz) 2 (y2z) (4) (-4bc2d))(-2acb2) 22、计算(1) (-4x2)(3x+1) (2) (2/3ab2-2ab)(1/2a2b)【达标测评】1、填空:(1) 3m2×2m3=(2) (-2x)(-5xy)=(3) -3a(2x-5y+6a)=2、计算(1) 1/2ab2 (a+2b-3ab) (2) -xy(x2-y2+1)3、已知xy2=-6,求代数式-xy(x2y5-xy3-y)的值4、先化简,再求值:x2 (2x) 3-x(3x+8x4),其中x=2【整理学案】单项式与单项式相乘要抓住其性质:(1)系数与系数相乘——有理数的乘法;(2)相同字母与相同字母相乘——同底数幂的乘法;(3)只在一个多项式里含有的字母——抄下来作为积的因式;单项式与多项式相乘,其实质就是利用乘法的分配律转化为单项式乘单项式,应特别注意多项式的常数项,不要漏乘,单项式乘多项式,积为一个多项式,其项数与多项式的项数相同。
《整式的乘法》教案一、教学目标1. 理解整式乘法的概念和意义。
2. 掌握整式乘法的基本方法和步骤。
3. 能够运用整式乘法解决实际问题。
二、教学内容1. 整式乘法的定义和性质。
2. 整式乘法的基本方法和步骤。
3. 整式乘法在实际问题中的应用。
三、教学重点与难点1. 整式乘法的概念和意义。
2. 整式乘法的基本方法和步骤。
3. 整式乘法在实际问题中的应用。
四、教学方法1. 采用讲解法,引导学生理解整式乘法的概念和意义。
2. 采用示范法,演示整式乘法的基本方法和步骤。
3. 采用练习法,让学生通过实际问题运用整式乘法。
五、教学准备1. 教学课件或黑板。
2. 练习题。
教案内容:一、导入(5分钟)1. 引入整式乘法的概念,引导学生回顾整式的基本知识。
2. 通过实际例子,让学生感受整式乘法的意义。
二、讲解整式乘法(15分钟)1. 讲解整式乘法的定义和性质。
2. 演示整式乘法的基本方法和步骤。
3. 引导学生通过例子理解和掌握整式乘法。
三、练习整式乘法(15分钟)1. 分组练习,让学生相互讨论和交流。
2. 教师选取部分学生的作业进行讲解和指导。
四、应用整式乘法解决实际问题(15分钟)1. 给出实际问题,让学生运用整式乘法进行解决。
2. 引导学生总结整式乘法在实际问题中的应用。
五、总结与布置作业(5分钟)1. 对整式乘法进行总结,强调重点和难点。
2. 布置相关练习题,让学生巩固所学知识。
六、教学过程1. 复习导入:回顾上一节课的内容,通过几个简单的整式乘法例子,让学生回顾并巩固整式乘法的基本方法和步骤。
2. 讲解新课:讲解整式乘法的进阶概念和技巧,如平方差公式、完全平方公式等。
通过示例和练习,让学生理解和掌握这些概念和技巧。
3. 应用练习:给出一些实际问题,让学生运用整式乘法进行解决。
通过讨论和交流,引导学生总结整式乘法在实际问题中的应用。
七、教学评价1. 课堂练习:在课堂上,让学生完成一些整式乘法的练习题,通过学生的解答情况,了解学生对整式乘法的掌握程度。